51
|
Rodríguez de la Vega RC, Giraud T. Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals. Integr Comp Biol 2016; 56:938-949. [PMID: 27543626 DOI: 10.1093/icb/icw097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of venoms is the story of how toxins arise and of the processes that generate and maintain their diversity. For animal venoms these processes include recruitment for expression in the venom gland, neofunctionalization, paralogous expansions, and functional divergence. The systematic study of these processes requires the reliable identification of the venom components involved in antagonistic interactions. High-throughput sequencing has the potential of uncovering the entire set of toxins in a given organism, yet the existence of non-venom toxin paralogs and the misleading effects of partial census of the molecular diversity of toxins make necessary to collect complementary evidence to distinguish true toxins from their non-venom paralogs. Here, we analyzed the whole genomes of two scorpions, one spider and one snake, aiming at the identification of the full repertoires of genes encoding toxin-like proteins. We classified the entire set of protein-coding genes into paralogous groups and monotypic genes, identified genes encoding toxin-like proteins based on known toxin families, and quantified their expression in both venom-glands and pooled tissues. Our results confirm that genes encoding toxin-like proteins are part of multigene families, and that these families arise by recruitment events from non-toxin genes followed by limited expansions of the toxin-like protein coding genes. We also show that failing to account for sequence similarity with non-toxin proteins has a considerable misleading effect that can be greatly reduced by comparative transcriptomics. Our study overall contributes to the understanding of the evolutionary dynamics of proteins involved in antagonistic interactions.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
52
|
Haney RA, Clarke TH, Gadgil R, Fitzpatrick R, Hayashi CY, Ayoub NA, Garb JE. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders. Genome Biol Evol 2016; 8:228-42. [PMID: 26733576 PMCID: PMC4758249 DOI: 10.1093/gbe/evv253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland–specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species.
Collapse
Affiliation(s)
- Robert A Haney
- Department of Biological Sciences, University of Massachusetts, Lowell
| | - Thomas H Clarke
- Department of Biology, Washington and Lee University Department of Biology, University of California, Riverside
| | - Rujuta Gadgil
- Department of Biological Sciences, University of Massachusetts, Lowell
| | - Ryan Fitzpatrick
- Department of Biological Sciences, University of Massachusetts, Lowell
| | | | - Nadia A Ayoub
- Department of Biology, Washington and Lee University
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts, Lowell
| |
Collapse
|
53
|
Yan S, Wang X. Recent Advances in Research on Widow Spider Venoms and Toxins. Toxins (Basel) 2015; 7:5055-67. [PMID: 26633495 PMCID: PMC4690112 DOI: 10.3390/toxins7124862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 01/29/2023] Open
Abstract
Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.
Collapse
Affiliation(s)
- Shuai Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
54
|
Sunagar K, Moran Y. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals. PLoS Genet 2015; 11:e1005596. [PMID: 26492532 PMCID: PMC4619613 DOI: 10.1371/journal.pgen.1005596] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms. While the influence of positive selection in diversifying animal venoms is widely recognized, the role of purifying selection that conserves the amino acid sequence of venom components such as peptide toxins has never been considered. In addition to unraveling the unique strategies of evolution of toxin gene families in centipedes and spiders, which are amongst the first terrestrial venomous lineages, we highlight the significant role of purifying selection in shaping the composition of animal venoms. Analysis of numerous toxin families, spanning the breadth of the animal kingdom, has revealed a striking contrast between the evolution of venom in ancient and evolutionarily young animal groups. Our findings enable the postulation of a new theory of venom evolution. The proposed ‘two-speed’ mode of evolution of venom captures the fascinating evolutionary history and the dynamics of this complex biochemical cocktail.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (KS); (YM)
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (KS); (YM)
| |
Collapse
|
55
|
New JJ, German TC. Spiders at the cocktail party: an ancestral threat that surmounts inattentional blindness. EVOL HUM BEHAV 2015. [DOI: 10.1016/j.evolhumbehav.2014.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
56
|
Garb JE. Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J Vis Exp 2014:e51618. [PMID: 25407635 PMCID: PMC4353418 DOI: 10.3791/51618] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom from small animals. This paper presents a protocol for the collection of venom from spiders using electrical stimulation, demonstrating the procedure on the Western black widow (Latrodectus hesperus). The collected venom is useful for varied downstream analyses including direct protein identification via mass spectrometry, functional assays, and stimulation of venom gene expression for transcriptomic studies. This technique has the advantage over protocols that isolate venom from whole gland homogenates, which do not separate genuine venom components from cellular proteins that are not secreted as part of the venom. Representative results demonstrate the detection of known venom peptides from the collected sample using mass spectrometry. The venom collection procedure is followed by a protocol for dissecting spider venom glands, with results demonstrating that this leads to the characterization of venom-expressed proteins and peptides at the sequence level.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell;
| |
Collapse
|
57
|
Not as docile as it looks? Loxosceles venom variation and loxoscelism in the Mediterranean Basin and the Canary Islands. Toxicon 2014; 93:11-9. [PMID: 25449105 DOI: 10.1016/j.toxicon.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/26/2023]
Abstract
The medical importance of Loxosceles spiders has promoted extensive research on different aspects of their venoms. Most of the reported cases of loxoscelism have occurred in the Americas, and thus, much work has focused on North and South American Loxosceles species. Interestingly, loxoscelism cases are rare in the Mediterranean Basin although Loxosceles rufescens, endemic to the Mediterranean, is an abundant spider even in human-altered areas. Thus, it has been suggested that the venom of L. rufescens could be of less medical relevance than that of its congeners. In this study, we challenge this hypothesis by using multiple approaches to study venom variation in selected species and lineages from the Mediterranean Basin and the Canary Islands. We found that SMase D activity, the key bioactive component of Loxosceles venom, is comparable to American species that are confirmed to have medically relevant bites. The venom protein composition using SDS-PAGE presents some differences among regional Loxosceles taxa in banding pattern and intensity, mostly between the Canarian and L. rufescens lineages. Differences between these species also exist in the expression of different paralogs of the SicTox gene family, with the Canarian species being less diverse. In conclusion, our results do not support the challenged hypothesis, and suggest that venom of these species may indeed be as potent as other Loxosceles species. Pending confirmation of loxoscelism with direct evidence of Loxosceles bites with species identification by professionals, Loxosceles in the Mediterranean region should conservatively be considered medically relevant taxa.
Collapse
|
58
|
Bhere KV, Haney RA, Ayoub NA, Garb JE. Gene structure, regulatory control, and evolution of black widow venom latrotoxins. FEBS Lett 2014; 588:3891-7. [PMID: 25217831 DOI: 10.1016/j.febslet.2014.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/21/2023]
Abstract
Black widow venom contains α-latrotoxin, infamous for causing intense pain. Combining 33 kb of Latrodectus hesperus genomic DNA with RNA-Seq, we characterized the α-latrotoxin gene and discovered a paralog, 4.5 kb downstream. Both paralogs exhibit venom gland specific transcription, and may be regulated post-transcriptionally via musashi-like proteins. A 4 kb intron interrupts the α-latrotoxin coding sequence, while a 10 kb intron in the 3' UTR of the paralog may cause non-sense-mediated decay. Phylogenetic analysis confirms these divergent latrotoxins diversified through recent tandem gene duplications. Thus, latrotoxin genes have more complex structures, regulatory controls, and sequence diversity than previously proposed.
Collapse
Affiliation(s)
- Kanaka Varun Bhere
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA.
| |
Collapse
|
59
|
von Reumont BM, Campbell LI, Richter S, Hering L, Sykes D, Hetmank J, Jenner RA, Bleidorn C. A Polychaete's powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol Evol 2014; 6:2406-23. [PMID: 25193302 PMCID: PMC4202326 DOI: 10.1093/gbe/evu190] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profiles of the venom glands of three species of bloodworm, Glycera dibranchiata, Glycera fallax and Glycera tridactyla, as well as the body tissue of G. tridactyla. The venom glands express a complex mixture of transcripts coding for putative toxin precursors. These transcripts represent 20 known toxin classes that have been convergently recruited into animal venoms, as well as transcripts potentially coding for Glycera-specific toxins. The toxins represent five functional categories: Pore-forming and membrane-disrupting toxins, neurotoxins, protease inhibitors, other enzymes, and CAP domain toxins. Many of the transcripts coding for putative Glycera toxins belong to classes that have been widely recruited into venoms, but some are homologs of toxins previously only known from the venoms of scorpaeniform fish and monotremes (stonustoxin-like toxin), turrid gastropods (turripeptide-like peptides), and sea anemones (gigantoxin I-like neurotoxin). This complex mixture of toxin homologs suggests that bloodworms employ venom while predating on macroscopic prey, casting doubt on the previously widespread opinion that G. dibranchiata is a detritivore. Our results further show that researchers should be aware that different assembly methods, as well as different methods of homology prediction, can influence the transcriptomic profiling of venom glands.
Collapse
Affiliation(s)
- Björn M von Reumont
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Lahcen I Campbell
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Sandy Richter
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Germany
| | - Lars Hering
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Germany
| | - Dan Sykes
- Imaging and Analysis Centre, The Natural History Museum, London, United Kingdom
| | - Jörg Hetmank
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Germany
| | - Ronald A Jenner
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Christoph Bleidorn
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
60
|
Yim KM, Brewer MS, Miller CT, Gillespie RG. Comparative Transcriptomics of Maturity-Associated Color Change in Hawaiian Spiders. J Hered 2014; 105 Suppl 1:771-81. [DOI: 10.1093/jhered/esu043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
61
|
Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA. Structure of the yellow sac spider Cheiracanthium punctorium genes provides clues to evolution of insecticidal two-domain knottin toxins. INSECT MOLECULAR BIOLOGY 2014; 23:527-538. [PMID: 24717175 DOI: 10.1111/imb.12097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Yellow sac spiders (Cheiracanthium punctorium, family Miturgidae) are unique in terms of venom composition, because, as we show here, two-domain toxins have replaced the usual one-domain peptides as the major constituents. We report the structure of the two-domain Che. punctorium toxins (CpTx), along with the corresponding cDNA and genomic DNA sequences. At least three groups of insecticidal CpTx were identified, each consisting of several members. Unlike many cone snail and snake toxins, accelerated evolution is not typical of cptx genes, which instead appear to be under the pressure of purifying selection. Both CpTx modules present the inhibitor cystine knot (ICK), or knottin signature; however, the sequence similarity between the domains is low. Conversely, notable similarity was found between separate domains of CpTx and one-domain toxins from spiders of the Lycosidae family. The observed chimerism is a landmark of exon shuffling events, but in contrast to many families of multidomain protein genes no introns were found in the cptx genes. Considering the possible scenarios, we suggest that an early transcription-mediated fusion event between two related one-domain toxin genes led to the emergence of a primordial cptx-like sequence. We conclude that evolution of toxin variability in spiders appears to be quite different from other venomous animals.
Collapse
Affiliation(s)
- M Y Sachkova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | |
Collapse
|
62
|
Atakuziev BU, Wright CE, Graudins A, Nicholson GM, Winkel KD. Efficacy of Australian red-back spider (Latrodectus hasselti) antivenom in the treatment of clinical envenomation by the cupboard spider Steatoda capensis (Theridiidae). Toxicon 2014; 86:68-78. [DOI: 10.1016/j.toxicon.2014.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
63
|
Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics 2014; 15:366. [PMID: 24916504 PMCID: PMC4058007 DOI: 10.1186/1471-2164-15-366] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/08/2014] [Indexed: 12/22/2022] Open
Abstract
Background Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. Results We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. Conclusions Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-366) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
64
|
McCowan C, Garb JE. Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression. Gene 2014; 536:366-75. [PMID: 24316130 PMCID: PMC4172349 DOI: 10.1016/j.gene.2013.11.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/25/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022]
Abstract
Venoms have attracted enormous attention because of their potent physiological effects and dynamic evolution, including the convergent recruitment of homologous genes for venom expression. Here we provide novel evidence for the recruitment of genes from the Crustacean Hyperglycemic Hormone (CHH) and arthropod Ion Transport Peptide (ITP) superfamily for venom expression in black widow spiders. We characterized latrodectin peptides from venom gland cDNAs from the Western black widow spider (Latrodectus hesperus), the brown widow (Latrodectus geometricus) and cupboard spider (Steatoda grossa). Phylogenetic analyses of these sequences with homologs from other spider, scorpion and wasp venom cDNAs, as well as CHH/ITP neuropeptides, show latrodectins as derived members of the CHH/ITP superfamily. These analyses suggest that CHH/ITP homologs are more widespread in spider venoms, and were recruited for venom expression in two additional arthropod lineages. We also found that the latrodectin 2 gene and nearly all CHH/ITP genes include a phase 2 intron in the same position, supporting latrodectin's placement within the CHH/ITP superfamily. Evolutionary analyses of latrodectins suggest episodes of positive selection along some sequence lineages, and positive and purifying selection on specific codons, supporting its functional importance in widow venom. We consider how this improved understanding of latrodectin evolution informs functional hypotheses regarding its role in black widow venom as well as its potential convergent recruitment for venom expression across arthropods.
Collapse
Affiliation(s)
- Caryn McCowan
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
65
|
Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA. Genes and evolution of two-domain toxins from lynx spider venom. FEBS Lett 2014; 588:740-5. [PMID: 24462682 DOI: 10.1016/j.febslet.2014.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
Abstract
Spiderines are comparatively long polypeptide toxins (∼110 residues) from lynx spiders (genus Oxyopes). They are built of an N-terminal linear cationic domain (∼40 residues) and a C-terminal knottin domain (∼60 residues). The linear domain empowers spiderines with strong cytolytic activity. In the present work we report 16 novel spiderine sequences from Oxyopes takobius and Oxyopes lineatus classified into two subfamilies. Strikingly, negative selection acts on both linear and knottin domains. Genes encoding Oxyopes two-domain toxins were sequenced and found to be intronless. We further discuss a possible scenario of lynx spider modular toxin evolution.
Collapse
Affiliation(s)
- Maria Y Sachkova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation.
| | - Anna A Slavokhotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation; N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina, 119991 Moscow, Russian Federation
| | - Eugene V Grishin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation
| | - Alexander A Vassilevski
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation.
| |
Collapse
|