51
|
Ryan B, Williams JM, Curtis MA. Plasma MicroRNAs Are Altered Early and Consistently in a Mouse Model of Tauopathy. Neuroscience 2019; 411:164-176. [PMID: 31152932 DOI: 10.1016/j.neuroscience.2019.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
Pathological accumulation of tau protein in brain cells is the hallmark of a group of neurodegenerative diseases called tauopathies. Accumulation of tau protein begins years before the onset of symptoms, which include deficits in cognition, behavior and movement. The pre-symptomatic phase of tauopathy may be the best time to deliver disease-modifying treatments, but this is only possible if prognostic, pre-symptomatic biomarkers are identified. Here we describe the profiling of blood plasma microRNAs in a mouse model of tauopathy, in order to identify biomarkers of pre-symptomatic tauopathy. Circulating RNAs were isolated from blood plasma of 16-week-old and 53-week-old hTau mice and age-matched wild type controls (n = 28). Global microRNA profiling was performed using small RNA sequencing (Illumina) and selected microRNAs were validated using individual TaqMan RT-qPCR. The area under the receiver operating characteristic curve (AUC) was used to evaluate discriminative accuracy. We identified three microRNAs (miR-150-5p, miR-155-5p, miR-375-3p) that were down-regulated in 16-week-old hTau mice, which do not yet exhibit a behavioral phenotype and therefore represent pre-symptomatic tauopathy. The discriminative accuracy was AUC 0.98, 0.95 and 1, respectively. Down-regulation of these microRNAs persisted at 53 weeks of age, when hTau mice exhibit cognitive deficits and advanced neuropathology. Bioinformatic analysis showed that these three microRNAs converge on pathways associated with neuronal signaling and phosphorylation of tau. Thus, these circulating microRNAs appear to reflect neuropathological change and are promising candidates in the development of biomarkers of pre-symptomatic tauopathy.
Collapse
Affiliation(s)
- Brigid Ryan
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Brain Research, New Zealand - Rangahau Roro Aotearoa.
| | - Joanna M Williams
- Brain Research, New Zealand - Rangahau Roro Aotearoa; Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Brain Research, New Zealand - Rangahau Roro Aotearoa
| |
Collapse
|
52
|
Amakiri N, Kubosumi A, Tran J, Reddy PH. Amyloid Beta and MicroRNAs in Alzheimer's Disease. Front Neurosci 2019; 13:430. [PMID: 31130840 PMCID: PMC6510214 DOI: 10.3389/fnins.2019.00430] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive mental illness characterized by memory loss and multiple cognitive impairments. In the last several decades, significant progress has been made in understanding basic biology, molecular mechanisms, and development of biomarkers and therapeutic drugs. Multiple cellular changes are implicated in the disease process including amyloid beta and phosphorylation of tau synaptic damage and mitochondrial dysfunction in AD. Among these, amyloid beta is considered a major player in the disease process. Recent advancements in molecular biology revealed that microRNAs (miRNAs) are considered potential biomarkers in AD with a focus on amyloid beta. In this article we discussed several aspects of AD including its prevalence, classifications, risk factors, and amyloid species and their accumulation in subcellular compartments. This article also discusses the discovery and biogenesis of miRNAs and their relevance to AD. Today's research continues to add to the wealth of miRNA data that has been accumulated, however, there still lacks clear-cut understanding of the physiological relevance of miRNAs to AD. MiRNAs appear to regulate translation of gene products in AD and other human diseases. However, the mechanism of how many of these miRNAs regulate both the 5' and 3'UTR of amyloid precursor protein (APP) processing is still being extrapolated. Hence, we still need more research on miRNAs and APP/amyloid beta formation in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Nnana Amakiri
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Aaron Kubosumi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - James Tran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Speech-Language and Hearing Clinics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
53
|
Zhang L, Dong H, Si Y, Wu N, Cao H, Mei B, Meng B. miR-125b promotes tau phosphorylation by targeting the neural cell adhesion molecule in neuropathological progression. Neurobiol Aging 2019; 73:41-49. [DOI: 10.1016/j.neurobiolaging.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
|
54
|
El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, Balu DT, Rabinovsky R, Cantlon A, Elkhal A, Selkoe DJ, Sonntag KC, Walsh DM, Krichevsky AM. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol 2018; 136:537-555. [PMID: 29982852 PMCID: PMC6132948 DOI: 10.1007/s00401-018-1880-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNA) regulate fundamental biological processes, including neuronal plasticity, stress response, and survival. Here, we describe a neuroprotective function of miR-132, the miRNA most significantly downregulated in neurons in Alzheimer's disease. We demonstrate that miR-132 protects primary mouse and human wild-type neurons and more vulnerable Tau-mutant neurons against amyloid β-peptide (Aβ) and glutamate excitotoxicity. It lowers the levels of total, phosphorylated, acetylated, and cleaved forms of Tau implicated in tauopathies, promotes neurite elongation and branching, and reduces neuronal death. Similarly, miR-132 attenuates PHF-Tau pathology and neurodegeneration, and enhances long-term potentiation in the P301S Tau transgenic mice. The neuroprotective effects are mediated by direct regulation of the Tau modifiers acetyltransferase EP300, kinase GSK3β, RNA-binding protein Rbfox1, and proteases Calpain 2 and Caspases 3/7. These data suggest miR-132 as a master regulator of neuronal health and indicate that miR-132 supplementation could be of therapeutic benefit for the treatment of Tau-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA.
| | - Shaomin Li
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Zhicheng Chen
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Tasnim Mushannen
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Sree Gongala
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Darrick T Balu
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Adam Cantlon
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Kai C Sonntag
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Dominic M Walsh
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, 9006, Boston, MA, 02115, USA.
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, 02115, USA.
| |
Collapse
|
55
|
Ramaswamy P, Christopher R, Pal PK, Yadav R. MicroRNAs to differentiate Parkinsonian disorders: Advances in biomarkers and therapeutics. J Neurol Sci 2018; 394:26-37. [PMID: 30196132 DOI: 10.1016/j.jns.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022]
Abstract
Parkinsonian disorders are a set of progressive neurodegenerative movement disorders characterized by rigidity, tremor, bradykinesia, postural instability and their distinction has significant implications in terms of management and prognosis. Parkinson's disease (PD) is the most common among them. Its clinical diagnosis is challenging and, it can be misdiagnosed in the early stages. Multiple system atrophy and progressive supranuclear palsy are the close mimickers in early stages, due to overlapping clinical features. MicroRNAs are a class of stable non-coding small RNA molecules implicated in post-transcriptional gene regulation. Current studies propose that miRNAs play an essential role in the pathobiology of multiple neurodegenerative disorders including Parkinsonism, and they seem to be one of the reasonably available methods to aid in the differential diagnosis between PD and related disorders. MicroRNA-based diagnostic biomarkers and therapeutics are a powerful tool to understand and explore the function of the pathogenic gene/s, their mechanism in the disease pathobiology, and to validate drug targets. In this review, we emphasize on the recent developments in the usage of miRNAs as diagnostic biomarkers to identify PD and to differentiate it from atypical parkinsonian conditions, their role in disease pathogenesis, and their possible utility in the therapy of these disorders.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
56
|
Weber A, Schwarz SC, Tost J, Trümbach D, Winter P, Busato F, Tacik P, Windhorst AC, Fagny M, Arzberger T, McLean C, van Swieten JC, Schwarz J, Vogt Weisenhorn D, Wurst W, Adhikary T, Dickson DW, Höglinger GU, Müller U. Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nat Commun 2018; 9:2929. [PMID: 30050033 PMCID: PMC6062504 DOI: 10.1038/s41467-018-05325-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.
Collapse
Affiliation(s)
- Axel Weber
- Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany.
| | - Sigrid C Schwarz
- Department of Neurology, Technische Universität München, Munich, 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, 91000, France
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Center München, Munich, 85764, Germany
| | - Pia Winter
- Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, 91000, France
| | - Pawel Tacik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, 53127, Germany
| | - Anita C Windhorst
- Institute of Medical Informatics, Justus-Liebig-Universität, Gießen, 35392, Germany
| | - Maud Fagny
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, 91000, France
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, 81377, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Catriona McLean
- Alfred Anatomical Pathology and NNF, Victorian Brain Bank, Carlton, VIC, 3053, Australia
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3000, The Netherlands
| | - Johannes Schwarz
- Department of Neurology, Technische Universität München, Munich, 81377, Germany
| | - Daniela Vogt Weisenhorn
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Institute of Developmental Genetics, Helmholtz Center München, Munich, 85764, Germany
- Chair of Developmental Genetics, Technische Universität München-Weihenstephan, Neuherberg/Munich, 85764, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Institute of Developmental Genetics, Helmholtz Center München, Munich, 85764, Germany
- Chair of Developmental Genetics, Technische Universität München-Weihenstephan, Neuherberg/Munich, 85764, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, 81377, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, 35043, Germany
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Günter U Höglinger
- Department of Neurology, Technische Universität München, Munich, 81377, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, 81377, Germany.
| | - Ulrich Müller
- Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany.
| |
Collapse
|
57
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
58
|
Wang X, Liu D, Huang HZ, Wang ZH, Hou TY, Yang X, Pang P, Wei N, Zhou YF, Dupras MJ, Calon F, Wang YT, Man HY, Chen JG, Wang JZ, Hébert SS, Lu Y, Zhu LQ. A Novel MicroRNA-124/PTPN1 Signal Pathway Mediates Synaptic and Memory Deficits in Alzheimer's Disease. Biol Psychiatry 2018; 83:395-405. [PMID: 28965984 DOI: 10.1016/j.biopsych.2017.07.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Synaptic loss is an early pathological event in Alzheimer's disease (AD), but its underlying molecular mechanisms remain largely unknown. Recently, microRNAs (miRNAs) have emerged as important modulators of synaptic function and memory. METHODS We used miRNA array and quantitative polymerase chain reaction to examine the alteration of miRNAs in AD mice and patients as well as the Morris water maze to evaluate learning and memory in the mice. We also used adeno-associated virus or lentivirus to introduce tyrosine-protein phosphatase non-receptor type 1 (PTPN1) expression of silencing RNAs. Long-term potentiation and Golgi staining were used to evaluate the synaptic function and structure. We designed a peptide to interrupt miR-124/PTPN1 interaction. RESULTS Here we report that neuronal miR-124 is dramatically increased in the hippocampus of Tg2576 mice, a recognized AD mouse model. Similar changes were observed in specific brain regions of affected AD individuals. We further identified PTPN1 as a direct target of miR-124. Overexpression of miR-124 or knockdown of PTPN1 recapitulated AD-like phenotypes in mice, including deficits in synaptic transmission and plasticity as well as memory by impairing the glutamate receptor 2 membrane insertion. Most importantly, rebuilding the miR-124/PTPN1 pathway by suppression of miR-124, overexpression of PTPN1, or application of a peptide that disrupts the miR-124/PTPN1 interaction could restore synaptic failure and memory deficits. CONCLUSIONS Taken together, these results identified the miR-124/PTPN1 pathway as a critical mediator of synaptic dysfunction and memory loss in AD, and the miR-124/PTPN1 pathway could be considered as a promising novel therapeutic target for AD patients.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Dan Liu
- Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - He-Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhi-Hao Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tong-Yao Hou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xin Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Pei Pang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Na Wei
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya-Fan Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Marie-Josée Dupras
- Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Psychiatry and Neuroscience, Université Laval, Québec City, Québec, Canada
| | - Frédéric Calon
- Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Psychiatry and Neuroscience, Université Laval, Québec City, Québec, Canada
| | - Yu-Tian Wang
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, Massachusetts
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Sébastien S Hébert
- Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Psychiatry and Neuroscience, Université Laval, Québec City, Québec, Canada; Centre de recherche du CHU de Québec, Axe Neurosciences, Québec City, Québec, Canada
| | - Youming Lu
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
59
|
Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:79-90. [PMID: 29858092 PMCID: PMC5852323 DOI: 10.1016/j.omtn.2018.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Huntington’s disease (HD) is an intractable neurodegenerative disorder caused by mutant Huntingtin (HTT) proteins that adversely affect various biomolecules and genes. MicroRNAs (miRNAs), which are functional small non-coding RNAs, are also affected by mutant HTT proteins. Here, we show amelioration in motor function and lifespan of HD-model mice, R6/2 mice, by supplying miR-132 to HD brains using a recombinant adeno-associated virus (rAAV) miRNA expression system. miR-132 is an miRNA related to neuronal maturation and function, but the level of miR-132 in the brain of R6/2 mice was significantly lower than that of wild-type mice. Our miR-132 supplemental treatment, i.e., supplying miR-132 to the brain, produced symptomatic improvement or retarded disease progression in R6/2 mice; interestingly, it had little effect on disease-causing mutant HTT mRNA expression and its products. Therefore, the findings suggest that there may be a therapeutic way to treat HD without inhibiting and/or repairing disease-causing HTT genes and gene products. Although miR-132 supplement may not be a definitive treatment for HD, it may become a therapeutic method for relieving HD symptoms and delaying HD progression.
Collapse
|
60
|
Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, Blum D, Sayas CL, Mandelkow EM, Mandelkow E, Spillantini MG, Sousa N, Avila J, Medina M, Mudher A, Buee L. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun 2017; 5:91. [PMID: 29187252 PMCID: PMC5707803 DOI: 10.1186/s40478-017-0489-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the microtubule-associated protein Tau (MAPT) over 40 years ago, most studies have focused on Tau's role in microtubule stability and regulation, as well as on the neuropathological consequences of Tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) brains. In recent years, however, research efforts identified new interaction partners and different sub-cellular localizations for Tau suggesting additional roles beyond its standard function as microtubule regulating protein. Moreover, despite the increasing research focus on AD over the last decades, Tau was only recently considered as a promising therapeutic target for the treatment and prevention of AD as well as for neurological pathologies beyond AD e.g. epilepsy, excitotoxicity, and environmental stress. This review will focus on atypical, non-standard roles of Tau on neuronal function and dysfunction in AD and other neurological pathologies providing novel insights about neuroplastic and neuropathological implications of Tau in both the central and the peripheral nervous system.
Collapse
Affiliation(s)
- Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| | | | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Efthimios Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Susanne Wegmann
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, 59000, Lille, France
| | - Carmen Laura Sayas
- Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), Universidad de La Laguna (ULL), Tenerife, Spain
| | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Institute, Bonn, Germany; Max-Planck-Institute for Metabolism Research, Köln, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Institute, Bonn, Germany; Max-Planck-Institute for Metabolism Research, Köln, Germany
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jesus Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton Highfield Campus, Center for Biological Sciences, Southampton, UK
| | - Luc Buee
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, 59000, Lille, France
| |
Collapse
|
61
|
Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y, Yuan W, Fan C. Advances in Roles of miR-132 in the Nervous System. Front Pharmacol 2017; 8:770. [PMID: 29118714 PMCID: PMC5660991 DOI: 10.3389/fphar.2017.00770] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022] Open
Abstract
miR-132 is an endogenous small RNA and controls post-transcriptional regulation of gene expression via controlled degradation of mRNA or transcription inhibition. In the nervous system, miR-132 is significant for regulating neuronal differentiation, maturation and functioning, and widely participates in axon growth, neural migration, and plasticity. The miR-132 is affected by factors like mRNA expression, functional redundancy, and signaling cascades. It targets multiple downstream molecules to influence physiological and pathological neuronal activities. MiR-132 can influence the pathogenesis of many diseases, especially in the nervous system. The dysregulation of miR-132 results in the occurrence and exacerbation of neural developmental, degenerative diseases, like Alzheimer’s disease, Parkinson’s disease and epilepsy, neural infection and psychiatric disorders including disturbance of consciousness, cognition and memory, depression and schizophrenia. Regulation of miR-132 expression relieves symptoms, alleviates severity and finally effects a cure. This review aims to discuss the clinical potentials of miR-132 in the nervous system.
Collapse
Affiliation(s)
- Yun Qian
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Jialin Song
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Yuanming Ouyang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Qixin Han
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
62
|
Salta E, De Strooper B. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer's disease. FASEB J 2017; 31:424-433. [PMID: 28148775 DOI: 10.1096/fj.201601308] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
With the consideration of the broad involvement of microRNAs (miRNAs) in the regulation of molecular networks in the brain, it is not surprising that miRNA dysregulation causes neurodegeneration in animal models. miRNA profiling in the human brain has revealed miR-132 as one of the most severely down-regulated miRNAs at the intermediate and late Braak stages of Alzheimer's disease (AD), as well as in other neurodegenerative disorders. Suppression of miR-132 aggravates multiple layers of pathology at the molecular and functional level. We describe the potential therapeutic implications of these findings and suggest miRNA targeting or replacement as a realistic multi-hit, therapeutic strategy for AD. Salta, E., De Strooper, B. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer's disease.
Collapse
Affiliation(s)
- Evgenia Salta
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease, VIB-Leuven, Leuven, Belgium; .,Center for Human Genetics, Universitaire Ziekenhuizen and Leuven Research Institute for Neuroscience and Disease, KU-Leuven, Leuven, Belgium; and
| | - Bart De Strooper
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease, VIB-Leuven, Leuven, Belgium; .,Center for Human Genetics, Universitaire Ziekenhuizen and Leuven Research Institute for Neuroscience and Disease, KU-Leuven, Leuven, Belgium; and.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
63
|
Zhao J, Yue D, Zhou Y, Jia L, Wang H, Guo M, Xu H, Chen C, Zhang J, Xu L. The Role of MicroRNAs in Aβ Deposition and Tau Phosphorylation in Alzheimer's Disease. Front Neurol 2017; 8:342. [PMID: 28769871 PMCID: PMC5513952 DOI: 10.3389/fneur.2017.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD), with main clinical features of progressive impairment in cognitive and behavioral functions, is the most common degenerative disease of the central nervous system. Recent evidence showed that microRNAs (miRNAs) played important roles in the pathological progression of AD. In this article, we reviewed the promising role of miRNAs in both Aβ deposition and Tau phosphorylation, two key pathological characters in the pathological progression of AD, which might be helpful for the understanding of pathogenesis and the development of new strategies of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Dongxu Yue
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, China
| | - Li Jia
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Hairong Wang
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
64
|
Haviv R, Oz E, Soreq H. The Stress-Responding miR-132-3p Shows Evolutionarily Conserved Pathway Interactions. Cell Mol Neurobiol 2017; 38:141-153. [PMID: 28667373 PMCID: PMC5775983 DOI: 10.1007/s10571-017-0515-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA chains that can each interact with the 3′-untranslated region of multiple target transcripts in various organisms, humans included. MiRNAs tune entire biological pathways, spanning stress reactions, by regulating the stability and/or translation of their targets. MiRNA genes are often subject to co-evolutionary changes together with their target transcripts, which may be reflected by differences between paralog mouse and primate miRNA/mRNA pairs. However, whether such evolution occurred in stress-related miRNAs remained largely unknown. Here, we report that the stress-induced evolutionarily conserved miR-132-3p, its target transcripts and its regulated pathways provide an intriguing example to exceptionally robust conservation. Mice and human miR-132-3p share six experimentally validated targets and 18 predicted targets with a common miRNA response element. Enrichment analysis and mining in-house and web-available experimental data identified co-regulation by miR-132 in mice and humans of stress-related, inflammatory, metabolic, and neuronal growth pathways. Our findings demonstrate pan-mammalian preservation of miR-132′s neuronal roles, and call for further exploring the corresponding stress-related implications.
Collapse
Affiliation(s)
- Rotem Haviv
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Eden Oz
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| |
Collapse
|
65
|
Delgado-Morales R, Agís-Balboa RC, Esteller M, Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin Epigenetics 2017; 9:67. [PMID: 28670349 PMCID: PMC5493012 DOI: 10.1186/s13148-017-0365-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022] Open
Abstract
Ageing is the main risk factor for human neurological disorders. Among the diverse molecular pathways that govern ageing, epigenetics can guide age-associated decline in part by regulating gene expression and also through the modulation of genomic instability and high-order chromatin architecture. Epigenetic mechanisms are involved in the regulation of neural differentiation as well as in functional processes related to memory consolidation, learning or cognition during healthy lifespan. On the other side of the coin, many neurodegenerative diseases are associated with epigenetic dysregulation. The reversible nature of epigenetic factors and, especially, their role as mediators between the genome and the environment make them exciting candidates as therapeutic targets. Rather than providing a broad description of the pathways epigenetically deregulated in human neurological disorders, in this review, we have focused on the potential use of epigenetic enzymes as druggable targets to ameliorate neural decline during normal ageing and especially in neurological disorders. We will firstly discuss recent progress that supports a key role of epigenetic regulation during healthy ageing with an emphasis on the role of epigenetic regulation in adult neurogenesis. Then, we will focus on epigenetic alterations associated with ageing-related human disorders of the central nervous system. We will discuss examples in the context of psychiatric disorders, including schizophrenia and posttraumatic stress disorders, and also dementia or Alzheimer's disease as the most frequent neurodegenerative disease. Finally, methodological limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Raúl Delgado-Morales
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roberto Carlos Agís-Balboa
- Psychiatric Diseases Research Group, Galicia Sur Health Research Institute, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM, Vigo, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain
| |
Collapse
|
66
|
Wang X, Suofu Y, Akpinar B, Baranov SV, Kim J, Carlisle DL, Zhang Y, Friedlander RM. Systemic antimiR-337-3p delivery inhibits cerebral ischemia-mediated injury. Neurobiol Dis 2017; 105:156-163. [PMID: 28461247 DOI: 10.1016/j.nbd.2017.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022] Open
Abstract
Modulation of miRNA expression has been shown to be beneficial in the context of multiple diseases. The purpose of this study was to determine if an inhibitor of miR-337-3p is neuroprotective for hypoxic injury after tail vein injection. We evaluated miR-337-3p expression levels and in brain tissue in vivo before and after permanent middle cerebral artery occlusion (pMCAO) in mice. Subsequently, a custom locked nucleic acid (LNA) antimir-337-3p oligonucleotide was developed and tested in vitro after induction of oxygen glucose-deprivation (OGD) and in vivo by injection into the mouse tail vein for 3 consecutive days before pMCAO. Ischemic lesion volume was measured by TTC staining. We show that systemically administered LNA antimir-337-3p crosses the blood brain-brain-barrier (BBB), penetrates into neurosn, downregulates endogenous miR-337-3p expression and reduces ischemic brain injury. The findings support the use of similar antimir-LNA constructs as novel therapies in neurological disease.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yalikun Suofu
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Berkcan Akpinar
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Sergei V Baranov
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Jinho Kim
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Diane L Carlisle
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yu Zhang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| | - Robert M Friedlander
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| |
Collapse
|
67
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
68
|
Park SA, Ahn SI, Gallo JM. Tau mis-splicing in the pathogenesis of neurodegenerative disorders. BMB Rep 2017; 49:405-13. [PMID: 27222125 PMCID: PMC5070727 DOI: 10.5483/bmbrep.2016.49.8.084] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 01/23/2023] Open
Abstract
Tau proteins, which stabilize the structure and regulate the dynamics of microtubules, also play important roles in axonal transport and signal transduction. Tau proteins are missorted, aggregated, and found as tau inclusions under many pathological conditions associated with neurodegenerative disorders, which are collectively known as tauopathies. In the adult human brain, tau protein can be expressed in six isoforms due to alternative splicing. The aberrant splicing of tau pre-mRNA has been consistently identified in a variety of tauopathies but is not restricted to these types of disorders as it is also present in patients with non-tau proteinopathies and RNAopathies. Tau mis-splicing results in isoform-specific impairments in normal physiological function and enhanced recruitment of excessive tau isoforms into the pathological process. A variety of factors are involved in the complex set of mechanisms underlying tau mis-splicing, but variation in the cis-element, methylation of the MAPT gene, genetic polymorphisms, the quantity and activity of spliceosomal proteins, and the patency of other RNA-binding proteins, are related to aberrant splicing. Currently, there is a lack of appropriate therapeutic strategies aimed at correcting the tau mis-splicing process in patients with neurodegenerative disorders. Thus, a more comprehensive understanding of the relationship between tau mis-splicing and neurodegenerative disorders will aid in the development of efficient therapeutic strategies for patients with a tauopathy or other, related neurodegenerative disorders. [BMB Reports 2016; 49(8): 405-413]
Collapse
Affiliation(s)
- Sun Ah Park
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Sang Il Ahn
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|
69
|
Nadim WD, Simion V, Bénédetti H, Pichon C, Baril P, Morisset-Lopez S. MicroRNAs in Neurocognitive Dysfunctions: New Molecular Targets for Pharmacological Treatments? Curr Neuropharmacol 2017; 15:260-275. [PMID: 27396304 PMCID: PMC5412695 DOI: 10.2174/1570159x14666160709001441] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurodegenerative and cognitive disorders are multifactorial diseases (i.e., involving neurodevelopmental, genetic, age or environmental factors) characterized by an abnormal development that affects neuronal function and integrity. Recently, an increasing number of studies revealed that the dysregulation of microRNAs (miRNAs) may be involved in the etiology of cognitive disorders as Alzheimer, Parkinson, and Huntington's diseases, Schizophrenia and Autism spectrum disorders. METHODS From an extensive search in bibliographic databases of peer-reviewed research literature, we identified relevant published studies related to specific key words such as memory, cognition, neurodegenerative disorders, neurogenesis and miRNA. We then analysed, evaluated and summerized scientific evidences derived from these studies. RESULTS We first briefly summarize the basic molecular events involved in memory, a process inherent to cognitive disease, and then describe the role of miRNAs in neurodevelopment, synaptic plasticity and memory. Secondly, we provide an overview of the impact of miRNA dysregulation in the pathogenesis of different neurocognitive disorders, and lastly discuss the feasibility of miRNA-based therapeutics in the treatment of these disorders. CONCLUSION This review highlights the molecular basis of neurodegenerative and cognitive disorders by focusing on the impact of miRNAs dysregulation in these pathological phenotypes. Altogether, the published reports suggest that miRNAs-based therapy could be a viable therapeutic alternative to current treatment options in the future.
Collapse
Affiliation(s)
- Wissem Deraredj Nadim
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| |
Collapse
|
70
|
Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM. MicroRNAs in Neurodegenerative Diseases. MIRNAS IN AGING AND CANCER 2017; 334:309-343. [DOI: 10.1016/bs.ircmb.2017.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
71
|
Wang Y, Veremeyko T, Wong AHK, El Fatimy R, Wei Z, Cai W, Krichevsky AM. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer's disease. Neurobiol Aging 2016; 51:156-166. [PMID: 28089352 DOI: 10.1016/j.neurobiolaging.2016.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/31/2023]
Abstract
MicroRNA-132 is markedly downregulated in Alzheimer's disease (AD) and related tauopathies, and its levels are closely associated with tau pathology in AD. Whether and how miR-132 contributes to pathology in these neurodegenerative diseases remains unclear. Here, we show that miR-132 and its paralogue miR-212 directly regulate the expression of neuronal nitric oxide synthase (NOS1) through the primate-specific binding site. Inhibition of miR-132 in primary human neurons and neural cells leads to increased NOS1 levels and triggers excessive production of nitric oxide, followed by aberrant S-nitrosylation (SNO) of specific proteins associated with neurodegeneration and tau pathology, such as cyclin-dependent kinase 5, dynamin-related protein 1, and glyceraldehyde-3-phosphate dehydrogenase. This, in turn, increases tau phosphorylation at disease associated Ser396, Ser404, and Ser202 sites, and impairs neural viability. Our findings indicate that downregulation of miR-132/212 disturbs the balance of S-nitrosylation and induces tau phosphorylation in a NOS1-dependent way, and thereby may contribute to the pathogenesis of AD and other tauopathies.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatiana Veremeyko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andus Hon-Kit Wong
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachid El Fatimy
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
72
|
Boguslawska J, Sokol E, Rybicka B, Czubaty A, Rodzik K, Piekielko-Witkowska A. microRNAs target SRSF7 splicing factor to modulate the expression of osteopontin splice variants in renal cancer cells. Gene 2016; 595:142-149. [DOI: 10.1016/j.gene.2016.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022]
|
73
|
Pichler S, Gu W, Hartl D, Gasparoni G, Leidinger P, Keller A, Meese E, Mayhaus M, Hampel H, Riemenschneider M. The miRNome of Alzheimer's disease: consistent downregulation of the miR-132/212 cluster. Neurobiol Aging 2016; 50:167.e1-167.e10. [PMID: 27816213 DOI: 10.1016/j.neurobiolaging.2016.09.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/07/2016] [Accepted: 09/24/2016] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules, with essential functions in RNA silencing and post-transcriptional regulation of gene expression. miRNAs appear to regulate the development and function of the nervous system. Alterations of miRNA expression have been associated with Alzheimer's disease (AD). To characterize the AD miRNA signature, we examined genome-wide miRNA and mRNA expression patterns in the temporal cortex of AD and control samples. We validated our miRNA results by semiquantitative real-time polymerase chain reaction (PCR) in independent prefrontal cortex. Furthermore, we separated gray and white matter brain sections to identify the cellular origin of the altered miRNA expression. We observed genome-wide downregulation of hsa-miR-132-3p and hsa-miR-212-3p in AD with a stronger decrease in gray matter AD samples. We further identified 10 differently expressed transcripts achieving genome-wide levels of significance. Significantly deregulated miRNAs and mRNAs were correlated and examined for potential binding sites (in silico). This miRNome-wide study in AD provides supportive evidence and corroborates an important contribution of miR-132/212 and corresponding target mRNAs to the pathogenesis of AD.
Collapse
Affiliation(s)
- Sabrina Pichler
- Department of Psychiatry and Psychotherapy, Neurobiological Laboratory, Saarland University, Homburg, Germany.
| | - Wei Gu
- Department of Psychiatry and Psychotherapy, Neurobiological Laboratory, Saarland University, Homburg, Germany; Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval, Luxembourg
| | - Daniela Hartl
- Department of Psychiatry and Psychotherapy, Neurobiological Laboratory, Saarland University, Homburg, Germany
| | - Gilles Gasparoni
- Department of Psychiatry and Psychotherapy, Neurobiological Laboratory, Saarland University, Homburg, Germany
| | - Petra Leidinger
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Manuel Mayhaus
- Department of Psychiatry and Psychotherapy, Neurobiological Laboratory, Saarland University, Homburg, Germany
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Matthias Riemenschneider
- Department of Psychiatry and Psychotherapy, Neurobiological Laboratory, Saarland University, Homburg, Germany; Department of Psychiatry and Psychotherapy, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
74
|
microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice. Sci Rep 2016; 6:30953. [PMID: 27484949 PMCID: PMC4971468 DOI: 10.1038/srep30953] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023] Open
Abstract
The abnormal regulation of amyloid-β (Aβ) metabolism (e.g., production, cleavage, clearance) plays a central role in Alzheimer’s disease (AD). Among endogenous factors believed to participate in AD progression are the small regulatory non-coding microRNAs (miRs). In particular, the miR-132/212 cluster is severely reduced in the AD brain. In previous studies we have shown that miR-132/212 deficiency in mice leads to impaired memory and enhanced Tau pathology as seen in AD patients. Here we demonstrate that the genetic deletion of miR-132/212 promotes Aβ production and amyloid (senile) plaque formation in triple transgenic AD (3xTg-AD) mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Aβ metabolism, including Tau, Mapk, and Sirt1. Consistent with these findings, we show that the modulation of miR-132, or its target Sirt1, can directly regulate Aβ production in cells. Finally, both miR-132 and Sirt1 levels correlated with Aβ load in humans. Overall, our results support the hypothesis that the miR-132/212 network, including Sirt1 and likely other target genes, contributes to abnormal Aβ metabolism and senile plaque deposition in AD. This study strengthens the importance of miR-dependent networks in neurodegenerative disorders, and opens the door to multifactorial drug targets of AD by targeting Aβ and Tau.
Collapse
|
75
|
Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: Key Players in Neurodegenerative Disorders and Epilepsy. J Alzheimers Dis 2016; 48:563-80. [PMID: 26402105 DOI: 10.3233/jad-150395] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, ∼22 nucleotide, non-coding RNA molecules that function as post-transcriptional regulators of gene expression. miRNA dysregulation has been observed in cancer and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis, and the neurological disorder, epilepsy. Neuronal degradation and death are important hallmarks of neurodegenerative disorders. Additionally, abnormalities in metabolism, synapsis and axonal transport have been associated with Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. A number of recently published studies have demonstrated the importance of miRNAs in the nervous system and have contributed to the growing body of evidence on miRNA dysregulation in neurological disorders. Knowledge of the expressions and activities of such miRNAs may aid in the development of novel therapeutics. In this review, we discuss the significance of miRNA dysregulation in the development of neurodegenerative disorders and the use of miRNAs as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Manas Kumar Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences (KIMS), Hyderabad, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ian A Tamargo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
76
|
Hervé M, Ibrahim EC. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 2016; 9:899-909. [PMID: 27483351 PMCID: PMC5007982 DOI: 10.1242/dmm.025841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C), leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1). Small non-coding RNAs known as microRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR) on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology. Summary: A miRNA screening conducted in olfactory stem cells from patients links the neuron-specific splicing factor NOVA1 to neurodegeneration in familial dysautonomia.
Collapse
Affiliation(s)
- Mylène Hervé
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| | - El Chérif Ibrahim
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| |
Collapse
|
77
|
van Harten AC, Mulders J, Scheltens P, van der Flier WM, Oudejans CBM. Differential Expression of microRNA in Cerebrospinal Fluid as a Potential Novel Biomarker for Alzheimer's Disease. J Alzheimers Dis 2016; 47:243-52. [PMID: 26402772 DOI: 10.3233/jad-140075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE The need to find a better reflection of Alzheimer's disease (AD) pathophysiology led us to investigate differential expression of microRNA (miRNA) in cerebrospinal fluid (CSF) of AD patients compared to matched controls, using a genome-wide data-driven approach. METHODS From the Amsterdam Dementia Cohort, we selected 19 AD patients with CSF indicative of AD pathophysiology and 19 age and gender-matched controls without CSF evidence of AD (67 ± 6 years old, 20 [53%] female). We measured 754 miRNA in CSF using qRT-PCR (Taqman Array MicroRNA cards A and B, v3.0) according to the Megaplex Taqman protocol. Hierarchical cluster analysis was performed and groups were compared using Linear Models for Microarray Data, a modified t-test. We performed validation analysis using qRT-PCR single assays. RESULTS 144 ± 66 miRNA could be detected using Megaplex array analysis (19% ). Mean Ct (average 32.4 ± 0.5) was correlated to age (r = 0.52, p = 0.001). Five miRNA were differentially expressed in CSF of AD patients. None of these could be replicated. After stratification by age, seven miRNA showed differential expression in late-onset AD, of which lower abundance of let-7a was replicated (log10RQ -1.46, p < 0.05). In early-onset AD, twelve miRNA were differentially expressed of which lower abundance of miRNA-532-3p remained borderline significant (log10RQ -1.27, p = 0.05). CONCLUSION Although we could not consistently separate AD patients and controls in the whole group, we have found indications miRNA in CSF are able to reflect aging and perhaps also heterogeneity in AD. Further investigation requires optimizing RNA input, while maintaining strict age matching.
Collapse
Affiliation(s)
- Argonde C van Harten
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Departments of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joyce Mulders
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Departments of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Departments of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology/Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Cees B M Oudejans
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Keasey MP, Scott HL, Bantounas I, Uney JB, Kelly S. MiR-132 Is Upregulated by Ischemic Preconditioning of Cultured Hippocampal Neurons and Protects them from Subsequent OGD Toxicity. J Mol Neurosci 2016; 59:404-10. [PMID: 27074745 DOI: 10.1007/s12031-016-0740-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
We explored the response of a panel of selected microRNAs (miRNAs) in neuroprotection produced by ischemic preconditioning. Hippocampal neuronal cultures were exposed to a 30-min oxygen-glucose deprivation (OGD). In our hands, this duration of OGD does not result in neuronal loss in vitro but significantly reduces neuronal death from a subsequent 'lethal' OGD insult. RT-qPCR was used to determine the expression of 16 miRNAs of interest at 1 and 24-h post-OGD. One miRNA (miR-98) was significantly decreased at 1-h post-OGD. Ten miRNAs (miR-9, miR-21, miR-29b, miR-30e, miR-101a, miR-101b, miR-124a, miR-132, miR-153, miR-204) were increased significantly at 24-h post-OGD. No miRNAs were decreased at 24-h. The increases observed in the 24-h group suggested that these miRNAs might play a role in preconditioning-induced neuroprotection. We selected the widely studied miR-132, a brain enriched, CREB regulated miRNA, to explore its role in simulated ischemic insults. We found that hippocampal neurons transduced with lentiviral vectors expressing miR-132 were protected from OGD and NMDA treatment, but not hydrogen peroxide. These findings add to the growing literature that targeting neuroprotective pathways controlled by miRNAs may represent a therapeutic strategy for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Matthew P Keasey
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK
| | - Helen L Scott
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK
| | | | - James B Uney
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK.
| | - Stephen Kelly
- School of Clinical Sciences & School of Cellular and Molecular Medicine, Regenerative Medicine Laboratories, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
79
|
microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). Neurogenetics 2016; 17:165-71. [DOI: 10.1007/s10048-016-0480-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
|
80
|
Piscopo P, Albani D, Castellano AE, Forloni G, Confaloni A. Frontotemporal Lobar Degeneration and MicroRNAs. Front Aging Neurosci 2016; 8:17. [PMID: 26903860 PMCID: PMC4746266 DOI: 10.3389/fnagi.2016.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) includes a spectrum of disorders characterized by changes of personality and social behavior and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly microRNAs (miRNAs). Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107, and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Milano, Italy
| | | | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Milano, Italy
| | | |
Collapse
|
81
|
Roth W, Hecker D, Fava E. Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs. Methods Mol Biol 2016; 1303:349-377. [PMID: 26235078 DOI: 10.1007/978-1-4939-2627-5_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Wera Roth
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | | | | |
Collapse
|
82
|
Cacabelos R, Torrellas C. Epigenetics of Aging and Alzheimer's Disease: Implications for Pharmacogenomics and Drug Response. Int J Mol Sci 2015; 16:30483-543. [PMID: 26703582 PMCID: PMC4691177 DOI: 10.3390/ijms161226236] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic variability (DNA methylation/demethylation, histone modifications, microRNA regulation) is common in physiological and pathological conditions. Epigenetic alterations are present in different tissues along the aging process and in neurodegenerative disorders, such as Alzheimer’s disease (AD). Epigenetics affect life span and longevity. AD-related genes exhibit epigenetic changes, indicating that epigenetics might exert a pathogenic role in dementia. Epigenetic modifications are reversible and can potentially be targeted by pharmacological intervention. Epigenetic drugs may be useful for the treatment of major problems of health (e.g., cancer, cardiovascular disorders, brain disorders). The efficacy and safety of these and other medications depend upon the efficiency of the pharmacogenetic process in which different clusters of genes (pathogenic, mechanistic, metabolic, transporter, pleiotropic) are involved. Most of these genes are also under the influence of the epigenetic machinery. The information available on the pharmacoepigenomics of most drugs is very limited; however, growing evidence indicates that epigenetic changes are determinant in the pathogenesis of many medical conditions and in drug response and drug resistance. Consequently, pharmacoepigenetic studies should be incorporated in drug development and personalized treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| |
Collapse
|
83
|
Lisowiec J, Magner D, Kierzek E, Lenartowicz E, Kierzek R. Structural determinants for alternative splicing regulation of the MAPT pre-mRNA. RNA Biol 2015; 12:330-42. [PMID: 25826665 DOI: 10.1080/15476286.2015.1017214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative splicing at the MAPT gene exon 10 yields similar levels of the 3R and 4R tau protein isoforms. (1) The presence of mutations, particularly in exon 10 and intron 10-11, changes the quantity of tau isoforms. Domination each of the isoform yields tau protein aggregation and frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we report for the first time the secondary structure of the 194/195 nucleotide region for the wild type (WT) and 10 mutants of the MAPT gene pre-mRNA determined using both chemical and microarray mapping. Thermodynamic analyses indicate that single nucleotide mutations in the splicing regulatory element (SRE) that form a hairpin affect its stability by up to 4 and 7 kcal/mol. Moreover, binding the regulatory hairpin of small molecule ligands (neomycin, kanamycin, tobramycin and mitoxantrone) enhance its stability depending on the nature of the ligands and the RNA mutations. Experiments using the cos-7 cell line indicate that the presence of ligands and modified antisense oligonucleotides affect the quantity of 3R and 4R isoforms. This finding correlates with the thermodynamic stability of the regulatory hairpin. An alternative splicing regulation mechanism for exon 10 is postulated based on our experimental data and on published data.
Collapse
Key Words
- AD, Alzheimer disease
- DMS, dimethyl sulfide
- ESE, exonic splicing enhancer
- ESS, exonic splicing silencer
- FTD, frontotemporal dementia
- FTDP-17, frontotemporal dementia and Parkinsonism linked to chromosome 17
- ISM, intronic splicing modulator
- ISS, intronic splicing silencer
- MAPT, microtubule-associated protein tau
- NMIA, N-methylisotoic anhydride
- NMR, nuclear magnetic resonance
- PPE, polypurine enhancer
- RNA structure
- RNA thermodynamics
- RT-PCR, reverse transcription polymerase chain reaction
- SHAPE, selective 2′-hydroxyl acylation analyzed by primer extension
- SMA, spinal muscular atrophy
- SRE, splicing regulatory element
- U1 snRNP, U1 small nuclear ribonucleoprotein
- WT, wild type
- alternative splicing regulation
- antisense oligonucleotides
- neurodegradation
- pre-mRNA, pre-messenger RNA
- small molecule binding
Collapse
Affiliation(s)
- Jolanta Lisowiec
- a Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Noskowskiego, Poland
| | | | | | | | | |
Collapse
|
84
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
85
|
Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, Dorval V, Parsi S, Morin F, Planel E, Bennett DA, Fernandez-Gomez FJ, Sergeant N, Buée L, Tremblay MÈ, Calon F, Hébert SS. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 2015; 24:6721-35. [PMID: 26362250 PMCID: PMC4634376 DOI: 10.1093/hmg/ddv377] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease. Previously, we have shown that the microRNA (miRNA) cluster miR-132/212 is downregulated in tauopathies such as AD. Here, we report that miR-132/212 deficiency in mice leads to increased tau expression, phosphorylation and aggregation. Using reporter assays and cell-based studies, we demonstrate that miR-132 directly targets tau mRNA to regulate its expression. We identified GSK-3β and PP2B as effectors of abnormal tau phosphorylation in vivo. Deletion of miR-132/212 induced tau aggregation in mice expressing endogenous or human mutant tau, an effect associated with autophagy dysfunction. Conversely, treatment of AD mice with miR-132 mimics restored in part memory function and tau metabolism. Finally, miR-132 and miR-212 levels correlated with insoluble tau and cognitive impairment in humans. These findings support a role for miR-132/212 in the regulation of tau pathology in mice and humans and provide new alternatives for therapeutic development.
Collapse
Affiliation(s)
- Pascal Y Smith
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Francis Jolivette
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Veronique Dorval
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Sepideh Parsi
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Françoise Morin
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Francisco-Jose Fernandez-Gomez
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Nicolas Sergeant
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Luc Buée
- Faculté de Médecine, Université de Lille, UDSL, Lille F-59045, France and UMR-S 1172, Alzheimer and Tauopathies, Inserm, Lille F-59045, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Médecine Moléculaire
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Faculté de Pharmacie, Université Laval, Québec, QC, Canada G1V 0A6
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, CHUL, Québec, QC, Canada G1V 4G2, Département de Psychiatrie et Neurosciences,
| |
Collapse
|
86
|
Leonov G, Shah K, Yee D, Timmis J, Sharp TV, Lagos D. Suppression of AGO2 by miR-132 as a determinant of miRNA-mediated silencing in human primary endothelial cells. Int J Biochem Cell Biol 2015; 69:75-84. [PMID: 26475020 PMCID: PMC4679077 DOI: 10.1016/j.biocel.2015.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/08/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
Abstract
The abundance of miR-132 ranges from constitutively high in the brain where it is necessary for neuronal development and function, to inducible expression in haematopoietic and endothelial cells where it controls angiogenesis and immune activation. We show that expression of AGO2, a protein central to miRNA-mediated gene silencing and miRNA biogenesis, is negatively regulated by miR-132. Using HeLa cells, we demonstrate that miR-132 interacts with the AGO2 mRNA 3'UTR and suppresses AGO2 expression and AGO2-dependent small RNA-mediated silencing. Similarly, miR-132 over-expression leads to AGO2 suppression in primary human dermal lymphatic endothelial cells (HDLECs). During phorbol myristate acetate (PMA)-activation of HDLECs, miR-132 is induced in a CREB-dependent manner and inhibition of miR-132 results in increased AGO2 expression. In agreement with the role of AGO2 in maintenance of miRNA expression, AGO2 suppression by miR-132 affects the steady state levels of miR-221 and miR-146a, two miRNAs involved in angiogenesis and inflammation, respectively. Our data demonstrate that the miRNA-silencing machinery is subject to autoregulation during primary cell activation through direct suppression of AGO2 by miR-132.
Collapse
Affiliation(s)
- German Leonov
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School University of York, Wentworth Way, York YO10 5DD, UK
| | - Kunal Shah
- Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London EC1M 6BQ, UK
| | - Daniel Yee
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School University of York, Wentworth Way, York YO10 5DD, UK
| | - Jon Timmis
- Department of Electronics, Wentworth Way, York YO10 5DD, UK
| | - Tyson V Sharp
- Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University London, London EC1M 6BQ, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
87
|
Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J, Tong Y, Pan B. Dysregulation and Diagnostic Potential of microRNA in Alzheimer’s Disease. J Alzheimers Dis 2015; 49:1-12. [DOI: 10.3233/jad-150451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoqian Pan
- Department of Veterinary Pathology, College of Animal Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruizhu Liu
- China-Japan Union Hospital Jilin University, Changchun, Jilin, China
| | - Erin Terpstra
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Yanqing Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Fangfang Qiao
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Jin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Pan
- Department of Veterinary Pathology, College of Animal Sciences, Henan Institute of Science and Technology, Xinxiang, China
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
88
|
Xiong Y, Liu F, Liu D, Huang H, Wei N, Tan L, Chen J, Man H, Gong C, Lu Y, Wang J, Zhu L. Opposite effects of two estrogen receptors on tau phosphorylation through disparate effects on the miR-218/PTPA pathway. Aging Cell 2015; 14:867-77. [PMID: 26111662 PMCID: PMC4568974 DOI: 10.1111/acel.12366] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
The two estrogen receptors (ERs), ERα and ERβ, mediate the diverse biological functions of estradiol. Opposite effects of ERα and ERβ have been found in estrogen-induced cancer cell proliferation and differentiation as well as in memory-related tasks. However, whether these opposite effects are implicated in the pathogenesis of Alzheimer’s disease (AD) remains unclear. Here, we find that ERα and ERβ play contrasting roles in regulating tau phosphorylation, which is a pathological hallmark of AD. ERα increases the expression of miR-218 to suppress the protein levels of its specific target, protein tyrosine phosphatase α (PTPα). The downregulation of PTPα results in the abnormal tyrosine hyperphosphorylation of glycogen synthase kinase-3β (resulting in activation) and protein phosphatase 2A (resulting in inactivation), the major tau kinase and phosphatase. Suppressing the increased expression of miR-218 inhibits the ERα-induced tau hyperphosphorylation as well as the PTPα decline. In contrast, ERβ inhibits tau phosphorylation by limiting miR-218 levels and restoring the miR-218 levels antagonized the attenuation of tau phosphorylation by ERβ. These data reveal for the first time opposing roles for ERα and ERβ in AD pathogenesis and suggest potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yan‐Si Xiong
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Fang‐Fang Liu
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Dan Liu
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
- Department of Genetics School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- Sino‐Canada Collaborative Platform on Molecular Biology of Neurological Disease Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
| | - He‐Zhou Huang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Na Wei
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Lu Tan
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Jian‐Guo Chen
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Heng‐Ye Man
- Department of Biology Boston University Boston MA 02215USA
| | - Cheng‐Xin Gong
- Department of Neurochemistry Inge Grundke‐Iqbal Research Floor New York State Institute for Basic Research in Developmental Disabilities Staten Island NY 10314USA
| | - Youming Lu
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Jian‐Zhi Wang
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
| | - Ling‐Qiang Zhu
- Department of Pathophysiology School of Basic Medicine Key Laboratory of Neurological Disorder of Education Ministry Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan 430030 China
- Sino‐Canada Collaborative Platform on Molecular Biology of Neurological Disease Tongji Medical College Huazhong University of Science and Technology Wuhan 430030China
| |
Collapse
|
89
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
90
|
Caillet-Boudin ML, Buée L, Sergeant N, Lefebvre B. Regulation of human MAPT gene expression. Mol Neurodegener 2015; 10:28. [PMID: 26170022 PMCID: PMC4499907 DOI: 10.1186/s13024-015-0025-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
The number of known pathologies involving deregulated Tau expression/metabolism is increasing. Indeed, in addition to tauopathies, which comprise approximately 30 diseases characterized by neuronal aggregation of hyperphosphorylated Tau in brain neurons, this protein has also been associated with various other pathologies such as cancer, inclusion body myositis, and microdeletion/microduplication syndromes, suggesting its possible function in peripheral tissues. In addition to Tau aggregation, Tau deregulation can occur at the expression and/or splicing levels, as has been clearly demonstrated in some of these pathologies. Here, we aim to review current knowledge regarding the regulation of human MAPT gene expression at the DNA and RNA levels to provide a better understanding of its possible deregulation. Several aspects, including repeated motifs, CpG island/methylation, and haplotypes at the DNA level, as well as the key regions involved in mRNA expression and stability and the splicing patterns of different mRNA isoforms at the RNA level, will be discussed.
Collapse
Affiliation(s)
| | - Luc Buée
- Univ. Lille, UMR-S 1172, Inserm, CHU, 59000, Lille, France
| | | | - Bruno Lefebvre
- Univ. Lille, UMR-S 1172, Inserm, CHU, 59000, Lille, France
| |
Collapse
|
91
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
92
|
Millan MJ. The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity? DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364287 PMCID: PMC4214179 DOI: 10.31887/dcns.2014.16.3/mmillan] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Early-onset, familial Alzheimer's disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy-sur-Seine, France
| |
Collapse
|
93
|
Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res 2015; 287:15-26. [PMID: 25813747 DOI: 10.1016/j.bbr.2015.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/16/2023]
Abstract
The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.
Collapse
|
94
|
Joilin G, Guévremont D, Ryan B, Claudianos C, Cristino AS, Abraham WC, Williams JM. Rapid regulation of microRNA following induction of long-term potentiation in vivo. Front Mol Neurosci 2014; 7:98. [PMID: 25538559 PMCID: PMC4260481 DOI: 10.3389/fnmol.2014.00098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023] Open
Abstract
Coordinated regulation of gene expression is essential for consolidation of the memory mechanism, long-term potentiation (LTP). Triggering of LTP by N-methyl-D-aspartate receptor (NMDAR) activation rapidly activates constitutive and inducible transcription factors, which promote expression of genes responsible for LTP maintenance. As microRNA (miRNA) coordinate expression of genes related through seed sites, we hypothesize that miRNA contribute to the regulation of the LTP-induced gene response. MiRNA function primarily as negative regulators of gene expression. As LTP induction promotes a generalized rapid up-regulation of gene expression, we predicted a complementary rapid down-regulation of miRNA levels. Accordingly, we carried out global miRNA expression profiling in the rat dentate gyrus 20 min post-LTP induction in vivo. Consistent with our hypothesis, we found a large number of differentially expressed miRNA, the majority down-regulated. Detailed analysis of miR-34a-5p and miR-132-3p revealed this down-regulation was transient and NMDAR-dependent, whereby block of NMDARs released an activity-associated inhibitory mechanism. Furthermore, down-regulation of mature miR-34a-5p and miR-132-3p occurred solely by post-transcriptional mechanisms, occurring despite an associated up-regulation of the pri-miR-132 transcript. To understand how down-regulation of miR-34a-5p and miR-132-3p intersects with the molecular events occurring following LTP, we used bioinformatics to identify potential targets. Previously validated targets included the key LTP-regulated genes Arc and glutamate receptor subunits. Predicted targets included the LTP-linked kinase, Mapk1, and neuropil-associated transcripts Hn1 and Klhl11, which were validated using luciferase reporter assays. Furthermore, we found that the level of p42-Mapk1, the protein encoded by the Mapk1 transcript, was up-regulated following LTP. Together, these data support the interpretation that miRNA, in particular miR-34a-5p and miR-132-3p, make a surprisingly rapid contribution to synaptic plasticity via dis-inhibition of translation of key plasticity-related molecules.
Collapse
Affiliation(s)
- Greig Joilin
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Diane Guévremont
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Brigid Ryan
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Wickliffe C Abraham
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Psychology, University of Otago Dunedin, New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
95
|
Bicker S, Lackinger M, Weiß K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 2014; 71:3987-4005. [PMID: 25008044 PMCID: PMC11113804 DOI: 10.1007/s00018-014-1671-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/19/2023]
Abstract
Dendritic mRNA transport and local translation in the postsynaptic compartment play an important role in synaptic plasticity, learning and memory. Local protein synthesis at the synapse has to be precisely orchestrated by a plethora of factors including RNA binding proteins as well as microRNAs, an extensive class of small non-coding RNAs. By binding to complementary sequences in target mRNAs, microRNAs fine-tune protein synthesis and thereby represent critical regulators of gene expression at the post-transcriptional level. Research over the last years identified an entire network of dendritic microRNAs that fulfills an essential role in synapse development and physiology. Recent studies provide evidence that these small regulatory molecules are highly regulated themselves, at the level of expression as well as function. The importance of microRNAs for correct function of the nervous system is reflected by an increasing number of studies linking dysregulation of microRNA pathways to neurological disorders. By focusing on three extensively studied examples (miR-132, miR-134, miR-138), this review will attempt to illustrate the complex regulatory roles of dendritic microRNAs at the synapse and their implications for pathological conditions.
Collapse
Affiliation(s)
- Silvia Bicker
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Martin Lackinger
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Kerstin Weiß
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
96
|
Gratuze M, Noël A, Julien C, Cisbani G, Milot-Rousseau P, Morin F, Dickler M, Goupil C, Bezeau F, Poitras I, Bissonnette S, Whittington RA, Hébert SS, Cicchetti F, Parker JA, Samadi P, Planel E. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington's disease. Hum Mol Genet 2014; 24:86-99. [DOI: 10.1093/hmg/ddu456] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
97
|
Lau P, Frigerio CS, De Strooper B. Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: the need of larger datasets. Ageing Res Rev 2014; 17:43-53. [PMID: 24607832 DOI: 10.1016/j.arr.2014.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
Abstract
Non-coding RNAs, such as microRNAs and long non-coding RNAs, represent the next major step in understanding the complexity of gene regulation and expression. In the past decade, tremendous efforts have been put mainly into identifying microRNAs that are changed in Alzheimer's disease, with the goal to provide biomarkers of the disease and to better characterize molecular pathways that are deregulated concomitantly to the formation of Tau and amyloid aggregates. This review underlines the importance of correctly defining, in a deluge of high-throughput data, which microRNAs are abnormally expressed in Alzheimer's disease patients. Despite a clear lack of consensus on the topic, miR-132 is emerging as a neuronal microRNA being gradually down-regulated during disease and showing important roles in the maintenance of brain integrity. Insight into the biological importance of other classes of non-coding RNAs also rapidly increased over the last years and therefore we discuss the possible implication of long non-coding RNAs in Alzheimer's disease.
Collapse
Affiliation(s)
- Pierre Lau
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders (LIND) and University of Leuven, O&N4, Herestraat 49 Box 602, 3000 Leuven, Belgium
| | - Carlo Sala Frigerio
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders (LIND) and University of Leuven, O&N4, Herestraat 49 Box 602, 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics, Leuven Institute for Neurodegenerative Disorders (LIND) and University of Leuven, O&N4, Herestraat 49 Box 602, 3000 Leuven, Belgium; Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, United Kingdom.
| |
Collapse
|
98
|
|
99
|
Moschner K, Sündermann F, Meyer H, da Graca AP, Appel N, Paululat A, Bakota L, Brandt R. RNA protein granules modulate tau isoform expression and induce neuronal sprouting. J Biol Chem 2014; 289:16814-25. [PMID: 24755223 DOI: 10.1074/jbc.m113.541425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neuronal microtubule-associated protein Tau is expressed in different variants, and changes in Tau isoform composition occur during development and disease. Here, we investigate a potential role of the multivalent tau mRNA-binding proteins G3BP1 and IMP1 in regulating neuronal tau expression. We demonstrate that G3BP1 and IMP1 expression induces the formation of structures, which qualify as neuronal ribonucleoprotein (RNP) granules and concentrate multivalent proteins and mRNA. We show that RNP granule formation leads to a >30-fold increase in the ratio of high molecular weight to low molecular weight tau mRNA and an ∼12-fold increase in high molecular weight to low molecular weight Tau protein. We report that RNP granule formation is associated with increased neurite formation and enhanced process growth. G3BP1 deletion constructs that do not induce granule formation are also deficient in inducing neuronal sprouting or changing the expression pattern of tau. The data indicate that granule formation driven by multivalent proteins modulates tau isoform expression and suggest a morphoregulatory function of RNP granules during health and disease.
Collapse
Affiliation(s)
| | | | - Heiko Meyer
- Zoology, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | | - Achim Paululat
- Zoology, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | |
Collapse
|
100
|
Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014; 13:33. [PMID: 24555688 PMCID: PMC3936914 DOI: 10.1186/1476-4598-13-33] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases.
Collapse
Affiliation(s)
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, India.
| |
Collapse
|