51
|
Talukdar D. Meiotic consequences of selfing in grass pea (Lathyrus sativus L.) autotetraploids in the advanced generations: Cytogenetics of chromosomal rearrangement and detection of aneuploids. THE NUCLEUS 2012. [DOI: 10.1007/s13237-012-0059-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
52
|
Abstract
This article is a response to Wang and Luo. See correspondence article http://www.biomedcentral.com/1741-7007/10/30 and the original research article http://www.biomedcentral.com/1741-7007/9/24.
Collapse
|
53
|
Nelson AD, Lamb JC, Kobrossly PS, Shippen DE. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. THE PLANT CELL 2011; 23:2263-72. [PMID: 21653196 PMCID: PMC3160034 DOI: 10.1105/tpc.111.086017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Conversion of a double-strand break into a telomere is a dangerous, potentially lethal event. However, little is known about the mechanism and control of de novo telomere formation (DNTF). DNTF can be instigated by the insertion of a telomere repeat array (TRA) into the host genome, which seeds the formation of a new telomere, resulting in chromosome truncation. Such events are rare and concentrated at chromosome ends. Here, we introduce tetraploid Arabidopsis thaliana as a robust genetic model for DNTF. Transformation of a 2.6-kb TRA into tetraploid plants resulted in a DNTF efficiency of 56%, fivefold higher than in diploid plants and 50-fold higher than in human cells. DNTF events were recovered across the entire genome, indicating that genetic redundancy facilitates recovery of DNTF events. Although TRAs as short as 100 bp seeded new telomeres, these tracts were unstable unless they were extended above a 1-kb size threshold. Unexpectedly, DNTF efficiency increased in plants lacking telomerase, and DNTF rates were lower in plants null for Ku70 or Lig4, components of the nonhomologous end-joining repair pathway. We conclude that multiple competing pathways modulate DNTF, and that tetraploid Arabidopsis will be a powerful model for elucidating the molecular details of these processes.
Collapse
|
54
|
Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid O. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol 2011. [PMID: 21510849 DOI: 10.11862/f1741-7007-9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. RESULTS Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. CONCLUSIONS The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.
Collapse
Affiliation(s)
- Ales Pecinka
- Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
55
|
Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid O. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol 2011; 9:24. [PMID: 21510849 PMCID: PMC3110136 DOI: 10.1186/1741-7007-9-24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/21/2011] [Indexed: 11/29/2022] Open
Abstract
Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.
Collapse
Affiliation(s)
- Ales Pecinka
- Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
56
|
Henriques R, Magyar Z, Monardes A, Khan S, Zalejski C, Orellana J, Szabados L, de la Torre C, Koncz C, Bögre L. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO J 2010; 29:2979-93. [PMID: 20683442 PMCID: PMC2944053 DOI: 10.1038/emboj.2010.164] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 06/29/2010] [Indexed: 12/27/2022] Open
Abstract
The 40S ribosomal protein S6 kinase (S6K) is a conserved component of signalling pathways controlling growth in eukaryotes. To study S6K function in plants, we isolated single- and double-knockout mutations and RNA-interference (RNAi)-silencing lines in the linked Arabidopsis S6K1 and S6K2 genes. Hemizygous s6k1s6k2/++ mutant and S6K1 RNAi lines show high phenotypic instability with variation in size, increased trichome branching, produce non-viable pollen and high levels of aborted seeds. Analysis of their DNA content by flow cytometry, as well as chromosome counting using DAPI staining and fluorescence in situ hybridization, revealed an increase in ploidy and aneuploidy. In agreement with this data, we found that S6K1 associates with the Retinoblastoma-related 1 (RBR1)-E2FB complex and this is partly mediated by its N-terminal LVxCxE motif. Moreover, the S6K1-RBR1 association regulates RBR1 nuclear localization, as well as E2F-dependent expression of cell cycle genes. Arabidopsis cells grown under nutrient-limiting conditions require S6K for repression of cell proliferation. The data suggest a new function for plant S6K as a repressor of cell proliferation and required for maintenance of chromosome stability and ploidy levels.
Collapse
Affiliation(s)
- Rossana Henriques
- Royal Holloway, University of London, School of Biological Sciences, Egham Hill, Egham, UK
| | - Zoltán Magyar
- Royal Holloway, University of London, School of Biological Sciences, Egham Hill, Egham, UK
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Antonia Monardes
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, Madrid, Spain
| | - Safina Khan
- Royal Holloway, University of London, School of Biological Sciences, Egham Hill, Egham, UK
| | - Christine Zalejski
- Royal Holloway, University of London, School of Biological Sciences, Egham Hill, Egham, UK
| | - Juan Orellana
- Unidad de Genética, Departamento de Biotecnologia, ETSI Agrónomos, Universidad Politécnica de Madrid, Spain
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Csaba Koncz
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Max-Planck Institut für Züchtungforschung, Carl-von-Linné-Weg 10, Köln, Germany
| | - László Bögre
- Royal Holloway, University of London, School of Biological Sciences, Egham Hill, Egham, UK
| |
Collapse
|
57
|
Perrella G, Consiglio MF, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, Barra L, Errico A, Bressan RA, Franklin FCH, Conicella C. Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:796-806. [PMID: 20230492 DOI: 10.1111/j.1365-313x.2010.04191.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, the meiotic role of MEIOTIC CONTROL OF CROSSOVERS1 (MCC1), a GCN5-related histone N-acetyltransferase, is described in Arabidopsis. Analysis of the over-expression mutant obtained by enhancer activation tagging revealed that acetylation of histone H3 increased in male prophase I. MCC1 appeared to be required in meiosis for normal chiasma number and distribution and for chromosome segregation. Overall, elevated MCC1 did not affect crossover number per cell, but has a differential effect on individual chromosomes elevating COs for chromosome 4, in which there is also a shift in chiasma distribution, and reducing COs for chromosome 1 and 2. For the latter there is a loss of the obligate CO/chiasma in 8% of the male meiocytes. The meiotic defects led to abortion in about half of the male and female gametes in the mutant. In wild type, the treatment with trichostatin A, an inhibitor of histone deacetylases, phenocopies MCC1 over-expression in meiosis. Our results provide evidence that histone hyperacetylation has a significant impact on the plant meiosis.
Collapse
Affiliation(s)
- Giorgio Perrella
- CNR-IGV, Research Institute of Plant Genetics, Research Division, Portici, Via Università 133, 80055 Portici, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E. Genetic regulation of meiosis in polyploid species: new insights into an old question. THE NEW PHYTOLOGIST 2010; 186:29-36. [PMID: 19912546 DOI: 10.1111/j.1469-8137.2009.03084.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precise chromosome segregation is vital for polyploid speciation. Here, we highlight recent findings that revitalize the old question of the genetic control of diploid-like meiosis behaviour in polyploid species. We first review new information on the genetic control of autopolyploid and allopolyploid cytological diploidization, notably in wheat and Brassica. These major advances provide new opportunities for speculating about the adaptation of meiosis during polyploid evolution. Some of these advances are discussed, and it is suggested that research on polyploidy and on meiosis should no longer be unlinked.
Collapse
Affiliation(s)
- Marta Cifuentes
- Institut Jean Pierre Bourgin, Station de Génétique et Amélioration des Plantes, 78026 Versailles Cedex, France
| | | | | | | | | |
Collapse
|
59
|
Abstract
Autopolyploidy is more common in plants than traditionally assumed, but has received little attention compared with allopolyploidy. Hence, the advantages and disadvantages of genome doubling per se compared with genome doubling coupled with hybridizations in allopolyploids remain unclear. Autopolyploids are characterized by genomic redundancy and polysomic inheritance, increasing effective population size. To shed light on the evolutionary consequences of autopolyploidy, we review a broad range of studies focusing on both synthetic and natural autopolyploids encompassing levels of biological organization from genes to evolutionary lineages. The limited evidence currently available suggests that autopolyploids neither experience strong genome restructuring nor wide reorganization of gene expression during the first generations following genome doubling, but that these processes may become more important in the longer term. Biogeographic and ecological surveys point to an association between the formation of autopolyploid lineages and environmental change. We thus hypothesize that polysomic inheritance may provide a short-term evolutionary advantage for autopolyploids compared to diploid relatives when environmental change enforces range shifts. In addition, autopolyploids should possess increased genome flexibility, allowing them to adapt and persist across heterogeneous landscapes in the long run.
Collapse
Affiliation(s)
- Christian Parisod
- National Centre for Biosystematics, University of Oslo, 0318 Oslo, Norway.
| | | | | |
Collapse
|
60
|
Wei F, Zhang GS. Meiotically asynapsis-induced aneuploidy in autopolyploid Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2010; 123:87-95. [PMID: 19937082 DOI: 10.1007/s10265-009-0262-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
The patterns of homologue segregation are the basis for euploidy or aneuploidy formation in diploids and allo-/auto-polyploids. Homologue segregation in diploids resembles that in allopolyploids during meiosis; however, meiotic chromosome behavior in autopolyploids is complicated by multiplication of homologous chromosome components. Obviously, loss of single chromosomes (or segmented chromosomes) frequently leads to abortion of reproductive gametes in diploids and allopolyploids. In contrast, the consequence of chromosome loss in autopolyploids is effortlessly compensated for by the presence of multiplied chromosome complements. Here, we use the meiotically asynaptic gene asy1, in combination with polyploidization, to elucidate aneuploidy formation in autotetraploid Arabidopsis. The results indicate that, due to homologous asynapsis in meiotic prophase I, retarded chromosome losses could induce aneuploidy during gametogenesis in autotetraploid asy1. The severe loss of individual chromosomes probably reaches the haploid genome among selfed or backcrossed progeny, leading to stochastic chromosome loss in Arabidopsis. Reciprocal crosses of autotetraploid asy1 with wild-type prove a pathway of duoparental transmission of aneuploidy (hypoploidy and hyperploidy). Viable hypoploids over-transmit via male gametes; conversely, viable hyperploids transmit mainly in female gametogenesis. This result suggests a more stringent maternal restriction of ploidy transmission in autopolyploid Arabidopsis.
Collapse
Affiliation(s)
- Fang Wei
- Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | |
Collapse
|
61
|
Carvalho A, Delgado M, Barão A, Frescatada M, Ribeiro E, Pikaard CS, Viegas W, Neves N. Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa. ACTA ACUST UNITED AC 2009; 23:29-37. [DOI: 10.1007/s00497-009-0115-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/22/2009] [Indexed: 01/28/2023]
|
62
|
Lavania UC, Srivastava S, Lavania S. Ploidy-mediated reduced segregation facilitates fixation of heterozygosity in the aromatic grass, Cymbopogon martinii (Roxb.). J Hered 2009; 101:119-23. [PMID: 19675175 DOI: 10.1093/jhered/esp071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In most medicinal and aromatic plants, the vegetative tissue (e.g., roots, stems, leaves) is the source of the economic product. These plants are inherently heterozygous (natural allelic hybrids) and maintain their genetic makeup in nature by obligate vegetative propagation. Under seed cultivation, these plants incur population heterogeneity that reduces biomass and hampers product quality. Therefore, fixation of heterozygosity is vital for maintaining uniformity in quality of the economic product and quantity of biomass under seed cultivation. Although seed-grown clonal progenies identical to the mother plant can be obtained in certain plants that show an unusual breeding system called apomixis, such a breeding system is rare in medicinal and aromatic plants of economic value. Here we show an effective experimental strategy based on a polyploid model that facilitates fixation of heterozygosity in obligate asexual species owing to tetrasomic inheritance and low segregation in C(1) progenies from high-fertility C(0) autopolyploids. Using an obligate asexual species of aromatic grass-Cymbopogon martinii, we demonstrated that progenitor diploids with distal chiasma localization and low chiasmate association in meiosis, when changed into tetraploids, entail high gametic/seed fertility reflected in high bivalent pairing and balanced anaphase segregation. Their seed progenies evince crop homogeneity owing to reduced segregation, indicating fixation of heterozygosity present in the source diploids. Because C. martinii could be maintained through obligate vegetative propagation, here is a unique opportunity to utilize the polyploid advantage through C(1) seed progenies for commercial cultivation, as well as maintenance of original C(0) stock for raising seeds without losing polyploid heterosis normally threatened in subsequent segregating progenies on account of aneuploidy and gametic instability.
Collapse
Affiliation(s)
- Umesh C Lavania
- Department of Genetics and Plant Breeding, Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India.
| | | | | |
Collapse
|
63
|
Walia H, Josefsson C, Dilkes B, Kirkbride R, Harada J, Comai L. Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 2009; 19:1128-32. [PMID: 19559614 PMCID: PMC6754343 DOI: 10.1016/j.cub.2009.05.068] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 02/02/2023]
Abstract
Postzygotic lethality of interspecies hybrids can result from differences in gene expression, copy number, or coding sequence and can be overcome by altering parental genome dosage. In crosses between Arabidopsis thaliana and A. arenosa, embryo arrest is associated with endosperm hyperproliferation and delayed development similar to paternal-excess interploidy crosses and polycomb-repressive complex (PRC) mutants. Failure is accompanied by parent-specific loss of gene silencing including the dysregulation of three genes suppressed by PRC. Increasing the maternal genome dosage rescues seed development and gene silencing. A gene set upregulated in the failing seed transcriptome encoded putative AGAMOUS-LIKE MADS domain transcription factors (AGL) that were expressed in normal early endosperm and were shown to interact in a previous yeast 2-hybrid analysis. Suppression of these AGL's expression upon cellularization required PRC. Preceding seed failure, expression of the PRC member FIS2 decreased concomitant with overexpression of the AGL cluster. Inactivating two members, AGL62 and AGL90, attenuated the postzygotic barrier between A. thaliana and A. arenosa. We present a model where dosage-sensitive loss of PRC function results in a dysregulated AGL network, which is detrimental for early seed development.
Collapse
Affiliation(s)
- Harkamal Walia
- Department of Plant Biology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
64
|
Yu Z, Haage K, Streit VE, Gierl A, Ruiz RAT. A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1107-19. [PMID: 19205656 DOI: 10.1007/s00122-009-0966-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 01/06/2009] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana has, in conjunction with A. arenosa, developed into a system for the molecular analysis of alloplolyploidy. However, there are very few Arabidopsis lines available to study autopolyploidy. In order to investigate polyploidy on a reliable basis, we have optimised conventional methodologies and developed a novel strategy for the rapid generation and identification of polyploids based on trichome branching patterns. The analysis of more than two dozen independently induced Arabidopsis lines has led to interesting observations concerning the relationship between cell size and ploidy levels and on the relative stability of tetraploidy in Arabidopsis over at least three consecutive generations. The most important finding of this work is that neo-tetraploid lines exhibit considerable stability through all the generations tested. The systematic generation of tetraploid collections through this strategy as well as the lines generated in this work will help to unravel the consequences of polyploidy, particularly tetraploidy, on the genome, on gene expression and on natural diversity in Arabidopsis.
Collapse
Affiliation(s)
- Zheng Yu
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, Am Hochanger 8, 85350, Freising, Germany
| | | | | | | | | |
Collapse
|
65
|
Mandáková T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). THE PLANT CELL 2008; 20:2559-70. [PMID: 18836039 PMCID: PMC2590746 DOI: 10.1105/tpc.108.062166] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/06/2008] [Accepted: 09/17/2008] [Indexed: 05/18/2023]
Abstract
Karyotype evolution in species with identical chromosome number but belonging to distinct phylogenetic clades is a long-standing question of plant biology, intractable by conventional cytogenetic techniques. Here, we apply comparative chromosome painting (CCP) to reconstruct karyotype evolution in eight species with x=7 (2n=14, 28) chromosomes from six Brassicaceae tribes. CCP data allowed us to reconstruct an ancestral Proto-Calepineae Karyotype (PCK; n=7) shared by all x=7 species analyzed. The PCK has been preserved in the tribes Calepineae, Conringieae, and Noccaeeae, whereas karyotypes of Eutremeae, Isatideae, and Sisymbrieae are characterized by an additional translocation. The inferred chromosomal phylogeny provided compelling evidence for a monophyletic origin of the x=7 tribes. Moreover, chromosomal data along with previously published gene phylogenies strongly suggest the PCK to represent an ancestral karyotype of the tribe Brassiceae prior to its tribe-specific whole-genome triplication. As the PCK shares five chromosomes and conserved associations of genomic blocks with the putative Ancestral Crucifer Karyotype (n=8) of crucifer Lineage I, we propose that both karyotypes descended from a common ancestor. A tentative origin of the PCK via chromosome number reduction from n=8 to n=7 is outlined. Comparative chromosome maps of two important model species, Noccaea caerulescens and Thellungiella halophila, and complete karyotypes of two purported autotetraploid Calepineae species (2n=4x=28) were reconstructed by CCP.
Collapse
Affiliation(s)
- Terezie Mandáková
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
66
|
Stift M, Berenos C, Kuperus P, van Tienderen PH. Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data. Genetics 2008; 179:2113-23. [PMID: 18689891 PMCID: PMC2516083 DOI: 10.1534/genetics.107.085027] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 05/25/2008] [Indexed: 11/18/2022] Open
Abstract
Tetraploid inheritance has two extremes: disomic in allotetraploids and tetrasomic in autotetraploids. The possibility of mixed, or intermediate, inheritance models has generally been neglected. These could well apply to newly formed hybrids or to diploidizing (auto)tetraploids. We present a simple likelihood-based approach that is able to incorporate disomic, tetrasomic, and intermediate inheritance models and estimates the double-reduction rate. Our model shows that inheritance of microsatellite markers in natural tetraploids of Rorippa amphibia and R. sylvestris is tetrasomic, confirming their autotetraploid origin. However, in F(1) hybrids inheritance was intermediate to disomic and tetrasomic inheritance. Apparently, in meiosis, chromosomes paired preferentially with the homolog from the same parental species, but not strictly so. Detected double-reduction rates were low. We tested the general applicability of our model, using published segregation data. In two cases, an intermediate inheritance model gave a better fit to the data than the tetrasomic model advocated by the authors. The existence of inheritance intermediate to disomic and tetrasomic has important implications for linkage mapping and population genetics and hence breeding programs of tetraploids. Methods that have been developed for either disomic or tetrasomic tetraploids may not be generally applicable, particularly in systems where hybridization is common.
Collapse
Affiliation(s)
- Marc Stift
- Experimental Plant Systematics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
67
|
López E, Pradillo M, Romero C, Santos JL, Cuñado N. Pairing and synapsis in wild type Arabidopsis thaliana. Chromosome Res 2008; 16:701-8. [PMID: 18535915 DOI: 10.1007/s10577-008-1220-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 11/29/2022]
Abstract
A spreading technique was used to perform a structural analysis of prophase I nuclei in pollen mother cells (PMCs) of wild-type Arabidopsis thaliana. In leptotene, all chromosomes developed fully axial elements before a presynaptic alignment was observed. Pairing and synapsis start in regions close to the telomeres at early zygotene. Interstitial synaptonemal complex (SC) stretches were found to occur at several sites per bivalent at mid zygotene. Within individual bivalents, extensive regions of SC formation often existed at the same time as other extensive regions that were unsynapsed. Also in the same nucleus, one bivalent might have several SC segments, while other bivalents have only a few. The classical bouquet was not so evident as in other plant species. Length measurements of the five pachytene bivalents have allowed the elaboration of a pachytene karyotype. Pachytene chromatin compaction in Arabidopsis was significantly less than that observed in the other species analysed and this is paralleled with a higher recombination rate (centimorgans per megabase).
Collapse
Affiliation(s)
- Eva López
- Departamento de Genética, Facultad de Biología, Universidad Complutense, C/ José Antonio Novais 2, Madrid, Spain
| | | | | | | | | |
Collapse
|
68
|
Abstract
Rotifers of class Bdelloidea have evolved for millions of years apparently without sexual reproduction. We have sequenced 45- to 70-kb regions surrounding the four copies of the hsp82 gene of the bdelloid rotifer Philodina roseola, each of which is on a separate chromosome. The four regions comprise two colinear gene-rich pairs with gene content, order, and orientation conserved within each pair. Only a minority of genes are common to both pairs, also in the same orientation and order, but separated by gene-rich segments present in only one or the other pair. The pattern is consistent with degenerate tetraploidy with numerous segmental deletions, some in one pair of colinear chromosomes and some in the other. Divergence in 1,000-bp windows varies along an alignment of a colinear pair, from zero to as much as 20% in a pattern consistent with gene conversion associated with recombinational repair of DNA double-strand breaks. Although pairs of colinear chromosomes are a characteristic of sexually reproducing diploids and polyploids, a quite different explanation for their presence in bdelloids is suggested by the recent finding that bdelloid rotifers can recover and resume reproduction after suffering hundreds of radiation-induced DNA double-strand breaks per oocyte nucleus. Because bdelloid primary oocytes are in G(1) and therefore lack sister chromatids, we propose that bdelloid colinear chromosome pairs are maintained as templates for the repair of DNA double-strand breaks caused by the frequent desiccation and rehydration characteristic of bdelloid habitats.
Collapse
|
69
|
Abstract
Polyploids - organisms that have multiple sets of chromosomes - are common in certain plant and animal taxa, and can be surprisingly stable. The evidence that has emerged from genome analyses also indicates that many other eukaryotic genomes have a polyploid ancestry, suggesting that both humans and most other eukaryotes have either benefited from or endured polyploidy. Studies of polyploids soon after their formation have revealed genetic and epigenetic interactions between redundant genes. These interactions can be related to the phenotypes and evolutionary fates of polyploids. Here, I consider the advantages and challenges of polyploidy, and its evolutionary potential.
Collapse
Affiliation(s)
- Luca Comai
- Department of Biology, Box 355325, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
70
|
Stam M, Mittelsten Scheid O. Paramutation: an encounter leaving a lasting impression. TRENDS IN PLANT SCIENCE 2005; 10:283-90. [PMID: 15949762 DOI: 10.1016/j.tplants.2005.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/07/2005] [Accepted: 04/26/2005] [Indexed: 05/02/2023]
Abstract
Paramutation is the result of heritable changes in gene expression that occur upon interaction between alleles. Whereas Mendelian rules, together with the concept of genetic transmission via the DNA sequence, can account for most inheritance in sexually propagating organisms, paramutation-like phenomena challenge the exclusiveness of Mendelian inheritance. Most paramutation-like phenomena have been observed in plants but there is increasing evidence for its occurrence in other organisms, including mammals. Our knowledge of the underlying mechanisms, which might involve RNA silencing, physical pairing of homologous chromosomal regions or both, is still limited. Here, we discuss the characteristics of different paramutation-like interactions in the light of arguments supporting each of these alternative mechanisms.
Collapse
Affiliation(s)
- Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | |
Collapse
|
71
|
Lam SY, Horn SR, Radford SJ, Housworth EA, Stahl FW, Copenhaver GP. Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis. Genetics 2005; 170:807-12. [PMID: 15802520 PMCID: PMC1450402 DOI: 10.1534/genetics.104.040055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another--a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed.
Collapse
Affiliation(s)
- Sandy Y Lam
- Department of Biology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|