51
|
Synthesis of gatifloxacin derivatives and their biological activities against Mycobacterium leprae and Mycobacterium tuberculosis. Bioorg Med Chem 2013; 21:948-56. [DOI: 10.1016/j.bmc.2012.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022]
|
52
|
Empirical use of fluoroquinolones improves the survival of critically ill patients with tuberculosis mimicking severe pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R207. [PMID: 23098258 PMCID: PMC3682311 DOI: 10.1186/cc11839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/22/2012] [Indexed: 01/26/2023]
Abstract
Introduction Empirical use of fluoroquinolones may delay the initiation of appropriate therapy for tuberculosis (TB). This study aimed to evaluate the impact of empirical fluoroquinolone use on the survival of patients with pulmonary TB that mimicked severe community-acquired pneumonia (CAP) requiring intensive care. Methods Patients aged >18 years with culture-confirmed pulmonary TB who presented as severe CAP and were admitted to the ICU were divided into fluoroquinolone (FQ) and nonfluoroquinolone (non-FQ) groups based on the type of empirical antibiotics used. Those patients with previous anti-TB treatment or those who died within 3 days of hospitalization were excluded. The primary end point was 100-day survival. Results Of the 77 patients identified, 43 (56%) were in the FQ group and 34 (44%) were in the non-FQ group. The two groups had no statistically significant difference in co-morbidities (95% vs. 97%, P > 0.99) and Acute Physiology and Chronic Health Evaluation (APACHE) II scores (21.2 ± 7.1 vs. 22.5 ± 7.5, P = 0.46) on ICU admission. Overall, 91% and 82% of patients in the FQ and non-FQ groups, respectively, had sputum examinations for TB within 1 week of admission (P = 0.46), and results were positive in 7% and 15% (P = 0.47), respectively. For both groups, 29% received appropriate anti-TB therapy within 2 weeks after ICU admission. The 100-day mortality rate was 40% and 68% for the FQ and non-FQ groups, respectively (P = 0.02). By Cox regression analysis, APACHE score <20, no bacteremia during the ICU stay, and empirical fluoroquinolone use were independently associated with survival. Conclusion Empirical use of fluoroquinolones may improve the survival of ICU patients admitted for pulmonary TB mimicking severe CAP.
Collapse
|
53
|
Nosova EY, Bukatina AA, Isaeva YD, Makarova MV, Galkina KY, Moroz AM. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J Med Microbiol 2012; 62:108-113. [PMID: 23019190 DOI: 10.1099/jmm.0.046821-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of the present study was to analyse mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis and define the possible correlation between these mutations and resistance to levofloxacin (LVX), moxifloxacin (MFX) and gatifloxacin (GAT), based on their MICs. One hundred and forty-two M. tuberculosis clinical isolates were collected from pulmonary tuberculosis patients in the Moscow region. All M. tuberculosis strains were tested for drug susceptibility to rifampicin and isoniazid using the BACTEC MGIT 960 System and to ofloxacin (OFX) using the absolute concentration method on solid Lowenstein-Jensen slants. All in all, 68 strains were selected at random (38 strains were resistant and 30 were susceptible to OFX) for further analysis using the TB-BIOCHIP-2 test system and DNA sequence analysis. The MICs of LVX, MFX and GAT for selected strains were determined using the BACTEC MGIT 960 System. Mutations in the gyrA gene were observed in 36 out of 38 (94.7 %) OFX-resistant M. tuberculosis strains. Asn538Asp and Asp500His substitutions in the gyrB gene only were found in two (5.3 %) strains. Twenty-nine out of 30 OFX-sensitive M. tuberculosis strains had no mutations in either gene. One (3.3 %) OFX-sensitive M. tuberculosis strain carried an Arg485His substitution in gyrB. The results of our investigation showed that there is no clear correlation between the type of mutation in the genes gyrA and gyrB, and the MIC levels of LVX, MFX and GAT for resistant strains. Mutations in gyrA and Asn538Asp, and Asp500His substitutions in gyrB were associated with cross-resistance of M. tuberculosis to fluoroquinolones. The substitution Arg485His in gyrB does not confer resistance to LVX, MFX and GAT in M. tuberculosis.
Collapse
Affiliation(s)
- Elena Yu Nosova
- Moscow Scientific and Clinical Antituberculosis Center, Moscow Government Health Department, Stromynka 10, Moscow 107014, Russia
| | - Anastasia A Bukatina
- Moscow Scientific and Clinical Antituberculosis Center, Moscow Government Health Department, Stromynka 10, Moscow 107014, Russia
| | - Yulia D Isaeva
- Moscow Scientific and Clinical Antituberculosis Center, Moscow Government Health Department, Stromynka 10, Moscow 107014, Russia
| | - Marina V Makarova
- Moscow Scientific and Clinical Antituberculosis Center, Moscow Government Health Department, Stromynka 10, Moscow 107014, Russia
| | - Ksenia Yu Galkina
- Moscow Scientific and Clinical Antituberculosis Center, Moscow Government Health Department, Stromynka 10, Moscow 107014, Russia
| | - Arkadyi M Moroz
- Moscow Scientific and Clinical Antituberculosis Center, Moscow Government Health Department, Stromynka 10, Moscow 107014, Russia
| |
Collapse
|
54
|
Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One 2012; 7:e39754. [PMID: 22761889 PMCID: PMC3386181 DOI: 10.1371/journal.pone.0039754] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/30/2012] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB), and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB). Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR) of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven) and gyrB (nineteen) to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies among the different mutations. The results from this study provide support for the inclusion of the QRDR of gyrB in molecular assays used to detect fluoroquinolone resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Seidu Malik
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melisa Willby
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David Sikes
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Oleg V. Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James E. Posey
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
55
|
Migliori GB, Langendam MW, D'Ambrosio L, Centis R, Blasi F, Huitric E, Manissero D, van der Werf MJ. Protecting the tuberculosis drug pipeline: stating the case for the rational use of fluoroquinolones. Eur Respir J 2012; 40:814-22. [PMID: 22653774 PMCID: PMC3461345 DOI: 10.1183/09031936.00036812] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of fluoroquinolones (FQs) to treat lower respiratory tract infections (LTRI) other than tuberculosis (TB) allows selection of FQ-resistant TB when TB is misdiagnosed. This study maps national guidelines on the use of FQs for LRTI in Europe and determines the risk of FQ-resistant TB upon FQ treatment before TB diagnosis. A questionnaire was developed to map existing national LRTI and community-acquired pneumonia (CAP) guidelines. A systematic review and meta-analysis were performed to determine the risk of FQ-resistant TB if prescribed FQs prior to TB diagnosis. 15 (80%) out of 24 responding European Respiratory Society national delegates reported having national LRTI management guidelines, seven including recommendations on FQ use and one recommending FQs as the first-choice drug. 18 out of 24 countries had national CAP management guidelines, two recommending FQ as the drug of choice. Six studies investigating FQ exposure and the risk of FQ-resistant TB were analysed. TB patients had a three-fold higher risk of having FQ-resistant TB when prescribed FQs before TB diagnosis, compared to non FQ-exposed patients (OR 2.81, 95% CI 1.47-5.39). Although the majority of European countries hold national LRTI/CAP guidelines, our results suggest that a risk of developing FQ resistance exists. Further strengthening of, and adherence to, guidelines is needed to ensure rational use of FQs.
Collapse
Affiliation(s)
- Giovanni Battista Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Sensitivities of ciprofloxacin-resistant Mycobacterium tuberculosis clinical isolates to fluoroquinolones: role of mutant DNA gyrase subunits in drug resistance. Int J Antimicrob Agents 2012; 39:435-9. [DOI: 10.1016/j.ijantimicag.2012.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/20/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022]
|
57
|
Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, Cambau E, Aubry A. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 2012; 67:819-31. [PMID: 22279180 PMCID: PMC3299416 DOI: 10.1093/jac/dkr566] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 12/07/2011] [Indexed: 11/14/2022] Open
Abstract
Fluoroquinolone resistance in Mycobacterium tuberculosis has become increasingly important. A review of mutations in DNA gyrase, the fluoroquinolone target, is needed to improve the molecular detection of resistance. We performed a systematic review of studies reporting mutations in DNA gyrase genes in clinical M. tuberculosis isolates. From 42 studies that met inclusion criteria, 1220 fluoroquinolone-resistant M. tuberculosis isolates underwent sequencing of the quinolone resistance-determining region (QRDR) of gyrA; 780 (64%) had mutations. The QRDR of gyrB was sequenced in 534 resistant isolates; 17 (3%) had mutations. Mutations at gyrA codons 90, 91 or 94 were present in 654/1220 (54%) resistant isolates. Four different GyrB numbering systems were reported, resulting in mutation location discrepancies. We propose a consensus numbering system. Most fluoroquinolone-resistant M. tuberculosis isolates had mutations in DNA gyrase, but a substantial proportion did not. The proposed consensus numbering system can improve molecular detection of resistance and identification of novel mutations.
Collapse
Affiliation(s)
- Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Health Services Research, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne W. Kaiga
- Department of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuri F. van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudine Mayer
- Unité de Dynamique Structurale des Macromolécules, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
- URA 2185, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Université Paris Diderot-Paris 07, EA3964, Paris, France
| | - Emmanuelle Cambau
- Université Paris Diderot-Paris 07, EA3964, Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Alexandra Aubry
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France
- Pierre et Marie Curie Université Paris 06, EA1541, Bactériologie-Hygiène, Paris, France
- Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
58
|
Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M. tuberculosis. Antimicrob Agents Chemother 2012; 56:1990-6. [PMID: 22290942 DOI: 10.1128/aac.06272-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is emerging in Mycobacterium tuberculosis. The main mechanism of FQ resistance is amino acid substitution within the quinolone resistance-determining region (QRDR) of the GyrA subunit of DNA gyrase, the sole FQ target in M. tuberculosis. However, substitutions in GyrB whose implication in FQ resistance is unknown are increasingly being reported. The present study clarified the role of four GyrB substitutions identified in M. tuberculosis clinical strains, two located in the QRDR (D500A and N538T) and two outside the QRDR (T539P and E540V), in FQ resistance. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to unequivocally clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineered gyrB alleles by mutagenesis were overexpressed in Escherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. All these substitutions are clearly implicated in FQ resistance, underlining the presence of a hot spot region housing most of the GyrB substitutions implicated in FQ resistance (residues NTE, 538 to 540). These findings help us to refine the definition of GyrB QRDR, which is extended to positions 500 to 540.
Collapse
|
59
|
Shen GH, Tsao TCY, Kao SJ, Lee JJ, Chen YH, Hsieh WC, Hsu GJ, Hsu YT, Huang CT, Lau YJ, Tsao SM, Hsueh PR. Does empirical treatment of community-acquired pneumonia with fluoroquinolones delay tuberculosis treatment and result in fluoroquinolone resistance in Mycobacterium tuberculosis? Controversies and solutions. Int J Antimicrob Agents 2012; 39:201-5. [PMID: 22285045 PMCID: PMC7127649 DOI: 10.1016/j.ijantimicag.2011.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
Abstract
The role of fluoroquinolones (FQs) as empirical therapy for community-acquired pneumonia (CAP) remains controversial in countries with high tuberculosis (TB) endemicity owing to the possibility of delayed TB diagnosis and treatment and the emergence of FQ resistance in Mycobacterium tuberculosis. Although the rates of macrolide-resistant Streptococcus pneumoniae and amoxicillin/clavulanic acid-resistant Haemophilus influenzae have risen to alarming levels, the rates of respiratory FQ (RFQ) resistance amongst these isolates remain relatively low. It is reported that ca. 1–7% of CAP cases are re-diagnosed as pulmonary TB in Asian countries. A longer duration (≥7 days) of symptoms, a history of night sweats, lack of fever (>38 °C), infection involving the upper lobe, presence of cavitary infiltrates, opacity in the lower lung without the presence of air, low total white blood cell count and the presence of lymphopenia are predictive of pulmonary TB. Amongst patients with CAP who reside in TB-endemic countries who are suspected of having TB, imaging studies as well as aggressive microbiological investigations need to be performed early on. Previous exposure to a FQ for >10 days in patients with TB is associated with the emergence of FQ-resistant M. tuberculosis isolates. However, rates of M. tuberculosis isolates with FQ resistance are significantly higher amongst multidrug-resistant M. tuberculosis isolates than amongst susceptible isolates. Consequently, in Taiwan and also in other countries with TB endemicity, a short-course (5-day) regimen of a RFQ is still recommended for empirical therapy for CAP patients if the patient is at low risk for TB.
Collapse
Affiliation(s)
- Gwan-Han Shen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Santos LC. Review: The Molecular Basis of Resistance in <i>Mycobaterium tuberculosis</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojmm.2012.21004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
Verma JS, Nair D, Rawat D, Manzoor N. Assessment of trends of ofloxacin resistance in Mycobacterium tuberculosis. Indian J Med Microbiol 2011; 29:280-2. [PMID: 21860110 DOI: 10.4103/0255-0857.83913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Ofloxacin (OFX) is one of the potent fluoroquinolone (FQ) recommended to treat MDR-TB. Over a decade, the preexposure of this drug for the treatment of other bacterial infections has resulted in acquisition of FQ resistance among Mycobacterium tuberculosis strains. Considering this possibility, a study was undertaken in a tertiary care center in the capital city (India) to assess the drug resistance trends of OFX among susceptible and multidrug resistant (MDR) strains of M. tuberculosis. MATERIALS AND METHODS A total of 102 M. tuberculosis isolates (47 susceptible to first-line drugs and 55 MDR isolates) were screened for susceptibility testing of OFX with a critical concentration of 2 μg/ml by Lowenstein Jensen (LJ) proportion method. RESULTS The results showed 40 (85.1%) isolates among 47 susceptible isolates and 34 (61.8%) isolates among 55 MDR isolates, were found to be susceptible to OFX. Fisher's exact test showed significant P-value (0.0136) demonstrating 1.377 fold (95% confidence interval) increased risk to become resistant to OFX than susceptible isolates. These finding shows decreased OFX susceptibility is not only limited to MDR isolates but also increasingly seen in susceptible strains as a result of drug abuse. CONCLUSIONS Our finding were not alarming, but highlights the general risk of acquiring resistance to OFX, jeopardizing the potential for these drugs to be used as second-line anti-TB agents in the management of drug-resistant TB and creating incurable TB strains .
Collapse
Affiliation(s)
- J S Verma
- Department of Microbiology, VMMC and Safdarjung Hospital, New Delhi, India
| | | | | | | |
Collapse
|
62
|
Zhao LL, Xia Q, Lin N, Liu ZG, Zhao XQ, Wan KL. Multiplex allele-specific PCR combined with PCR-RFLP analysis for rapid detection of gyrA gene fluoroquinolone resistance mutations in Mycobacterium tuberculosis. J Microbiol Methods 2011; 88:175-8. [PMID: 22115861 DOI: 10.1016/j.mimet.2011.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/18/2022]
Abstract
A combined use of MAS-PCR (multiplex allele-specific PCR) and PCR-RFLP (PCR restriction fragment length polymorphism), was established to detect mutations in codons 90, 91 and 94 of the gyrA gene in Mycobacterium tuberculosis (M. tuberculosis). With conventional phenotypic drug susceptibility testing as a reference standard, the sensitivity, specificity and accuracy of the modified method for gyrA gene mutation detection were 70.8%, 100% and 84.8% respectively.
Collapse
Affiliation(s)
- Li-li Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
63
|
GenoType MTBDRsl for molecular detection of second-line-drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol 2011; 50:30-6. [PMID: 22075597 DOI: 10.1128/jcm.05274-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The purpose of this study was to evaluate the GenoType MTBDRsl assay (Hain Lifescience GmbH, Nehren, Germany) for its ability to detect resistance to fluoroquinolones (FLQ), injectable second-line antibiotics [kanamycin (KM) and capreomycin (CM)], and ethambutol (EMB) in Mycobacterium tuberculosis clinical strains and directly in clinical samples. A total of 34 clinical strains were characterized with the Bactec 460 TB system. Fifty-four clinical samples from 16 patients (5 were smear negative and 49 were smear positive) were also tested directly. The corresponding isolates of the clinical specimens were also analyzed with the Bactec 460TB. When there was a discrepancy between assays, pyrosequencing was performed. The overall rates of concordance of the MTBDRsl and the Bactec 460TB for the detection of FLQ, KM/CM, and EMB susceptibility in clinical strains were 72.4% (21/29), 88.8% (24/27), and 67.6% (23/34), whereas for clinical samples, rates were 86.5% (45/52), 92.3% (48/52), and 56% (28/50), respectively. In conclusion, the GenoType MTBDRsl assay may be a useful tool for making early decisions regarding KM/CM susceptibility and to a lesser extent regarding FLQ and EMB susceptibility. The test is able to detect mutations in both clinical strains and samples with a short turnaround time. However, for correct management of patients with extensively drug-resistant tuberculosis, results must be confirmed by a phenotypical method.
Collapse
|
64
|
Surcouf C, Heng S, Pierre-Audigier C, Cadet-Daniel V, Namouchi A, Murray A, Gicquel B, Guillard B. Molecular detection of fluoroquinolone-resistance in multi-drug resistant tuberculosis in Cambodia suggests low association with XDR phenotypes. BMC Infect Dis 2011; 11:255. [PMID: 21955640 PMCID: PMC3224243 DOI: 10.1186/1471-2334-11-255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background Drug susceptibility testing (DST) remains an important concern for implementing treatment of MDR tuberculosis patients. Implementation of molecular tests for drug resistance identification would facilitate DST particularly in developing countries where culturing is difficult to perform. We have characterized multidrug resistant strains in Cambodia using MDTDRsl tests, drug target sequencing and phenotypic tests. Methods A total of 65 non-MDR and 101 MDR TB isolates collected between May 2007 and June 2009 were tested for resistance to fluoroquinolones and aminoglycosides/cyclic peptides using the GenoType® MTBDRsl assay and gene sequencing. Rifampicin resistance (RMP-R) was tested using gene sequencing and genotyping was assessed by spoligotyping. Results A total of 95 of the 101 MDR strains were confirmed to be RMP-R by rpoB gene sequencing. Fourteen of the 101 MDR isolates (14%) carried a gyrA mutation associated with fluoroquinolone-resistance (FQ-R) (detected by the MTBDRsl assay and sequencing) compared with only 1 (1.5%) of the 65 non-MDR strains. Only 1 (1%) of the MDR isolates was found to be XDR TB. The MDR group contained a higher proportion of Beijing or Beijing like strains (58%) than the non MDR group (28%). This percentage is higher in MDR FQ-R strains (71%). Conclusions The new GenoType® MTBDRsl assay combined with molecular tests to detect RMP-R and isoniazid resistance (INH-R) represents a valuable tool for the detection of XDR TB. In Cambodia there is a low rate of XDR amongst MDR TB including MDR FQ-R TB. This suggests a low association between FQ-R and XDR TB. Strain spoligotyping confirms Beijing strains to be more prone to accumulate antibiotic resistance.
Collapse
Affiliation(s)
- Corinne Surcouf
- Mycobacteriology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
de Moura VCN, da Silva MG, Gomes KM, Coelho FS, Sampaio JLM, Mello FCDQ, Lourenço MCDS, Amorim EDLT, Duarte RS. Phenotypic and molecular characterization of quinolone resistance in Mycobacterium abscessus subsp. bolletii recovered from postsurgical infections. J Med Microbiol 2011; 61:115-125. [PMID: 21903825 DOI: 10.1099/jmm.0.034942-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several outbreaks of infections caused by rapidly growing mycobacteria (RGM) were reported in many Brazilian states (2032 notified cases) from 2004 to 2010. Most of the confirmed cases were mainly associated with Mycobacterium massiliense (recently renamed as Mycobacterium abscessus subsp. bolletii) BRA100 clone, recovered from patients who had undergone invasive procedures in which medical instruments had not been properly sterilized and/or disinfected. Since quinolones have been an option for the treatment of general RGM infections and have been suggested for therapeutic schemes for these outbreaks, we evaluated the in vitro activities of all generations of quinolones for clinical and reference RGM by broth microdilution, and analysed the peptide sequences of the quinolone resistance determining regions (QRDRs) of GyrA and GyrB after DNA sequencing followed by amino acid translation. Fifty-four isolates of M. abscessus subsp. bolletii, including clone BRA100, recovered in different states of Brazil, and 19 reference strains of RGM species were characterized. All 54 M. abscessus subsp. bolletii isolates were resistant to all generations of quinolones and showed the same amino acids in the QRDRs, including the Ala-83 in GyrA, and Arg-447 and Asp-464 in GyrB, described as being responsible for an intrinsic low level of resistance to quinolones in mycobacteria. However, other RGM species showed distinct susceptibilities to this class of antimicrobials and patterns of mutations contrary to what has been traditionally defined, suggesting that other mechanisms of resistance, different from gyrA or gyrB mutations, may also be involved in resistance to high levels of quinolones.
Collapse
Affiliation(s)
- Vinicius Calado Nogueira de Moura
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlei Gomes da Silva
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen Machado Gomes
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Rafael Silva Duarte
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
66
|
Current prospects for the fluoroquinolones as first-line tuberculosis therapy. Antimicrob Agents Chemother 2011; 55:5421-9. [PMID: 21876059 DOI: 10.1128/aac.00695-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While fluoroquinolones (FQs) have been successful in helping cure multidrug-resistant tuberculosis (MDR TB), studies in mice have suggested that if used as first-line agents they might reduce the duration of therapy required to cure drug-sensitive TB. The results of phase II trials with FQs as first-line agents have been mixed, but in at least three studies where moxifloxacin substituted for ethambutol, there was an increase in the early percentage of sputa that converted to negative for bacilli. Phase III trials are in progress to test the effectiveness of 4-month FQ-containing regimens, but there is concern that the widespread use of FQs for other infections could engender a high prevalence of FQ-resistant TB. However, several studies suggest that despite wide FQ use, the prevalence of FQ-resistant TB is low, and the majority of the resistance is low-level. The principal risk for resistance may be when FQs are used to treat nonspecific respiratory symptoms that are in fact TB, so curtailing this use of FQs could reduce the development of resistance and also the delays in TB diagnosis and treatment that have been documented when an FQ is given in this setting. While the future of FQs as first-line therapy will likely depend upon the results of the ongoing phase III trials, if they are to be effectively employed in high-TB-burden regions their use for community-acquired pneumonias should be restricted, the prevalence of FQ-resistant TB should be monitored, and the cost of the treatment should be comparable to that of current standard drug regimens.
Collapse
|
67
|
Lai CC, Tan CK, Huang YT, Liao CH, Hsueh PR. Fluoroquinolone-resistant tuberculosis at a medical centre in Taiwan, 2005-10. J Antimicrob Chemother 2011; 66:2437-8. [DOI: 10.1093/jac/dkr302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
68
|
LIU CUIHUA, YANG NAN, WANG QI, HU YONGLIANG, LI LING, ZHANG GUANGYU, ZHU BAOLI. Risk factors associated with fluoroquinolone-resistant tuberculosis in a Beijing tuberculosis referral hospital. Respirology 2011; 16:918-25. [DOI: 10.1111/j.1440-1843.2011.01990.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
DNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2011; 55:4524-9. [PMID: 21768507 DOI: 10.1128/aac.00707-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main mechanism of fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis is mutation in DNA gyrase (GyrA(2)GyrB(2)), especially in gyrA. However, the discovery of unknown mutations in gyrB whose implication in FQ resistance is unclear has become more frequent. We investigated the impact on FQ susceptibility of eight gyrB mutations in M. tuberculosis clinical strains, three of which were previously identified in an FQ-resistant strain. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineered gyrB alleles by mutagenesis were overexpressed in Escherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. We demonstrated that the eight substitutions in GyrB (D473N, P478A, R485H, S486F, A506G, A547V, G551R, and G559A), recently identified in FQ-resistant clinical strains or encountered in M. tuberculosis strains isolated in France, are not implicated in FQ resistance. These results underline that, as opposed to phenotypic FQ susceptibility testing, the DNA gyrase inhibition assay is the only way to prove the role of a DNA gyrase mutation in FQ resistance. Therefore, the use of FQ in the treatment of tuberculosis (TB) patients should not be ruled out only on the basis of the presence of mutations in gyrB.
Collapse
|
70
|
van den Boogaard J, Semvua HH, van Ingen J, Mwaigwisya S, van der Laan T, van Soolingen D, Kibiki GS, Boeree MJ, Aarnoutse RE. Low rate of fluoroquinolone resistance in Mycobacterium tuberculosis isolates from northern Tanzania. J Antimicrob Chemother 2011; 66:1810-4. [DOI: 10.1093/jac/dkr205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Al-Mutairi NM, Ahmad S, Mokaddas E. First report of molecular detection of fluoroquinolone resistance-associated gyrA mutations in multidrug-resistant clinical Mycobacterium tuberculosis isolates in Kuwait. BMC Res Notes 2011; 4:123. [PMID: 21492420 PMCID: PMC3095995 DOI: 10.1186/1756-0500-4-123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/14/2011] [Indexed: 11/14/2022] Open
Abstract
Background Nearly 5% of all Mycobacterium tuberculosis strains worldwide are resistant at least to rifampicin and isoniazid (multidrug-resistant tuberculosis, MDR-TB). Inclusion of a fluoroquinolone and an injectable agent (kanamycin, amikacin or capreomycin) in multidrug therapy is crucial for proper treatment of MDR-TB. The incidence of MDR-TB in Kuwait is ~1%. MDR-TB strains additionally resistant to fluoroquinolones and injectable agents are defined as extensively drug-resistant (XDR-TB) strains and have been detected in >55 countries. Infections with XDR-TB strains have very poor prognosis. This study detected the occurrence of gyrA mutations associated with fluoroquinolone resistance among MDR-TB strains in Kuwait. Findings Direct DNA sequencing of quinolone resistance-determining region of gyrA gene was performed to detect fluoroquinolone resistance-associated mutations in 85 MDR-TB strains isolated from 55 TB patients and 25 pansusceptible M. tuberculosis strains. For isolates exhibiting gyrA mutations, 3'-end of rrs (16S rRNA) was sequenced for the detection of XDR-TB. Fingerprinting of fluoroquinolone resistant MDR-TB strains was performed by detecting mutations in three (81 bp hot-spot, N-terminal and cluster II) regions of rpoB, katG codon 315 and inhA-regulatory region, polymorphisms at gyrA codon 95 and katG codon 463 by DNA sequencing and by double-repetitive-element PCR for determining strain relatedness. None of the pansusceptible but six of 85 MDR-TB strains contained gyrA mutations. Only gyrA codon 94 was mutated in all six (D94A in one and D94G in five) strains. Three of six mutant strains were recovered from the same patient while three other strains represented individual patient isolates. Fingerprinting studies identified all individual patient isolates as epidemiologically distinct strains. All six strains with a gyrA mutation contained wild-type rrs sequence. Conclusions Although fluoroquinolones are generally not used for chemotherapy of TB and drug susceptibility testing for second-line drugs is not carried out in Kuwait, four of 55 (7%) individual patient MDR-TB strains contained mutations in gyrA gene. The data advocate routine drug susceptibility testing for this important second-line drug for proper management of MDR-TB in Kuwait. Lack of mutations in 3'-end of rrs gene that confer resistance to injectable agents reduce the likelihood of occurrence of XDR-TB, at present, in Kuwait.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | |
Collapse
|
72
|
Hu Y, Mathema B, Wang W, Kreiswirth B, Jiang W, Xu B. Population-based investigation of fluoroquinolones resistant tuberculosis in rural eastern China. Tuberculosis (Edinb) 2011; 91:238-43. [PMID: 21450523 DOI: 10.1016/j.tube.2011.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/21/2011] [Accepted: 03/01/2011] [Indexed: 01/22/2023]
Abstract
Empirical use of fluoroquinolones (FQ) to treat a variety of bacterial infections may inadvertently select for FQ-resistant strains of Mycobacterium tuberculosis(MTB), especially in rural China where the use of FQ in treating infections has not been standardized. Here we determine the prevalence and describe the transmission of FQ-resistant MTB in two rural counties in eastern China through a combination of conventional epidemiology with IS6110-based restriction fragment length polymorphism(RFLP) analysis and DNA sequencing of drug-resistance determining regions. Phenotypic FQ resistance was detected in 31 of 351(8.8%) isolates. FQ resistance was equally distributed between patient-isolates deemed drug resistant and drug-susceptible, but mostly observed in those with treatment history of respiratory infection. Mutations in gyrA were found in 54.8% of FQ resistant isolates, and one isolate with a gyrB mutation. Despite predominating in entire bacilli population(69.2%), Beijing family strain had similar proportion of FQ resistance to the other(10.3% vs. 4.7%, p = 0.060). IS6110RFLP identified 2 clusters(4 isolates) among FQ resistant isolates and 3 clusters composed of both 4 FQ resistant isolates and 6 FQ susceptible isolates. Our results indicate that FQ-resistant MTB has emerged among the circulating bacillary population in rural eastern China. The relatively low level of clustering among FQ-resistant strains suggests most are acquired de novo, likely due to widespread FQ use.
Collapse
Affiliation(s)
- Yi Hu
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Rd., Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
73
|
Cui Z, Wang J, Lu J, Huang X, Hu Z. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009. BMC Infect Dis 2011; 11:78. [PMID: 21443804 PMCID: PMC3073916 DOI: 10.1186/1471-2334-11-78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to analyze the association of mutation patterns in gyrA and gyrB genes and the ofloxacin resistance levels in clinical Mycobacterium tuberculosis isolates sampled in 2009 from East China. METHODS The quinolone resistance-determining region of gyrA/B were sequenced in 192 M. tuberculosis clinical isolates and the minimal inhibitory concentrations (MICs) of 95 ofloxacin-resistant M. tuberculosis isolates were determined by using microplate nitrate reductase assays. RESULTS Mutations in gyrA (codons 90, 91 and 94) and in gyrB (G551R, D500N, T539N, R485C/L) were observed in 89.5% (85/95) and 11.6% (11/95) of ofloxacin-resistant strains, respectively. The gyrB mutations G551R and G549D were observed in 4.1% (4/97) of ofloxacin-susceptible strains and no mutation was found in gyrA in ofloxacin-susceptible strains. The MICs of all ofloxacin-resistant strains showed no significant difference among strains with mutations at codons 90, 91 or 94 in gyrA (F = 1.268, p = 0.287). No differences were detected among strains with different amino acid mutations in the quinolone resistance-determining region of gyrA (F = 1.877, p = 0.123). The difference in MICs between ofloxacin-resistant strains with mutations in gyrA only and ofloxacin-resistant strains with mutations in both gyrA and gyrB genes was not statistically significant (F = 0.549, p = 0.461). CONCLUSIONS Although gyrA/B mutations can lead to ofloxacin resistance in M. tuberculosis, there were no associations of different mutation patterns in gyrA/B and the level of ofloxacin resistance in M. tuberculosis isolates from East China in 2009.
Collapse
Affiliation(s)
- Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Medical School, Tongji University, Shanghai, China.
| | | | | | | | | |
Collapse
|
74
|
Govendir M, Hansen T, Kimble B, Norris J, Baral R, Wigney D, Gottlieb S, Malik R. Susceptibility of rapidly growing mycobacteria isolated from cats and dogs, to ciprofloxacin, enrofloxacin and moxifloxacin. Vet Microbiol 2011; 147:113-8. [DOI: 10.1016/j.vetmic.2010.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/01/2022]
|
75
|
Antimicrobial Drug Resistance in Taiwan. J Formos Med Assoc 2011; 110:4-13. [DOI: 10.1016/s0929-6646(11)60002-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/19/2010] [Accepted: 08/03/2010] [Indexed: 01/08/2023] Open
|
76
|
Chen TC, Lu PL, Lin CY, Lin WR, Chen YH. Fluoroquinolones are associated with delayed treatment and resistance in tuberculosis: a systematic review and meta-analysis. Int J Infect Dis 2010; 15:e211-6. [PMID: 21195001 DOI: 10.1016/j.ijid.2010.11.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/14/2010] [Accepted: 11/20/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Current guidelines for treating community-acquired pneumonia recommend the use of fluoroquinolones for high-risk patients. Previous studies have reported controversial results as to whether fluoroquinolones are associated with delayed diagnosis and treatment of pulmonary tuberculosis (TB) and the development of fluoroquinolone-resistant Mycobacterium tuberculosis. We performed a systematic review and meta-analysis to clarify these issues. METHODS The following databases were searched through September 30, 2010: PubMed, EMBASE, CINAHL, Cochrane Library, Web of Science, BIOSIS Previews, and the ACP Journal Club. We considered studies that addressed the issues of delay in diagnosis and treatment of TB and the development of resistance. RESULTS Nine eligible studies (four for delays and five for resistance issues) were included in the meta-analysis from the 770 articles originally identified in the database search. The mean duration of delayed diagnosis and treatment of pulmonary TB in the fluoroquinolone prescription group was 19.03 days, significantly longer than that in the non-fluoroquinolone group (95% confidence interval (CI) 10.87 to 27.18, p<0.001). The pooled odds ratio of developing a fluoroquinolone-resistant M. tuberculosis strain was 2.70 (95% CI 1.30 to 5.60, p=0.008). No significant heterogeneity was found among studies in the meta-analysis. CONCLUSIONS Empirical fluoroquinolone prescriptions for pneumonia are associated with longer delays in diagnosis and treatment of pulmonary TB and a higher risk of developing fluoroquinolone-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Tun-Chieh Chen
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | | | | | | | |
Collapse
|
77
|
Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: functional analysis of gyrA mutation at position 74. Antimicrob Agents Chemother 2010; 55:608-14. [PMID: 20956608 DOI: 10.1128/aac.00920-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PCR-sequencing assay was evaluated for direct detection of mutations in the quinolone resistance-determining region (QRDR) of gyrase A (gyrA) gene in fluoroquinolone-resistant Mycobacterium tuberculosis in respiratory specimens. As determined by gyrA QRDR analysis, complete concordance of genotypic and phenotypic fluoroquinolone resistance was demonstrated. Our results indicate that the assay is a rapid and reliable method for the diagnosis of fluoroquinolone-resistant tuberculosis, facilitating timely clinical management and public health control. Using the assay, we detected a novel gyrA Ala74Ser mutation in M. tuberculosis directly from sputum specimens. The functional effect of the Ala74Ser mutant was verified through the study of the DNA supercoiling inhibitory activity of fluoroquinolones against the recombinant gyrase. The drug-mediated gyrase-DNA cleavage complex model suggests perturbation of the gyrA-gyrA dimer interface caused by the Ala74Ser mutation probably disturbs the putative quinolone binding pocket and leads to the reduction of the drug binding affinity. A number of gyrA mutations (Glu21Gln, Ser95Thr, and Gly668Asp) were also characterized to be natural polymorphisms not associated with fluoroquinolone resistance.
Collapse
|
78
|
Should moxifloxacin be used for the treatment of extensively drug-resistant tuberculosis? An answer from a murine model. Antimicrob Agents Chemother 2010; 54:4765-71. [PMID: 20805388 DOI: 10.1128/aac.00968-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence of extensively drug-resistant tuberculosis (XDR-TB), defined as TB that is resistant to isoniazid, rifampin, fluoroquinolones, and aminoglycosides, is rising worldwide. The extent of Mycobacterium tuberculosis resistance to fluoroquinolones depends on the mutation in the DNA gyrase, the only target of fluoroquinolones. The MIC of moxifloxacin, the most active fluoroquinolone against M. tuberculosis, may be lower than its peak serum level for some ofloxacin-resistant strains of Mycobacterium tuberculosis. Therefore, if the MIC of moxifloxacin is lower than its peak serum level, it may be effective against XDR-TB. Our objective was to determine the efficacy of moxifloxacin in treating ofloxacin-resistant TB. We selected isogenic fluoroquinolone-resistant mutants of M. tuberculosis H37Rv in vivo. We infected Swiss mice with either wild-type H37Rv or one of three mutant strains with different MICs that are commonly seen in clinical practice. The MICs of the mutant strains ranged from below to above the peak moxifloxacin level seen in humans (3 μg/ml). Each mouse was treated with one of four moxifloxacin doses for 1 month. Moxifloxacin was effective against mutant strain GyrB D500N, with the lowest MIC (0.5 μg/ml), when the standard dose was doubled. Moxifloxacin reduced mortality in mice infected with mutant strain GyrA A90V with an intermediate MIC (2 μg/ml). However, it had no impact on the mutant strain GyrA D94G with the highest MIC (4 μg/ml). Our study underscores current WHO recommendations to use moxifloxacin when there is resistance to early-generation fluoroquinolones such as ofloxacin, restricting this recommendation to strains with moxifloxacin MICs of less than or equal to 2 μg/ml.
Collapse
|
79
|
Srivastav NC, Rai D, Tse C, Agrawal B, Kunimoto DY, Kumar R. Inhibition of Mycobacterial Replication by Pyrimidines Possessing Various C-5 Functionalities and Related 2′-Deoxynucleoside Analogues Using in Vitro and in Vivo Models. J Med Chem 2010; 53:6180-7. [DOI: 10.1021/jm100568q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naveen C. Srivastav
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| | - Dinesh Rai
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| | - Christopher Tse
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| | | | | | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, 1-71 Medical Sciences Building
| |
Collapse
|
80
|
Chang KC, Yew WW, Chan RCY. Rapid assays for fluoroquinolone resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 2010; 65:1551-61. [PMID: 20542907 DOI: 10.1093/jac/dkq202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Multidrug-resistant tuberculosis has emerged as a global health threat. Given poor treatment outcomes of fluoroquinolone-resistant multidrug-resistant tuberculosis, there is a pressing need for rapid drug susceptibility testing of multidrug-resistant Mycobacterium tuberculosis against fluoroquinolones. This review aims at evaluating these rapid assays. METHODS PubMed and OvidSP were used to search MEDLINE and EMBASE for publications in English regarding rapid assays that tested ofloxacin, levofloxacin or moxifloxacin. Studies were included only in the concurrent presence of sensitivity and specificity data. Summary estimates of sensitivity and specificity were generated by the bivariate random effects model when there were at least three sets of data under the same assay category that tested the same fluoroquinolone with reference to a standard test. RESULTS Of 108 articles identified, 24 articles were included in a meta-analysis of rapid assays that tested ofloxacin in culture isolates. Overall, rapid genotypic assays targeting gyrA only are significantly less specific (96% versus 99%) and non-significantly less sensitive (88% versus 94%) than rapid phenotypic assays. To test for the presence or absence of ofloxacin resistance to a certainty threshold of 90%, the required pre-test prevalence ranges of ofloxacin resistance for genotypic assays targeting gyrA only are 29%-47% overall, 36%-55% for PCR-DNA sequencing and 23%-44% for others. Corresponding ranges are 7%-65% for phenotypic assays overall and 3%-75% for Mycobacteria Growth Indicator Tube (MGIT). CONCLUSIONS Assuming that the mean pre-test prevalence of fluoroquinolone resistance in culture isolates of multidrug-resistant M. tuberculosis is approximately 20%, rapid genotypic assays other than PCR-DNA sequencing, targeting gyrA only, can reliably screen for ofloxacin resistance.
Collapse
Affiliation(s)
- Kwok Chiu Chang
- Tuberculosis and Chest Service, Department of Health, Hong Kong, China.
| | | | | |
Collapse
|
81
|
Yin X, Yu Z. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China. J Infect 2010; 61:150-4. [PMID: 20452372 DOI: 10.1016/j.jinf.2010.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/08/2010] [Accepted: 05/02/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Fluoroquinolone (FQ)-resistant Mycobacterium tuberculosis (MTB) clinical isolates have emerged in many areas of the world. The aim of this study was to observe the molecular characterization of gyrA and gyrB genes in FQ-resistant MTB clinical isolates from Guangdong Province in China. MATERIALS AND METHODS A total of 62 MTB clinical strains were originally isolated from patients with pulmonary tuberculosis. The phenotype of susceptibility of each strain was determined by the absolute concentration method and the sequences of the QRDR in gyrA and gyrB genes were detected with DNA direct sequencing technique. RESULTS 44 of 60 (73.3%) levofloxacin-resistant MTB clinical isolates, including 17 of 18 (94.4%) high-level resistant strains and 27 of 42 (64.3%) low-level resistant strains, had mutation in QRDR of gyrA gene. The mutation patterns involved six patterns of single codon mutation (H70R, A90V, S91A, D94G, D94A or D94N) and one pattern of double codons mutation (A90V with D94A). Of 60 levofloxacin-resistant MTB clinical isolates, only one (1.6%) mutated in gyrB gene (T511N). CONCLUSIONS These findings confirm that mutations of gyrA codons 90, 91 and 94 constitute the primary mechanism of FQ resistance in MTB. Furthermore, our findings indicate that the regional investigations are necessary for the comprehensive understanding of FQ resistance of MTB.
Collapse
Affiliation(s)
- Xiaomao Yin
- Institute for Pulmonary Disease, Guangzhou Chest Hospital, Yuexiu District, Guangzhou City, Guangdong Province, China.
| | | |
Collapse
|
82
|
Abstract
Community-acquired pneumonia (CAP) is a common and potentially serious illness with significant human and economic costs to society. The recent collaborative statement from the Infectious Diseases Society of America (IDSA) and the American Thoracic Society (ATS) represents the most up-to-date evidence-based guidelines from North America, incorporating important advances in the management of patients with CAP. The cases presented in this review highlight many of the recent recommendations from the IDSA/ATS guidelines.
Collapse
Affiliation(s)
- Thomas M File
- Department of Internal Medicine and Infectious Disease Section, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio, USA.
| |
Collapse
|
83
|
Pyrosequencing for rapid detection of Mycobacterium tuberculosis resistance to rifampin, isoniazid, and fluoroquinolones. J Clin Microbiol 2009; 47:3985-90. [PMID: 19846642 DOI: 10.1128/jcm.01229-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs.
Collapse
|
84
|
Coll P. Fármacos con actividad frente a Mycobacterium tuberculosis. Enferm Infecc Microbiol Clin 2009; 27:474-80. [DOI: 10.1016/j.eimc.2009.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
85
|
Devasia RA, Blackman A, Gebretsadik T, Griffin M, Shintani A, May C, Smith T, Hooper N, Maruri F, Warkentin J, Mitchel E, Sterling TR. Fluoroquinolone resistance in Mycobacterium tuberculosis: the effect of duration and timing of fluoroquinolone exposure. Am J Respir Crit Care Med 2009; 180:365-70. [PMID: 19483111 PMCID: PMC2731810 DOI: 10.1164/rccm.200901-0146oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 05/27/2009] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Fluoroquinolones are the most commonly prescribed antibiotic class in the United States. They have the potential to become first-line antituberculosis therapy, but the effect of fluoroquinolone use on fluoroquinolone resistance in Mycobacterium tuberculosis is not well characterized. OBJECTIVES To determine the prevalence of and risk factors for fluoroquinolone-resistant tuberculosis in a large United States population. METHODS We identified all people with culture-confirmed tuberculosis enrolled in TennCare (Medicaid) and reported to the Tennessee Department of Health from January 2002 to December 2006. People with fluoroquinolone-resistant M. tuberculosis isolates (cases) were compared with those with susceptible isolates (control subjects). Fluoroquinolone resistance was determined by agar proportion using ofloxacin 2 microg/ml. Outpatient fluoroquinolone exposure in the 12 months before tuberculosis diagnosis was ascertained from TennCare pharmacy data. MEASUREMENTS AND MAIN RESULTS Of 640 study patients, 116 (18%) had fluoroquinolone exposure in the 12 months before diagnosis, and 16 (2.5%; 95% confidence interval [CI], 1.4-4.0%) M. tuberculosis isolates were fluoroquinolone resistant. Among the 54 patients with more than 10 days of fluoroquinolone exposure, 7 (13%) had fluoroquinolone resistance. In multivariable logistic regression analyses using propensity score to control for age, sex, race, HIV serostatus, and site of disease, more than 10 days of fluoroquinolone exposure before tuberculosis diagnosis was associated with fluoroquinolone resistance (odds ratio 7.0; 95% CI, 2.3-20.6; P = 0.001). Fluoroquinolone exposure for more than 10 days that occurred more than 60 days before tuberculosis diagnosis was associated with the highest risk of resistance (20.8%; odds ratio 17.0; 95% CI, 5.1-56.8; P < 0.001 compared with no exposure). CONCLUSIONS Overall, fluoroquinolone resistance was relatively low. However, receipt of fluoroquinolones for more than 10 days, particularly more than 60 days before tuberculosis diagnosis, was associated with a high risk of fluoroquinolone-resistant tuberculosis.
Collapse
Affiliation(s)
- Rose A Devasia
- Division of Infectious Diseases, Center for Education and Research on Therapeutics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2582, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ahmad S, Mokaddas E. Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respir Med 2009; 103:1777-90. [PMID: 19660927 DOI: 10.1016/j.rmed.2009.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/18/2009] [Accepted: 07/19/2009] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a major infectious disease killing nearly two million people, mostly in developing countries, every year. The increasing incidence of resistance of Mycobacterium tuberculosis strains to the most-effective (first-line) anti-TB drugs is a major factor contributing to the current TB epidemic. Drug-resistant strains have evolved mainly due to incomplete or improper treatment of TB patients. Resistance of M. tuberculosis to anti-TB drugs is caused by chromosomal mutations in genes encoding drug targets. Multidrug-resistant (resistant at least to rifampin and isoniazid) strains of M. tuberculosis (MDR-TB) evolve due to sequential accumulation of mutations in target genes. Emergence and spreading of MDR-TB strains is hampering efforts for the control and management of TB. The MDR-TB is also threatening World Health Organization's target of tuberculosis elimination by 2050. Proper management of MDR-TB relies on early recognition of such patients. Several diagnostic methods, both phenotypic and molecular, have been developed recently for rapid identification of MDR-TB strains from suspected patients and some are also suitable for resource-poor countries. Once identified, successful treatment of MDR-TB requires therapy with several effective drugs some of which are highly toxic, less efficacious and expensive. Minimum treatment duration of 18-24 months is also long, making it difficult for health care providers to ensure adherence to treatment. Successful treatment has been achieved by supervised therapy with appropriate drugs at institutions equipped with facilities for culture, drug susceptibility testing of MDR-TB strains to second-line drugs and regular monitoring of patients for adverse drug reactions and bacteriological and clinical improvement.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait.
| | | |
Collapse
|
87
|
Riccardi G, Pasca MR, Buroni S. Mycobacterium tuberculosis: drug resistance and future perspectives. Future Microbiol 2009; 4:597-614. [PMID: 19492969 DOI: 10.2217/fmb.09.20] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
TB is still a global health problem. The selection and spread of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains represents a threat for global TB control. The reappearance of TB has driven an increased interest in understanding the mechanisms of drug action and drug resistance, which could provide a significant contribution in the development of new antimicrobials. In this article, the authors describe the mode of action and the resistance mechanisms of the principal first- and second-line antitubercular agents, namely isoniazid, ethionamide, ethambutol, D-cycloserine, rifamycins, fluoroquinolones, streptomycin, linezolid and pyrazinamide. A brief outline of the seven drugs in clinical development is reported, showing how the development of new TB drugs is still required.
Collapse
Affiliation(s)
- Giovanna Riccardi
- Department of Genetics & Microbiology, University of Pavia, Via Ferrata, 1 27100 Pavia, Italy.
| | | | | |
Collapse
|
88
|
Xu P, Li X, Zhao M, Gui X, DeRiemer K, Gagneux S, Mei J, Gao Q. Prevalence of fluoroquinolone resistance among tuberculosis patients in Shanghai, China. Antimicrob Agents Chemother 2009; 53:3170-2. [PMID: 19364851 PMCID: PMC2704692 DOI: 10.1128/aac.00177-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/09/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022] Open
Abstract
We determined the prevalence of fluoroquinolone resistance among the isolates of Mycobacterium tuberculosis from 605 pulmonary tuberculosis patients in Shanghai, China. Mutations in gyrA were found in 81.5% of phenotypically fluoroquinolone-resistant isolates and were used as a molecular marker of fluoroquinolone resistance. gyrA mutations were detected in 1.9% of strains pan-susceptible to first-line drugs and 25.1% of multidrug-resistant strains. Fluoroquinolone resistance was independently associated with resistance to at least one first-line drug and prior tuberculosis treatment.
Collapse
Affiliation(s)
- Peng Xu
- Department of TB Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Sequence analyses of just four genes to detect extensively drug-resistant Mycobacterium tuberculosis strains in multidrug-resistant tuberculosis patients undergoing treatment. Antimicrob Agents Chemother 2009; 53:3353-6. [PMID: 19470506 DOI: 10.1128/aac.00050-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid detection of Mycobacterium tuberculosis isolates resistant to second-line drugs is crucial for the institution of appropriate treatment regimens as early as possible. Although molecular methods have successfully been used for the rapid detection of resistance to first-line drugs, there are limited data on mutations that confer resistance to second-line drugs. To address this question, we analyzed Mycobacterium tuberculosis strains resistant to ofloxacin (n = 26) and to capreomycin and/or amikacin (n = 48) from Uzbekistan for variations in target genes (gyrA, gyrB, rrs, and tlyA). Strains susceptible to ofloxacin (n = 49) and capreomycin and/or amikacin (n = 39) were included as controls. Mutations in gyrA or gyrB were found in 96% (25/26 strains) of the ofloxacin-resistant strains, while none of the susceptible strains displayed mutations in those two genes. The most common mutation occurred in gyrA at codon 94 (17/26 strains [65.4%]), followed by mutations at codons 90 and 91. Two strains showed a mutation in gyrB, at codons 485 and 543, respectively; both mutations have not been reported previously. The most frequent mutation in strains resistant to both amikacin and capreomycin was A1401G in rrs (34/40 strains [85.0%]). Three strains had mutations in tlyA, of which two (at codons 18 and 118) were associated with resistance to capreomycin alone. Overall, none of the 10 resistant strains (5 amikacin-resistant and capreomycin-susceptible strains) and none of the 39 susceptible control strains had mutations in the genes investigated. Our results clearly demonstrate the potential of sequence analyses of short regions of relatively few target genes for the rapid detection of resistance to second-line drugs among strains isolated from patients undergoing treatment for multidrug-resistant tuberculosis. The mechanisms that confer amikacin resistance in this setting remain unclear.
Collapse
|
90
|
Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Structure−Activity Relationships for a Series of Quinoline-Based Compounds Active against Replicating and Nonreplicating Mycobacterium tuberculosis. J Med Chem 2009; 52:2109-18. [DOI: 10.1021/jm900003c] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annamaria Lilienkampf
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Jialin Mao
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Baojie Wan
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yuehong Wang
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Scott G. Franzblau
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| |
Collapse
|
91
|
New anti-tuberculosis drugs in clinical trials with novel mechanisms of action. Drug Discov Today 2008; 13:1090-8. [DOI: 10.1016/j.drudis.2008.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 12/20/2022]
|
92
|
Comparative study for determination of Mycobacterium tuberculosis susceptibility to first- and second-line antituberculosis drugs by the Etest using 7H11, blood, and chocolate agar. J Clin Microbiol 2008; 46:4095-8. [PMID: 18945843 DOI: 10.1128/jcm.01104-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the performance of blood and chocolate agar as alternatives to Middlebrook 7H11 agar for testing the susceptibility of Mycobacterium tuberculosis to first-and second-line drugs by the Etest method. A total of 39 strains of M. tuberculosis including 22 multidrug-resistant M. tuberculosis strains and 17 susceptible strains were tested. In conclusion, our results showed that chocolate agar gave insufficient growth, needing up to 21 days of incubation, while results on blood agar were comparable to those on Middlebrook 7H11 agar and can be further explored as an alternative for Etest-based susceptibility testing of M. tuberculosis.
Collapse
|
93
|
Mitnick CD, Shin SS, Seung KJ, Rich ML, Atwood SS, Furin JJ, Fitzmaurice GM, Alcantara Viru FA, Appleton SC, Bayona JN, Bonilla CA, Chalco K, Choi S, Franke MF, Fraser HSF, Guerra D, Hurtado RM, Jazayeri D, Joseph K, Llaro K, Mestanza L, Mukherjee JS, Muñoz M, Palacios E, Sanchez E, Sloutsky A, Becerra MC. Comprehensive treatment of extensively drug-resistant tuberculosis. N Engl J Med 2008; 359:563-74. [PMID: 18687637 PMCID: PMC2673722 DOI: 10.1056/nejmoa0800106] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Extensively drug-resistant tuberculosis has been reported in 45 countries, including countries with limited resources and a high burden of tuberculosis. We describe the management of extensively drug-resistant tuberculosis and treatment outcomes among patients who were referred for individualized outpatient therapy in Peru. METHODS A total of 810 patients were referred for free individualized therapy, including drug treatment, resective surgery, adverse-event management, and nutritional and psychosocial support. We tested isolates from 651 patients for extensively drug-resistant tuberculosis and developed regimens that included five or more drugs to which the infecting isolate was not resistant. RESULTS Of the 651 patients tested, 48 (7.4%) had extensively drug-resistant tuberculosis; the remaining 603 patients had multidrug-resistant tuberculosis. The patients with extensively drug-resistant tuberculosis had undergone more treatment than the other patients (mean [+/-SD] number of regimens, 4.2+/-1.9 vs. 3.2+/-1.6; P<0.001) and had isolates that were resistant to more drugs (number of drugs, 8.4+/-1.1 vs. 5.3+/-1.5; P<0.001). None of the patients with extensively drug-resistant tuberculosis were coinfected with the human immunodeficiency virus (HIV). Patients with extensively drug-resistant tuberculosis received daily, supervised therapy with an average of 5.3+/-1.3 drugs, including cycloserine, an injectable drug, and a fluoroquinolone. Twenty-nine of these patients (60.4%) completed treatment or were cured, as compared with 400 patients (66.3%) with multidrug-resistant tuberculosis (P=0.36). CONCLUSIONS Extensively drug-resistant tuberculosis can be cured in HIV-negative patients through outpatient treatment, even in those who have received multiple prior courses of therapy for tuberculosis.
Collapse
|
94
|
Showalter HH, Denny WA. A roadmap for drug discovery and its translation to small molecule agents in clinical development for tuberculosis treatment. Tuberculosis (Edinb) 2008; 88 Suppl 1:S3-17. [DOI: 10.1016/s1472-9792(08)70032-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother 2008; 52:2937-9. [PMID: 18559646 DOI: 10.1128/aac.00036-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we studied the variation in the gyrA and gyrB genes in ofloxacin- and multidrug-resistant Mycobacterium tuberculosis strains circulating in northwest Russia. Comparison with spoligotyping data suggested that similar to the spread of multidrug-resistant tuberculosis, the spread of fluoroquinolone-resistant tuberculosis in Russia may be due, at least partly, to the prevalence of the Beijing genotype in a local population of M. tuberculosis.
Collapse
|
96
|
Affiliation(s)
- Wing Wai Yew
- Tuberculosis and Chest Unit, Grantham Hospital, Hong Kong, China.
| | | |
Collapse
|