51
|
Banfi S, D'Antona G, Ruocco C, Meregalli M, Belicchi M, Bella P, Erratico S, Donato E, Rossi F, Bifari F, Lonati C, Campaner S, Nisoli E, Torrente Y. Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Sci Rep 2018; 8:14659. [PMID: 30279586 PMCID: PMC6168581 DOI: 10.1038/s41598-018-32613-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophy. Oxidative myofibre content, muscle vasculature architecture and exercise tolerance are impaired in DMD. Several studies have demonstrated that nutrient supplements ameliorate dystrophic features, thereby enhancing muscle performance. Here, we report that dietary supplementation with a specific branched-chain amino acid-enriched mixture (BCAAem) increased the abundance of oxidative muscle fibres associated with increased muscle endurance in dystrophic mdx mice. Amelioration of the fatigue index in BCAAem-treated mdx mice was caused by a cascade of events in the muscle tissue, which were promoted by endothelial nitric oxide synthase (eNOS) activation and vascular endothelial growth factor (VEGF) expression. VEGF induction led to recruitment of bone marrow (BM)-derived endothelial progenitors (EPs), which increased the capillary density of dystrophic skeletal muscle. Functionally, BCAAem mitigated the dystrophic phenotype of mdx mice without inducing dystrophin protein expression or replacing the dystrophin-associated glycoprotein (DAG) complex in the membrane, which is typically lost in DMD. BCAAem supplementation could be an effective adjuvant strategy in DMD treatment.
Collapse
Affiliation(s)
- Stefania Banfi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | - Giuseppe D'Antona
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, 27100, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Italy
| | - Mirella Meregalli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | - Marzia Belicchi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | - Pamela Bella
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | | | - Elisa Donato
- Centre for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, 20139, Italy.,Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Milan, Italy
| | - Caterina Lonati
- Center for Surgical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Stefano Campaner
- Centre for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, 20139, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Italy.
| | - Yvan Torrente
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy.
| |
Collapse
|
52
|
Delacroix C, Hyzewicz J, Lemaitre M, Friguet B, Li Z, Klein A, Furling D, Agbulut O, Ferry A. Improvement of Dystrophic Muscle Fragility by Short-Term Voluntary Exercise through Activation of Calcineurin Pathway in mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2662-2673. [PMID: 30142334 DOI: 10.1016/j.ajpath.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Dystrophin deficiency in mdx mice, a model for Duchenne muscular dystrophy, leads to muscle weakness revealed by a reduced specific maximal force as well as fragility (ie, higher susceptibility to contraction-induced injury, as shown by a greater force decrease after lengthening contractions). Both symptoms could be improved with dystrophin restoration-based therapies and long-term (months) voluntary exercise. Herein, we evaluated the effect of short-term (1-week) voluntary wheel running. We found that running improved fragility of tibialis anterior muscle (TA), but not plantaris muscle, independently of utrophin up-regulation, without affecting weakness. Moreover, TA muscle excitability was also preserved by running, as shown by compound muscle action potential measurements after lengthening contractions. Of interest, the calcineurin inhibitor cyclosporin A prevented the effect of running on both muscle fragility and excitability. Cyclosporin also prevented the running-induced changes in expression of genes involved in excitability (Scn4a and Cacna1s) and slower contractile phenotype (Myh2 and Tnni1) in TA muscle. In conclusion, short-term voluntary exercise improves TA muscle fragility in mdx mice, without worsening weakness. Its effect was related to preserved excitability, calcineurin pathway activation, and changes in the program of genes involved in excitability and slower contractile phenotype. Thus, remediation of muscle fragility of Duchenne muscular dystrophy patients through appropriate exercise training deserves to be explored in more detail.
Collapse
Affiliation(s)
- Clement Delacroix
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Janek Hyzewicz
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Megane Lemaitre
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Bertrand Friguet
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Klein
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Denis Furling
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Ferry
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
53
|
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28:969-980. [PMID: 30108290 DOI: 10.1038/s41422-018-0078-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle fitness and plasticity is an important determinant of human health and disease. Mitochondria are essential for maintaining skeletal muscle energy homeostasis by adaptive re-programming to meet the demands imposed by a myriad of physiologic or pathophysiological stresses. Skeletal muscle mitochondrial dysfunction has been implicated in the pathogenesis of many diseases, including muscular dystrophy, atrophy, type 2 diabetes, and aging-related sarcopenia. Notably, exercise counteracts the effects of many chronic diseases on skeletal muscle mitochondrial function. Recent studies have revealed a finely tuned regulatory network that orchestrates skeletal muscle mitochondrial biogenesis and function in response to exercise and in disease states. In addition, increasing evidence suggests that mitochondria also serve to "communicate" with the nucleus and mediate adaptive genomic re-programming. Here we review the current state of knowledge relevant to the dynamic remodeling of skeletal muscle mitochondria in response to exercise and in disease states.
Collapse
Affiliation(s)
- Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China.
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rick B Vega
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, 32804, USA.
| |
Collapse
|
54
|
Duan YH, Zeng LM, Li FN, Kong XF, Xu K, Guo QP, Wang WL, Zhang LY. β-hydroxy-β-methyl butyrate promotes leucine metabolism and improves muscle fibre composition in growing pigs. J Anim Physiol Anim Nutr (Berl) 2018; 102:1328-1339. [PMID: 30009416 DOI: 10.1111/jpn.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate the effects of excess leucine (Leu) vs. its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) on Leu metabolism, muscle fibre composition and muscle growth in growing pigs. Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed 1 of 4 diets for 45 days: basal diet, basal diet + 1.25% L-Leu, basal diet + 1.25% KIC-Ca, basal diet + 0.62% HMB-Ca. Results indicated that relative to the basal diet and HMB groups, Leu and KIC groups exhibited increased Leu concentrations and decreased concentrations of isoleucine, valine and EAAs in selected muscle (p < 0.05) and had lower mRNA levels of MyHC I and higher expression of MyHC IIx/IIb (p < 0.05), and there was no significant difference between the basal and HMB-supplemented groups. Moreover, the mRNA expression levels of AMPKα and UCP3 were higher but the myostatin mRNA levels were lower in the soleus muscle of the HMB group than those from other groups (p < 0.05). These findings demonstrated that doubling dietary Leu content exerted growth-depressing effects in growing pigs; dietary KIC supplementation induced muscular branched-chain amino acid imbalance and promoted muscle toward a more glycolytic phenotype; while dietary HMB supplementation promoted the generation of more oxidative muscle types and increased muscle growth specially in oxidative skeletal muscle, and these effects of HMB might be associated with the AMPKα-Sirt1-PGC-1α axis and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui H Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Liming M Zeng
- Science College of Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fengnan N Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Xiangfeng F Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping P Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong L Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha Hunan, China
| | - Lingyu Y Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
56
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
57
|
Chen X, Guo Y, Jia G, Zhao H, Liu G, Huang Z. Arginine Promotes Slow Myosin Heavy Chain Expression via Akirin2 and the AMP-Activated Protein Kinase Signaling Pathway in Porcine Skeletal Muscle Satellite Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4734-4740. [PMID: 29685038 DOI: 10.1021/acs.jafc.8b00775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effect of arginine on the expression of slow myosin heavy chain (MyHC) I and its underlying mechanism in porcine skeletal muscle satellite cells. Our results showed that arginine upregulated the mRNA (1.54 ± 0.08; p < 0.01) and protein (2.01 ± 0.01; p < 0.001) levels of MyHC I. We also showed that arginine upregulated the expression of Akirin2 (1.35 ± 0.1; p < 0.05) and increased the NO content (1.56 ± 0.04; p < 0.001). Akirin2 siRNA abolished arginine-induced upregulation of MyHC I and the increase of the NO content. In addition, arginine significantly increased the phospho-AMP-activated protein kinase (AMPK)/AMPK level (1.33 ± 0.06; p < 0.05), the AMPK content (79.55 ± 0.13; p < 0.001), and the AMPKα2 mRNA level (2.03 ± 0.20; p < 0.01). AMPKα2 silencing or AMPK inhibitor Compound C abolished arginine-induced upregulation of MyHC I. Our results provide, for the first time, evidence for the involvement of Akirin2 and the AMPK signaling pathway in arginine-induced MyHC I expression in porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Yafei Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| |
Collapse
|
58
|
Péladeau C, Adam NJ, Jasmin BJ. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression. FASEB J 2018; 32:5090-5103. [PMID: 29723037 DOI: 10.1096/fj.201800081r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic and progressive neuromuscular disorder caused by mutations and deletions in the dystrophin gene. Although there is currently no cure, one promising treatment for DMD is aimed at increasing endogenous levels of utrophin A to compensate functionally for the lack of dystrophin. Recent studies from our laboratory revealed that heparin treatment of mdx mice activates p38 MAPK, leading to an upregulation of utrophin A expression and improvements in the dystrophic phenotype. Based on these findings, we sought to determine the effects of other potent p38 activators, including the cyclooxygenase (COX)-2 inhibitor celecoxib. In this study, we treated 6-wk-old mdx mice for 4 wk with celecoxib. Immunofluorescence analysis of celecoxib-treated mdx muscles revealed a fiber type switch from a fast to a slower phenotype along with beneficial effects on muscle fiber integrity. In agreement, celecoxib-treated mdx mice showed improved muscle strength. Celecoxib treatment also induced increases in utrophin A expression ranging from ∼1.5- to 2-fold in tibialis anterior diaphragm and heart muscles. Overall, these results highlight that activation of p38 in muscles can indeed lead to an attenuation of the dystrophic phenotype and reveal the potential role of celecoxib as a novel therapeutic agent for the treatment of DMD.-Péladeau, C., Adam, N. J., Jasmin, B. J. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine J Adam
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
59
|
Dial AG, Ng SY, Manta A, Ljubicic V. The Role of AMPK in Neuromuscular Biology and Disease. Trends Endocrinol Metab 2018; 29:300-312. [PMID: 29572064 DOI: 10.1016/j.tem.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a primary regulator of cellular metabolism. Recent studies have revealed that AMPK also mediates the maintenance and plasticity of α-motoneurons, the neuromuscular junction, and skeletal muscle. Furthermore, AMPK stimulation by either genetic, pharmacological, or physiological approaches elicits beneficial phenotypic remodeling in neuromuscular disorders (NMDs). Here, we review the role of AMPK as a governor of neuromuscular biology, and present evidence for AMPK as an effective molecular target for therapeutic pursuit in the context of the most prevalent NMDs, including Duchenne muscular dystrophy, spinal muscular atrophy, and myotonic dystrophy type 1. This information may be useful for engineering AMPK-targeted pharmacological- or lifestyle-based strategies to treat disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Athan G Dial
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
60
|
Mantuano P, Sanarica F, Conte E, Morgese MG, Capogrosso RF, Cozzoli A, Fonzino A, Quaranta A, Rolland JF, De Bellis M, Camerino GM, Trabace L, De Luca A. Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharmacol 2018; 154:89-103. [PMID: 29684379 DOI: 10.1016/j.bcp.2018.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
The pharmacological stimulation of AMP-activated protein kinase (AMPK) via metabolic enhancers has been proposed as potential therapeutic strategy for Duchenne muscular dystrophy (DMD). Metformin, a widely-prescribed anti-hyperglycemic drug which activates AMPK via mitochondrial respiratory chain, has been recently tested in DMD patients in synergy with nitric oxide (NO)-precursors, with encouraging results. However, preclinical data supporting the use of metformin in DMD are still poor, and its actions on skeletal muscle appear controversial. Therefore, we investigated the effects of a long-term treatment with metformin (200 mg/kg/day in drinking water, for 20 weeks) in the exercised mdx mouse model, characterized by a severe mechanical-metabolic maladaptation. Metformin significantly ameliorated histopathology in mdx gastrocnemius muscle, in parallel reducing TGF-β1 with a recovery score (r.s) of 106%; this was accompanied by a decreased plasma matrix-metalloproteinase-9 (r.s. 43%). In addition, metformin significantly increased mdx diaphragm twitch and tetanic tension ex vivo (r.s. 44% and 36%, respectively), in spite of minor effects on in vivo weakness. However, no clear protective actions on dystrophic muscle metabolism were observed, as shown by the poor metformin effect on AMPK activation measured by western blot, on the expression of mechanical-metabolic response genes analyzed by qPCR, and by the lack of fast-to-slow fiber-type-shift assessed by SDH staining in tibialis anterior muscle. Similar results were obtained in the milder phenotype of sedentary mdx mice. The lack of metabolic effects could be, at least partly, due to metformin inability to increase low mdx muscle levels of l-arginine, l-citrulline and taurine, found by HPLC. Our findings encourage to explore alternative, metabolism-independent mechanisms of action to differently repurpose metformin in DMD, supporting its therapeutic combination with NO-sources.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | | | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
61
|
Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Guiraud
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Davies. E. Kay
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Dial AG, Rooprai P, Lally JS, Bujak AL, Steinberg GR, Ljubicic V. The role of AMP‐activated protein kinase in the expression of the dystrophin‐associated protein complex in skeletal muscle. FASEB J 2018; 32:2950-2965. [DOI: 10.1096/fj.201700868rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Athan G. Dial
- Department of KinesiologyMcMaster University Hamilton Ontario Canada
| | - Paul Rooprai
- Department of KinesiologyMcMaster University Hamilton Ontario Canada
| | - James S. Lally
- Department of MedicineMcMaster University Hamilton Ontario Canada
| | - Adam L. Bujak
- Department of MedicineMcMaster University Hamilton Ontario Canada
| | - Gregory R. Steinberg
- Department of MedicineMcMaster University Hamilton Ontario Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University Hamilton Ontario Canada
| | - Vladimir Ljubicic
- Department of KinesiologyMcMaster University Hamilton Ontario Canada
| |
Collapse
|
63
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
64
|
Duan Y, Li F, Wang W, Guo Q, Wen C, Yin Y. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios. Oncotarget 2017; 8:107011-107021. [PMID: 29291007 PMCID: PMC5739792 DOI: 10.18632/oncotarget.22205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
There mainly exists four major myosin heavy chains (MyHC) (i.e., I, IIa, IIx, and IIb) in growing pigs. The current study aimed to explore the effects of low-protein diets supplemented with varying branched-chain amino acids (BCAAs) on muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscles. Forty growing pigs (9.85 ± 0.35 kg) were allotted to 5 groups and fed with diets supplemented with varying leucine: isoleucine: valine ratios: 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. The skeletal muscles of different muscle fiber composition, that is, longissimus dorsi muscle (LM, a fast-twitch glycolytic muscle), biceps femoris muscle (BM, a mixed slow- and fast-twitch oxido-glycolytic muscle), and psoas major muscle (PM, a slow-twitch oxidative muscle) were collected and analyzed. Results showed that relative to the control group (1:0.51:0.63, 20% CP), the low-protein diets with the leucine: isoleucine: valine ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 especially augmented the mRNA and protein abundance of MyHC I fibers in BM and lowered the mRNA abundance of MyHC IIb particularly in LM (P < 0.05), with a concurrent increase in the activation of AMPK and the mRNA abundance of SIRT and PGC-1α in BM (P < 0.05). The results reveal that low-protein diets supplemented with optimal BCAA ratio, i.e. 1:0.75:0.75-1:0.25:0.25, induce muscle more oxidative especially in oxido-glycolytic skeletal muscle of growing pigs. These effects are likely associated with the activation of the AMPK-SIRT1-PGC-1α axis.
Collapse
Affiliation(s)
- Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China
| | - Qiuping Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyue Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
65
|
Crawford Parks TE, Ravel-Chapuis A, Bondy-Chorney E, Renaud JM, Côté J, Jasmin BJ. Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Hum Mol Genet 2017; 26:1821-1838. [PMID: 28369467 DOI: 10.1093/hmg/ddx085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Converging lines of evidence have now highlighted the key role for post-transcriptional regulation in the neuromuscular system. In particular, several RNA-binding proteins are known to be misregulated in neuromuscular disorders including myotonic dystrophy type 1, spinal muscular atrophy and amyotrophic lateral sclerosis. In this study, we focused on the RNA-binding protein Staufen1, which assumes multiple functions in both skeletal muscle and neurons. Given our previous work that showed a marked increase in Staufen1 expression in various physiological and pathological conditions including denervated muscle, in embryonic and undifferentiated skeletal muscle, in rhabdomyosarcomas as well as in myotonic dystrophy type 1 muscle samples from both mouse models and humans, we investigated the impact of sustained Staufen1 expression in postnatal skeletal muscle. To this end, we generated a skeletal muscle-specific transgenic mouse model using the muscle creatine kinase promoter to drive tissue-specific expression of Staufen1. We report that sustained Staufen1 expression in postnatal skeletal muscle causes a myopathy characterized by significant morphological and functional deficits. These deficits are accompanied by a marked increase in the expression of several atrophy-associated genes and by the negative regulation of PI3K/AKT signaling. We also uncovered that Staufen1 mediates PTEN expression through indirect transcriptional and direct post-transcriptional events thereby providing the first evidence for Staufen1-regulated PTEN expression. Collectively, our data demonstrate that Staufen1 is a novel atrophy-associated gene, and highlight its potential as a biomarker and therapeutic target for neuromuscular disorders and conditions.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
66
|
Paré MF, Jasmin BJ. Chronic 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Treatment Induces Phenotypic Changes in Skeletal Muscle, but Does Not Improve Disease Outcomes in the R6/2 Mouse Model of Huntington's Disease. Front Neurol 2017; 8:516. [PMID: 29021780 PMCID: PMC5623671 DOI: 10.3389/fneur.2017.00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative genetic disorder characterized by motor, cognitive, and psychiatric symptoms. It is well established that regular physical activity supports brain health, benefiting cognitive function, mental health as well as brain structure and plasticity. Exercise mimetics (EMs) are a group of drugs and small molecules that target signaling pathways in skeletal muscle known to be activated by endurance exercise. The EM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) has been shown to induce cognitive benefits in healthy mice. Since AICAR does not readily cross the blood–brain barrier, its beneficial effect on the brain has been ascribed to its impact on skeletal muscle. Our objective, therefore, was to examine the effect of chronic AICAR treatment on the muscular and neurological pathology in a mouse model of HD. To this end, R6/2 mice were treated with AICAR for 8 weeks and underwent regular neurobehavioral testing. Under our conditions, AICAR increased expression of PGC-1α, a powerful phenotypic modifier of muscle, and induced the expected shift toward a more oxidative muscle phenotype in R6/2 mice. However, this treatment failed to induce benefits on HD progression. Indeed, neurobehavioral deficits, striatal, and muscle mutant huntingtin aggregate density, as well as muscle atrophy were not mitigated by the chronic administration of AICAR. Although the muscle adaptations seen in HD mice following AICAR treatment may still provide therapeutically relevant benefits to patients with limited mobility, our findings indicate that under our experimental conditions, AICAR had no effect on several hallmarks of HD.
Collapse
Affiliation(s)
- Marie-France Paré
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
67
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
68
|
Pavlidou T, Rosina M, Fuoco C, Gerini G, Gargioli C, Castagnoli L, Cesareni G. Regulation of myoblast differentiation by metabolic perturbations induced by metformin. PLoS One 2017; 12:e0182475. [PMID: 28859084 PMCID: PMC5578649 DOI: 10.1371/journal.pone.0182475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice. To clarify the underlying mechanisms we asked whether myoblast replication and differentiation are affected by metformin, a calorie restriction-mimicking drug. C2C12, a mouse myoblast cell line, readily differentiate in vitro and fuse to form myotubes. However, when incubated with metformin, C2C12 slow their replication and do not differentiate. Interestingly, lower doses of metformin promote myogenic differentiation. We observe that metformin treatment modulates the expression of cyclins and cyclin inhibitors thereby inducing a cell cycle perturbation that causes a delay in the G2/M transition. The effect of metformin treatment is reversible since after drug withdrawal, myoblasts can re-enter the cell cycle and/or differentiate, depending on culture conditions. Myoblasts cultured under metformin treatment fail to up-regulate MyoD and p21cip1, a key step in cell cycle exit and terminal differentiation. Although the details of the molecular mechanisms underlying the effect of the drug on myoblasts still need to be clarified, we propose that metformin negatively affects myogenic differentiation by inhibiting irreversible exit from the cell cycle through reduction of MyoD and p21cip1 levels.
Collapse
Affiliation(s)
- Theodora Pavlidou
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Marco Rosina
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Claudia Fuoco
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Giulia Gerini
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Cesare Gargioli
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
- * E-mail: (LC); (GC); (CG)
| | - Luisa Castagnoli
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
- * E-mail: (LC); (GC); (CG)
| | - Gianni Cesareni
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
- * E-mail: (LC); (GC); (CG)
| |
Collapse
|
69
|
Seebacher F, Little AG. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Front Physiol 2017; 8:575. [PMID: 28824463 PMCID: PMC5543086 DOI: 10.3389/fphys.2017.00575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
| | - Alexander G Little
- Rosenstiel School of Marine and Atmospheric Science, The University of MiamiMiami, FL, United States
| |
Collapse
|
70
|
Simmonds AIM, Seebacher F. Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2017; 313:R35-R43. [PMID: 28404582 DOI: 10.1152/ajpregu.00378.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Aerobic exercise has a positive impact on animals by enhancing skeletal muscle function and locomotor performance. Responses of skeletal muscle to exercise involve changes in energy metabolism, calcium handling, and the composition of contractile protein isoforms, which together influence contractile properties. Histone deacetylases (HDAC) can cause short-term changes in gene expression and may thereby mediate plasticity in contractile properties of skeletal muscle in response to exercise. The aim of this project was to determine (in zebrafish, Danio rerio) the traits that mediate interindividual differences in sustained and sprint performance and to determine whether inhibiting class I and II HDACs mediates exercise-induced changes in these traits. High sustained performers had greater aerobic metabolic capacity [citrate synthase (CS) activity], calcium handling capacity [sarco/endoplasmic reticulum ATPase (SERCA) activity], and slow contractile protein concentration [slow myosin heavy chain (MHC)] compared with low performers. High sprint performers had lower CS activity and slow MHC concentrations compared with low performers, but there were no significant differences in lactate dehydrogenase activity or fast MHC concentrations. Four weeks of aerobic exercise training increased sustained performance, CS activity, SERCA activity, and slow MHC concentration. Inhibiting class I and II HDACs increased slow MHC concentration in untrained fish but not in trained fish. However, inhibiting HDACs reduced SERCA activity, which was paralleled by a reduction in sustained and sprint performance. The regulation of muscle phenotypes by HDACs could be a mechanism underlying the adaptation of sustained locomotor performance to different environmental conditions, and may therefore be of therapeutic and ecological significance.
Collapse
Affiliation(s)
- Alec I M Simmonds
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
71
|
Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017; 34:36-48. [DOI: 10.1016/j.coph.2017.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
72
|
Hogarth MW, Houweling PJ, Thomas KC, Gordish-Dressman H, Bello L, Pegoraro E, Hoffman EP, Head SI, North KN. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun 2017; 8:14143. [PMID: 28139640 PMCID: PMC5290331 DOI: 10.1038/ncomms14143] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and progressive weakness. There is considerable inter-patient variability in disease onset and progression, which can confound the results of clinical trials. Here we show that a common null polymorphism (R577X) in ACTN3 results in significantly reduced muscle strength and a longer 10 m walk test time in young, ambulant patients with DMD; both of which are primary outcome measures in clinical trials. We have developed a double knockout mouse model, which also shows reduced muscle strength, but is protected from stretch-induced eccentric damage with age. This suggests that α-actinin-3 deficiency reduces muscle performance at baseline, but ameliorates the progression of dystrophic pathology. Mechanistically, we show that α-actinin-3 deficiency triggers an increase in oxidative muscle metabolism through activation of calcineurin, which likely confers the protective effect. Our studies suggest that ACTN3 R577X genotype is a modifier of clinical phenotype in DMD patients.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, New South Wales 2145, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, New South Wales 2006, Australia
| | - Peter J Houweling
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, New South Wales 2145, Australia.,School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kristen C Thomas
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, New South Wales 2145, Australia
| | - Heather Gordish-Dressman
- Research Centre for Genetic Medicine, Children's National Medical Centre, Washington DC 20010, USA
| | - Luca Bello
- Research Centre for Genetic Medicine, Children's National Medical Centre, Washington DC 20010, USA.,Department of Neurosciences, University of Padova, Padova 35122, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova 35122, Italy
| | - Eric P Hoffman
- Research Centre for Genetic Medicine, Children's National Medical Centre, Washington DC 20010, USA
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Kathryn N North
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, New South Wales 2145, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, New South Wales 2006, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
73
|
Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy. Cell Death Differ 2016; 24:330-342. [PMID: 27834955 PMCID: PMC5299714 DOI: 10.1038/cdd.2016.127] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 12/31/2022] Open
Abstract
Dystrophin deficiency is the genetic basis for Duchenne muscular dystrophy (DMD), but the cellular basis of progressive myofiber death in DMD is not fully understood. Using two dystrophin-deficient mdx mouse models, we find that the mitochondrial dysfunction is among the earliest cellular deficits of mdx muscles. Mitochondria in dystrophic myofibers also respond poorly to sarcolemmal injury. These mitochondrial deficits reduce the ability of dystrophic muscle cell membranes to repair and are associated with a compensatory increase in dysferlin-mediated membrane repair proteins. Dysferlin deficit in mdx mice further compromises myofiber cell membrane repair and enhances the muscle pathology at an asymptomatic age for dysferlin-deficient mice. Restoring partial dystrophin expression by exon skipping improves mitochondrial function and offers potential to improve myofiber repair. These findings identify that mitochondrial deficit in muscular dystrophy compromises the repair of injured myofibers and show that this repair mechanism is distinct from and complimentary to the dysferlin-mediated repair of injured myofibers.
Collapse
|
74
|
Lu ZQ, Ren Y, Zhou XH, Yu XF, Huang J, Yu DY, Wang XX, Wang YZ. Maternal dietary linoleic acid supplementation promotes muscle fibre type transformation in suckling piglets. J Anim Physiol Anim Nutr (Berl) 2016; 101:1130-1136. [PMID: 27761944 DOI: 10.1111/jpn.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/24/2016] [Indexed: 12/27/2022]
Abstract
As meat quality is basically dependent on muscle fibre characteristics, it is important to know how muscle fibres are regulated and transformed. This study aimed to investigate the effect of maternal dietary supplementation on muscle fibre types using 3% saturated fatty acid (palmitic acid, PA) or 3% unsaturated fatty acid (linoleic acid, LA) from 80 days of gestation to the weaning of offspring (25 days post-natal). The results indicated that higher mRNA levels of MyHCI type genes were found in the soleus muscles of piglets that suckled from LA-supplemented sows than from PA-supplemented sows. In addition, LA treatment increased the gene expression of the type I muscle fibre marker troponin I (p < 0.01), suggesting that LA promoted muscle fibre type transformation to type I fibres. Moreover, PGC-1α (p < 0.01) and MEF2c (p < 0.05) mRNA levels were higher in the piglets from the LA treatment group than in those from the PA treatment group. Furthermore, LA supplementation also significantly increased AMP-activated protein kinase (AMPK) mRNA levels (p < 0.05), which is an upstream regulator of PGC-1α. Collectively, these findings demonstrated that maternal dietary LA supplementation promoted muscle fibre transformation to type I fibre and that this process may be mediated through an AMPK-dependent pathway.
Collapse
Affiliation(s)
- Z Q Lu
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Y Ren
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X H Zhou
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X F Yu
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - J Huang
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - D Y Yu
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X X Wang
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Y Z Wang
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
75
|
Swiderski K, Martins KJB, Chee A, Trieu J, Naim T, Gehrig SM, Baum DM, Brenmoehl J, Chau L, Koopman R, Gregorevic P, Metzger F, Hoeflich A, Lynch GS. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology. Growth Horm IGF Res 2016; 30-31:1-10. [PMID: 27544574 DOI: 10.1016/j.ghir.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/25/2016] [Accepted: 07/27/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. DESIGN 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. RESULTS AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. CONCLUSIONS Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation.
Collapse
Affiliation(s)
- Kristy Swiderski
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Karen Janet Bernice Martins
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Jennifer Trieu
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Stefan Martin Gehrig
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Dale Michael Baum
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Julia Brenmoehl
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Luong Chau
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Paul Gregorevic
- Muscle Biology and Therapeutics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, DTA Neuroscience, 4070, Basel, Switzerland
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Gordon Stuart Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
76
|
Hafner P, Bonati U, Rubino D, Gocheva V, Zumbrunn T, Gueven N, Fischer D. Treatment with L-citrulline and metformin in Duchenne muscular dystrophy: study protocol for a single-centre, randomised, placebo-controlled trial. Trials 2016; 17:389. [PMID: 27488051 PMCID: PMC4973063 DOI: 10.1186/s13063-016-1503-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1 in 3500–6000 male births. Despite broad research aiming to improve muscle function as well as heart and brain function, sufficient therapeutic efficacy has not yet been achieved and current therapeutic management is still supportive. In a recent pilot trial, oral treatment with l-arginine and metformin showed consistent changes of muscular metabolism both in vitro and in vivo by raising NO levels and expression of mitochondrial proteins in the skeletal muscle tissue of patients with DMD. This randomised, double-blind, placebo-controlled trial aims to demonstrate the superiority of l-citrulline and metformin therapy over placebo in DMD patients with regard to the Motor Function Measure (MFM) D1 subscore (primary endpoint) as well as additional clinical and subclinical tests. Methods/Design A total of 40–50 ambulant patients with DMD will be recruited at the outpatient department of the University of Basel Children’s Hospital (Switzerland), as well as from the DMD patient registries of Switzerland, Germany and Austria. Patients will be randomly allocated to one of the two arms of the study and will receive either a combination of l-citrulline and metformin or placebo for 26 weeks. Co-medication with glucocorticoids is allowed. The primary endpoint is the change of the MFM D1 subscore from baseline to week 26 under l-citrulline and metformin therapy. Secondary endpoints will include the motor function measure (MFM) and its items and subscores, the 6-minute walking test, timed function tests and quantitative muscle testing. Furthermore, quantitative muscle MRI assessment to evaluate the muscle fat fraction as well as safety and biomarker laboratory analyses from blood will be included. For comparison, muscle metabolism and mitochondrial function will be analysed in 10–20 healthy age-matched male children. Discussion The aim of this study is to test if a 6-month treatment of a combination of l-citrulline and metformin is more effective than placebo in preventing loss of motor function and muscle degeneration in DMD. The MFM D1 subscore is used as a clinical outcome measure and a quantitative muscle MRI assessment as the surrogate outcome measure of fatty muscle degeneration. Trial registration ClinicalTrials.gov: NCT01995032. Registered on 20 November 2013. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1503-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Hafner
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland. .,Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland. .,Division of Neuropaediatrics, University Children's Hospital, Spitalstrasse 33, Postfach, Basel, 4056, Switzerland.
| | - Ulrike Bonati
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Daniela Rubino
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Vanya Gocheva
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Thomas Zumbrunn
- Department of Clinical research, Clinical Trial Unit, University of Basel Hospital, Basel, Switzerland
| | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Dirk Fischer
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland.,Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland.,Department of Neurology, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
77
|
Little AG, Seebacher F. Thermal conditions experienced during differentiation affect metabolic and contractile phenotypes of mouse myotubes. Am J Physiol Regul Integr Comp Physiol 2016; 311:R457-65. [PMID: 27385733 DOI: 10.1152/ajpregu.00148.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 01/29/2023]
Abstract
Central pathways regulate metabolic responses to cold in endotherms to maintain relatively stable internal core body temperatures. However, peripheral muscles routinely experience temperatures lower than core body temperature, so that it would be advantageous for peripheral tissues to respond to temperature changes independently from core body temperature regulation. Early developmental conditions can influence offspring phenotypes, and here we tested whether developing muscle can compensate locally for the effects of cold exposure independently from central regulation. Muscle myotubes originate from undifferentiated myoblasts that are laid down during embryogenesis. We show that in a murine myoblast cell line (C2C12), cold exposure (32°C) increased myoblast metabolic flux compared with 37°C control conditions. Importantly, myotubes that differentiated at 32°C compensated for the thermodynamic effects of low temperature by increasing metabolic rates, ATP production, and glycolytic flux. Myotube responses were also modulated by the temperatures experienced by "parent" myoblasts. Myotubes that differentiated under cold exposure increased activity of the AMP-stimulated protein kinase (AMPK), which may mediate metabolic changes in response cold exposure. Moreover, cold exposure shifted myosin heavy chains from slow to fast, presumably to overcome slower contractile speeds resulting from low temperatures. Adjusting thermal sensitivities locally in peripheral tissues complements central thermoregulation and permits animals to maintain function in cold environments. Muscle also plays a major metabolic role in adults, so that developmental responses to cold are likely to influence energy expenditure later in life.
Collapse
Affiliation(s)
- Alex G Little
- School of Life and Environmental Sciences A08, University of Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Australia
| |
Collapse
|
78
|
Hildyard JC, Wells DJ. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy. PLOS CURRENTS 2016; 8. [PMID: 27525173 PMCID: PMC4972457 DOI: 10.1371/currents.md.99d88e72634387639707601b237467d7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3'UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations.
Collapse
Affiliation(s)
- John Cw Hildyard
- Department of Comparative and Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Dominic J Wells
- Department of Comparative and Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
79
|
Selsby JT, Ballmann CG, Spaulding HR, Ross JW, Quindry JC. Oral quercetin administration transiently protects respiratory function in dystrophin-deficient mice. J Physiol 2016; 594:6037-6053. [PMID: 27094343 DOI: 10.1113/jp272057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINT PGC-1α pathway activation has been shown to decrease disease severity and can be driven by quercetin. Oral quercetin supplementation protected respiratory function for 4-6 months during a 12 month dosing regimen. This transient protection was probably due to a failure to sustain elevated SIRT1 activity and downstream PGC-1α signalling. Quercetin supplementation may be a beneficial treatment as part of a cocktail provided continued SIRT1 activity elevation is achieved. ABSTRACT Duchenne muscular dystrophy (DMD) impacts 1 : 3500 boys and leads to muscle dysfunction culminating in death due to respiratory or cardiac failure. There is an urgent need for effective therapies with the potential for immediate application for this patient population. Quercetin, a flavonoid with an outstanding safety profile, may provide therapeutic relief to DMD patients as the wait for additional therapies continues. This study evaluated the capacity of orally administered quercetin (0.2%) in 2 month old mdx mice to improve respiratory function and end-point functional and histological outcomes in the diaphragm following 12 months of treatment. Respiratory function was protected for the first 4-6 months of treatment but appeared to become insensitive to quercetin thereafter. Consistent with this, end-point functional measures were decreased and histopathological measures were more severe in dystrophic muscle compared to C57 and similar between control-fed and quercetin-fed mdx mice. To better understand the transient nature of improved respiratory function, we measured PGC-1α pathway activity, which is suggested to be up-regulated by quercetin supplementation. This pathway was largely suppressed in dystrophic muscle compared to healthy muscle, and at the 14 month time point dietary quercetin enrichment did not increase expression of downstream effectors. These data support the efficacy of quercetin as an intervention for DMD in skeletal muscle, and also indicate the development of age-dependent quercetin insensitivity when continued supplementation fails to drive the PGC-1α pathway. Continued study is needed to determine if this is related to disease severity, age or other factors.
Collapse
Affiliation(s)
- Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| | - Christopher G Ballmann
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Hannah R Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - John C Quindry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
80
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
81
|
SIRT1: A Novel Target for the Treatment of Muscular Dystrophies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6714686. [PMID: 27073590 PMCID: PMC4814699 DOI: 10.1155/2016/6714686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 12/13/2022]
Abstract
Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy and is caused by mutations in the gene that encodes the cytoskeletal protein dystrophin. The treatment for DMD is limited to glucocorticoids, which are associated with multiple side effects. Thus, the identification of novel therapeutic targets is urgently needed. SIRT1 is an NAD+-dependent histone/protein deacetylase that plays roles in diverse cellular processes, including stress resistance and cell survival. Studies have shown that SIRT1 activation provides beneficial effects in the dystrophin-deficient mdx mouse, a model of DMD. SIRT1 activation leads to the attenuation of oxidative stress and inflammation, a shift from the fast to slow myofiber phenotype, and the suppression of tissue fibrosis. Although further research is needed to clarify the molecular mechanisms underlying the protective role of SIRT1 in mdx mice, we propose SIRT1 as a novel therapeutic target for patients with muscular dystrophies.
Collapse
|
82
|
Hunt LC, White J. The Role of Leukemia Inhibitory Factor Receptor Signaling in Skeletal Muscle Growth, Injury and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:45-59. [DOI: 10.1007/978-3-319-27511-6_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
83
|
Abstract
Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.
Collapse
Affiliation(s)
- Joshua T Selsby
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Dan Nonneman
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Katrin Hollinger
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| |
Collapse
|
84
|
Li Y, Tan B, Wang J, Duan Y, Guo Q, Liu Y, Kong X, Li T, Tang Y, Yin Y. Alteration of inflammatory cytokines, energy metabolic regulators, and muscle fiber type in the skeletal muscle of postweaning piglets1. J Anim Sci 2016; 94:1064-72. [DOI: 10.2527/jas.2015-9646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Y. Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - B. Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - J. Wang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Y. Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Q. Guo
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Y. Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - X. Kong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - T. Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - Y. Tang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| | - Y. Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644 Yuanda Road, Furong District, Changsha, Hunan 410125, China
| |
Collapse
|
85
|
Hafner P, Bonati U, Erne B, Schmid M, Rubino D, Pohlman U, Peters T, Rutz E, Frank S, Neuhaus C, Deuster S, Gloor M, Bieri O, Fischmann A, Sinnreich M, Gueven N, Fischer D. Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study. PLoS One 2016; 11:e0147634. [PMID: 26799743 PMCID: PMC4723144 DOI: 10.1371/journal.pone.0147634] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d) and metformin (2 x 250 mg/d) for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Patricia Hafner
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland.,Department of Neurology, University of Basel Hospital, Basel, Switzerland
| | - Ulrike Bonati
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Beat Erne
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maurice Schmid
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Daniela Rubino
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Urs Pohlman
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Thomas Peters
- Interdisciplinary Center of Nutritional and Metabolic Diseases, St. Claraspital, Basel, Basel, Switzerland
| | - Erich Rutz
- Paediatric Orthopaedic Department, University of Basel Children's Hospital, Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel Hospital, Basel, Switzerland
| | - Cornelia Neuhaus
- Therapy Department, University of Basel Children's Hospital, Basel, Switzerland
| | - Stefanie Deuster
- Hospital Pharmacy, University of Basel Hospital, Basel, Switzerland
| | - Monika Gloor
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland
| | - Arne Fischmann
- Division of Neuroradiology, University of Basel Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Department of Neurology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Dirk Fischer
- Division of Neuropaediatrics, University of Basel Children's Hospital, Basel, Switzerland.,Department of Neurology, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
86
|
Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice. PLoS One 2016; 11:e0147049. [PMID: 26751696 PMCID: PMC4708996 DOI: 10.1371/journal.pone.0147049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023] Open
Abstract
Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury.
Collapse
|
87
|
Cerveró C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J. Chronic Treatment with the AMPK Agonist AICAR Prevents Skeletal Muscle Pathology but Fails to Improve Clinical Outcome in a Mouse Model of Severe Spinal Muscular Atrophy. Neurotherapeutics 2016; 13:198-216. [PMID: 26582176 PMCID: PMC4720671 DOI: 10.1007/s13311-015-0399-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA. The adenosine monophosphate-activated protein kinase agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has been reported to be an exercise mimetic agent that is able to regulate muscle metabolism and increase endurance both at rest and during exercise. Chronic AICAR administration has been shown to ameliorate the dystrophic muscle phenotype and motor behavior in the mdx mouse, a model of Duchenne muscular dystrophy. Here, we investigated whether chronic AICAR treatment was able to elicit beneficial effects on motor abilities and neuromuscular histopathology in a mouse model of severe SMA (the SMNΔ7 mouse). We report that AICAR improved skeletal muscle atrophy and structural changes found in neuromuscular junctions of SMNΔ7 animals. However, although AICAR prevented the loss of glutamatergic excitatory synapses on MNs, this compound was not able to mitigate MN loss or the microglial and astroglial reaction occurring in the spinal cord of diseased mice. Moreover, no improvement in survival or motor performance was seen in SMNΔ7 animals treated with AICAR. The beneficial effects of AICAR in SMA found in our study are SMN-independent, as no changes in the expression of this protein were seen in the spinal cord and skeletal muscle of diseased animals treated with this compound.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Neus Montull
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
88
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
89
|
Garbincius JF, Michele DE. Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A 2015. [PMID: 26483453 DOI: 10.1073./pnas.1512991112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin-glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
90
|
Péladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Ljubicic V, Renaud JM, Jasmin BJ. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum Mol Genet 2015; 25:24-43. [PMID: 26494902 DOI: 10.1093/hmg/ddv444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aatika Ahmed
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adel Amirouche
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
91
|
Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A 2015; 112:13663-8. [PMID: 26483453 DOI: 10.1073/pnas.1512991112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin-glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle.
Collapse
|
92
|
A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc Natl Acad Sci U S A 2015; 112:12864-9. [PMID: 26417069 DOI: 10.1073/pnas.1509536112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases.
Collapse
|
93
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
94
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
95
|
Constitutive activities of estrogen-related receptors: Transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1912-27. [PMID: 26115970 DOI: 10.1016/j.bbadis.2015.06.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
Collapse
|
96
|
Ljubicic V, Jasmin BJ. Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve 2015; 52:139-42. [PMID: 25908446 DOI: 10.1002/mus.24692] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Metformin (MET) stimulates skeletal muscle AMP-activated protein kinase (AMPK), a key phenotype remodeling protein with emerging therapeutic relevance for Duchenne muscular dystrophy (DMD). Our aim was to identify the mechanism of impact of MET on dystrophic muscle. METHODS We investigated the effects of MET in cultured C2 C12 muscle cells and mdx mouse skeletal muscle. Expression of potent phenotypic modifiers was assessed, including peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α), PPARδ, and receptor-interacting protein 140 (RIP140), as well as that of the dystrophin-homolog, utrophin A. RESULTS In C2 C12 cells, MET augmented expression of PGC-1α, PPARδ, and utrophin A, whereas RIP140 content was reciprocally downregulated. MET treatment of mdx mice increased PGC-1α and utrophin A and normalized RIP140 levels. CONCLUSIONS In this study we identify the impact of MET on skeletal muscle and underscore the timeliness and importance of investigating MET and other AMPK activators as relevant therapeutics for DMD.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
97
|
Brandauer J, Andersen MA, Kellezi H, Risis S, Frøsig C, Vienberg SG, Treebak JT. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol 2015; 6:85. [PMID: 25852572 PMCID: PMC4371692 DOI: 10.3389/fphys.2015.00085] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13–15), but not AMPK α2 kinase dead (KD; n = 12–13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7–8) and AMPK α2 KD (n = 7–9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9–10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.
Collapse
Affiliation(s)
- Josef Brandauer
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark ; Department of Health Sciences, Gettysburg College Gettysburg, PA, USA
| | - Marianne A Andersen
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Holti Kellezi
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Steve Risis
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Christian Frøsig
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, The August Krogh Centre, University of Copenhagen Copenhagen, Denmark
| | - Sara G Vienberg
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Jonas T Treebak
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
98
|
Stephens NA, Skipworth RJE, Gallagher IJ, Greig CA, Guttridge DC, Ross JA, Fearon KCH. Evaluating potential biomarkers of cachexia and survival in skeletal muscle of upper gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 2015; 6:53-61. [PMID: 26136412 PMCID: PMC4435097 DOI: 10.1002/jcsm.12005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/18/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In order to grow the potential therapeutic armamentarium in the cachexia domain of supportive oncology, there is a pressing need to develop suitable biomarkers and potential drug targets. This pilot study evaluated several potential candidate biomarkers in skeletal muscle biopsies from a cohort of upper gastrointestinal cancer (UGIC) patients. METHODS One hundred seven patients (15 weight-stable healthy controls (HC) and 92 UGIC patients) were recruited. Mean (standard deviation) weight-loss of UGIC patients was 8.1 (9.3%). Cachexia was defined as weight-loss ≥5%. Rectus abdominis muscle was obtained at surgery and was analysed by western blotting or quantitative real-time-polymerase chain reaction. Candidate markers were selected according to previous literature and included Akt and phosphorylated Akt (pAkt, n = 52), forkhead box O transcription factors (n = 59), ubiquitin E3 ligases (n = 59, control of muscle anabolism/catabolism), BNIP3 and GABARAPL1 (n = 59, as markers of autophagy), myosin heavy-chain (MyHC, n = 54), dystrophin (n = 39), β-dystroglycan (n = 52), and β-sarcoglycan (n = 52, as markers of structural alteration in a muscle). Patients were followed up for an average of 1255 days (range 581-1955 days) or until death. Patients were grouped accordingly and analysed by (i) all cancer patients vs. HC; (ii) cachectic vs. non-cachectic cancer patients; and (iii) cancer patients surviving ≤1 vs. >1 year post operatively. RESULTS Cancer compared with HC patients had reduced mean (standard deviation) total Akt protein [0.49 (0.31) vs. 0.89 (0.17), P = 0.001], increased ratio of phosphorylated to total Akt [1.33 (1.04) vs. 0.32 (0.21), P = 0.002] and increased expression of GABARAPL1 [1.60 (0.76) vs. 1.10 (0.57), P = 0.024]. β-Dystroglycan levels were higher in cachectic compared with non-cachectic cancer patients [1.01 (0.16) vs. 0.87 (0.20), P = 0.007]. Survival was shortened in patients with low compared with high MyHC levels (median 316 vs. 1326 days, P = 0.023) and dystrophin levels (median 341 vs. 660 days, P = 0.008). CONCLUSIONS The present study has identified intramuscular protein level of β-dystroglycan as a potential biomarker of cancer cachexia. Changes in the structural elements of muscle (MyHC or dystrophin) appear to be survival biomarkers.
Collapse
Affiliation(s)
- Nathan A Stephens
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Richard J E Skipworth
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Iain J Gallagher
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Carolyn A Greig
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Denis C Guttridge
- Division of Human Cancer Genetics, The Ohio State University Wexner Medical Center, 410 W. 10th Ave., Columbus, OH, 43210, USA
| | - James A Ross
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Kenneth C H Fearon
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| |
Collapse
|
99
|
Baumgarner BL, Nagle AM, Quinn MR, Farmer AE, Kinsey ST. Dietary supplementation of β-guanidinopropionic acid (βGPA) reduces whole-body and skeletal muscle growth in young CD-1 mice. Mol Cell Biochem 2015; 403:277-85. [PMID: 25701355 DOI: 10.1007/s11010-015-2357-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/14/2015] [Indexed: 12/25/2022]
Abstract
Increased AMP-activated protein kinase (AMPK) activity leads to enhanced fatty acid utilization, while also promoting increased ubiquitin-dependent proteolysis (UDP) in mammalian skeletal muscle. β-guanidinopropionic acid (βGPA) is a commercially available dietary supplement that has been shown to promote an AMPK-dependent increase in fatty acid utilization and aerobic capacity in mammals by compromising creatine kinase function. However, it remains unknown if continuous βGPA supplementation can negatively impact skeletal muscle growth in a rapidly growing juvenile. The current study was conducted to examine the effect of βGPA supplementation on whole-body and skeletal muscle growth in juvenile and young adult mice. Three-week old, post weanling CD-1 mice were fed a standard rodent chow that was supplemented with either 2% (w/w) α-cellulose (control) or βGPA. Control and βGPA-fed mice (n = 6) were sampled after 2, 4, and 8 weeks. Whole-body and hindlimb muscle masses were significantly (P < 0.05) reduced in βGPA-fed mice by 2 weeks. The level of AMPK (T172) phosphorylation increased significantly (P < 0.05) in the gastrocnemius of βGPA-fed versus control mice at 2 weeks, but was not significantly different at the 4- and 8-week time points. Further analysis revealed a significant (P < 0.05) increase in the skeletal muscle-specific ubiquitin ligase MAFbx/Atrogin-1 protein and total protein ubiquitination in the gastrocnemius of βGPA versus control mice at the 8-week time point. Our data indicate that feeding juvenile mice a βGPA-supplemented diet significantly reduced whole-body and skeletal muscle growth that was due, at least in part, to an AMPK-independent increase in UDP.
Collapse
Affiliation(s)
- Bradley L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, 800 University Way, Spartanburg, SC, 29316, USA,
| | | | | | | | | |
Collapse
|
100
|
Kainulainen H, Papaioannou KG, Silvennoinen M, Autio R, Saarela J, Oliveira BM, Nyqvist M, Pasternack A, 't Hoen PAC, Kujala UM, Ritvos O, Hulmi JJ. Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol 2015; 399:131-42. [PMID: 25304272 DOI: 10.1016/j.mce.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy is characterized by muscle wasting and decreased aerobic metabolism. Exercise and blocking of myostatin/activin signaling may independently or combined counteract muscle wasting and dystrophies. The effects of myostatin/activin blocking using soluble activin receptor-Fc (sActRIIB-Fc) administration and wheel running were tested alone or in combination for 7 weeks in dystrophic mdx mice. Expression microarray analysis revealed decreased aerobic metabolism in the gastrocnemius muscle of mdx mice compared to healthy mice. This was not due to reduced home-cage physical activity, and was further downregulated upon sActRIIB-Fc treatment in enlarged muscles. However, exercise activated pathways of aerobic metabolism and counteracted the negative effects of sActRIIB-Fc. Exercise and sActRIIB-Fc synergistically increased expression of major urinary protein, but exercise blocked sActRIIB-Fc induced phosphorylation of STAT5 in gastrocnemius muscle. In conclusion, exercise alone or in combination with myostatin/activin blocking corrects aerobic gene expression profiles of dystrophic muscle toward healthy wild type mice profiles.
Collapse
Affiliation(s)
- Heikki Kainulainen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Konstantinos G Papaioannou
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mika Silvennoinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Reija Autio
- Department of Signal Processing, Tampere University of Technology, Korkeakoulunkatu 1, P.O. BOX 553, Tampere FI-33101, Finland
| | - Janne Saarela
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Bernardo M Oliveira
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Miro Nyqvist
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FIN-20520, Finland
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center (LUMC), Postzone S-04-P, PO Box 9600, Leiden 2300 RC, The Netherlands
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland.
| |
Collapse
|