52
|
Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D. Reductive genome evolution from the mother of Rickettsia. PLoS Genet 2007; 3:e14. [PMID: 17238289 PMCID: PMC1779305 DOI: 10.1371/journal.pgen.0030014] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria. Genome downsizing and fast sequence divergence are frequently observed in bacteria living exclusively within the cells of higher eukaryotes. However, the driving forces and contributions of these processes to the genome diversity of the microorganisms remain poorly understood. The genus Rickettsia, a group of small obligate intracellular pathogens of humans, provides a fascinating model to study the genome downsizing process. In this article, we used seven Rickettsia genomes to reconstruct the genome of their ancestor and inferred the origin and fate of the genes found in today's species. We identify the process of gene loss as the main cause of genome diversification within the genus and show that the rate of gene loss, sequence divergence, and genome rearrangements are highly variable across the various Rickettsia lineages. This heterogeneity likely reflects the intricate effects of specialization to distinct arthropod hosts and critical alterations of the gene repertoire, such as the losses of DNA repair genes and the amplification of mobile genes. In contrast, we did not find evidence for the role of reduced population sizes on the long-term acceleration of sequence evolution. Overall, the data presented in this article shed new light on the fundamental evolutionary processes that drive the evolution of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | | | - Stéphane Audic
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Karsten Suhre
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Guy Vestris
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| |
Collapse
|
53
|
Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, Radey M, Guina T, Svensson K, Hayden HS, Jacobs M, Gallagher LA, Manoil C, Ernst RK, Drees B, Buckley D, Haugen E, Bovee D, Zhou Y, Chang J, Levy R, Lim R, Gillett W, Guenthener D, Kang A, Shaffer SA, Taylor G, Chen J, Gallis B, D'Argenio DA, Forsman M, Olson MV, Goodlett DR, Kaul R, Miller SI, Brittnacher MJ. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 2007; 8:R102. [PMID: 17550600 PMCID: PMC2394750 DOI: 10.1186/gb-2007-8-6-r102] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/02/2007] [Accepted: 06/05/2007] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans. RESULTS Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation. CONCLUSION The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.
Collapse
Affiliation(s)
- Laurence Rohmer
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Christine Fong
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Simone Abmayr
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Michael Wasnick
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Theodore J Larson Freeman
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Matthew Radey
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Tina Guina
- Department of Pediatrics, Division of Infectious Diseases, University of Washington, Campus Box 357710, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Kerstin Svensson
- NBC Analysis, Division of NBC Defence, Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, SE-901 85 Umeå, Sweden
| | - Hillary S Hayden
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Michael Jacobs
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Larry A Gallagher
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Robert K Ernst
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Becky Drees
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Danielle Buckley
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Eric Haugen
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Donald Bovee
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Yang Zhou
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Jean Chang
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Ruth Levy
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Regina Lim
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Will Gillett
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Don Guenthener
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Allison Kang
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Scott A Shaffer
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Greg Taylor
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Jinzhi Chen
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Byron Gallis
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - David A D'Argenio
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Mats Forsman
- NBC Analysis, Division of NBC Defence, Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
| | - Maynard V Olson
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - David R Goodlett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Rajinder Kaul
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Samuel I Miller
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Mitchell J Brittnacher
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| |
Collapse
|
56
|
Delmotte F, Rispe C, Schaber J, Silva FJ, Moya A. Tempo and mode of early gene loss in endosymbiotic bacteria from insects. BMC Evol Biol 2006; 6:56. [PMID: 16848891 PMCID: PMC1544356 DOI: 10.1186/1471-2148-6-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/18/2006] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts. RESULTS Our results demonstrate that genes lost in the early stages of symbiosis were on average less selectively constrained than genes conserved in any of the extant symbiotic strains studied. These results also extend to more recent events of gene losses (i.e. among Buchnera strains) that still tend to concentrate on genes with low adaptive bias in E. coli and high evolutionary rates both in free-living and in symbiotic lineages. In addition, we analyzed the physical organization of gene losses for early steps of symbiosis acquisition under the hypothesis of a common origin of different symbioses. In contrast with previous findings we show that gene losses mostly occurred through loss of rather small blocks and mostly in syntenic regions between at least one of the symbionts and present-day E. coli. CONCLUSION At both ancient and recent stages of symbiosis evolution, gene loss was at least partially influenced by selection, highly conserved genes being retained more readily than lowly conserved genes: although losses might result from drift due to the bottlenecking of endosymbiontic populations, we demonstrated that purifying selection also acted by retaining genes of greater selective importance.
Collapse
Affiliation(s)
- F Delmotte
- UMR Santé Végétale (INRA-ENITAB), INRA BP81, 33883 Villenave d'Ornon Cedex, France
| | - C Rispe
- UMR Biologie des Organismes et des Populations appliquée à la Protection des Plantes [BIO3P], INRA BP 35327, 35653 Le Rheu Cedex, France
| | - J Schaber
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73, 14196 Berlin, Germany
| | - FJ Silva
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, A.C. 22085, 46071 Valencia, Spain
| | - A Moya
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, A.C. 22085, 46071 Valencia, Spain
| |
Collapse
|