51
|
Gupta S, Gupta SM, Gupta AK, Gaur VS, Kumar A. Fluctuation of Dof1/Dof2 expression ratio under the influence of varying nitrogen and light conditions: involvement in differential regulation of nitrogen metabolism in two genotypes of finger millet (Eleusine coracana L.). Gene 2014; 546:327-35. [DOI: 10.1016/j.gene.2014.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/23/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
|
52
|
Gu R, Duan F, An X, Zhang F, von Wirén N, Yuan L. Characterization of AMT-Mediated High-Affinity Ammonium Uptake in Roots of Maize (Zea mays L.). ACTA ACUST UNITED AC 2013; 54:1515-24. [DOI: 10.1093/pcp/pct099] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
53
|
Xuan YH, Priatama RA, Kumar V, Han CD. Regulatory role of indeterminate domain 10 (IDD10) in ammonium-dependent gene expression in rice roots. PLANT SIGNALING & BEHAVIOR 2013; 8:e24139. [PMID: 23470720 PMCID: PMC3906431 DOI: 10.4161/psb.24139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
One of the strategies that plants utilize to adapt to fluctuating soil nutrient levels is rapid reprogramming of transcriptional regulation via cell signaling mechanisms. Higher plants exposed to ammonium undergo modulation of a broad spectrum of gene expression. However, regulation of the transcriptional mechanisms underlying ammonium-mediated gene expression is poorly understood. We identified a transcriptional regulator, indeterminate domain 10 (IDD10), whose mutants exhibited an ammonium-hypersensitive root growth defect. To elucidate the molecular relationship between IDD10 and ammonium-mediated gene expression, ammonium-responsive genes were examined in mutants and overexpressors of IDD10. Among the key ammonium uptake and assimilation genes, AMT1;2 (ammonium transporter 1;2) and GDH2 (glutamate dehydrogenase 2) significantly depend on IDD10 expression levels for ammonium-mediated induction. Extensive molecular analysis revealed that IDD10 directly binds to the promoter of AMT1;2 and the fifth intron of GDH2 genes via the core sequence TTTGTC(C)/(G). Transcriptome analysis with root tissues identified many ammonium-inducible genes whose expression was increased by IDD10. Half of them contained potential IDD10-binding motifs in their promoters. This study determined that IDD10 is a transcriptional activator involved in nitrogen regulatory circuits that control a broad spectrum of gene expression, which might influence root growth in rice.
Collapse
|
54
|
Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet. Funct Integr Genomics 2013; 13:179-90. [PMID: 23435937 DOI: 10.1007/s10142-013-0311-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.
Collapse
|
55
|
Xuan YH, Priatama RA, Huang J, Je BI, Liu JM, Park SJ, Piao HL, Son DY, Lee JJ, Park SH, Jung KH, Kim TH, Han CD. Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. THE NEW PHYTOLOGIST 2013; 197:791-804. [PMID: 23278238 DOI: 10.1111/nph.12075] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/30/2012] [Indexed: 05/22/2023]
Abstract
Indeterminate domain (IDD) genes are a family of plant transcriptional regulators that function in the control of development and metabolism during growth. Here, the function of Oryza sativa indeterminate domain 10 (OsIDD10) has been explored in rice plants. Compared with wild-type roots, idd10 mutant roots are hypersensitive to exogenous ammonium. This work aims to define the action of IDD10 on gene expression involved in ammonium uptake and nitrogen (N) metabolism. The ammonium induction of key ammonium uptake and assimilation genes was examined in the roots of idd10 mutants and IDD10 overexpressors. Molecular studies and transcriptome analysis were performed to identify target genes and IDD10 binding cis-elements. IDD10 activates the transcription of AMT1;2 and GDH2 by binding to a cis-element motif present in the promoter region of AMT1;2 and in the fifth intron of GDH2. IDD10 contributes significantly to the induction of several genes involved in N-linked metabolic and cellular responses, including genes encoding glutamine synthetase 2, nitrite reductases and trehalose-6-phosphate synthase. Furthermore, the possibility that IDD10 might influence the N-mediated feedback regulation of target genes was examined. This study demonstrates that IDD10 is involved in regulatory circuits that determine N-mediated gene expression in plant roots.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Ryza A Priatama
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jin Huang
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Byoung Il Je
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jing Miao Liu
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Soon Ju Park
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Hai Long Piao
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Dae Young Son
- Department of Applied Biology, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jeung Joo Lee
- Department of Applied Biology, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Sung Han Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-857, South Korea
| | - Ki Hong Jung
- Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Tae Ho Kim
- Genomics Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), RDA, Suwon, 441-707, South Korea
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, South Korea
| |
Collapse
|
56
|
Characterization of an ammonium transporter in the oleaginous alga Chlorella protothecoides. Appl Microbiol Biotechnol 2012; 97:919-28. [DOI: 10.1007/s00253-012-4534-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/18/2012] [Accepted: 10/20/2012] [Indexed: 11/26/2022]
|
57
|
Vinod KK, Heuer S. Approaches towards nitrogen- and phosphorus-efficient rice. AOB PLANTS 2012; 2012:pls028. [PMID: 23115710 PMCID: PMC3484362 DOI: 10.1093/aobpla/pls028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/03/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Food production has to increase to meet the demand of a growing population. In light of the high energy costs and increasingly scarce resources, future agricultural systems have to be more productive and more efficient in terms of inputs such as fertilizer and water. The development of rice varieties with high yield under low-nutrient conditions has therefore become a breeding priority. The rapid progress made in sequencing and molecular-marker technology is now beginning to change the way breeding is done, providing new opportunities. SCOPE Nitrogen (N) and phosphorus (P) are applied to agricultural systems in large quantities and a deficiency of either nutrient leads to yield losses and triggers complex molecular and physiological responses. The underlying genes are now being identified and studied in detail, and an increasing number of quantitative trait loci (QTLs) related to N and P uptake and utilization are being reported. Here, we provide an overview of the different aspects related to N and P in rice production systems, and apply a breeder's perspective on the potential of relevant genes and pathways for breeding applications. MAIN POINTS For the development of nutrient-efficient rice, a holistic approach should be followed combining optimized fertilizer management with enhanced nutrient uptake via a vigorous root system, leading to increased grain filling and yield. Despite an increasing number of N- and P-related genes and QTLs being reported, very few are actively used in molecular breeding programmes. The complex regulation of N- and P-related pathways challenges breeders and the research community to identify large-effect genes/QTLs. For this it will be important to focus more on the analysis of tolerant genotypes rather than model plants, since tolerance pathways may employ a different set of genes.
Collapse
Affiliation(s)
- K. K. Vinod
- Indian Agricultural Research Institute, New Delhi, India
| | - Sigrid Heuer
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
58
|
Seabra AR, Pereira PA, Becker JD, Carvalho HG. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:976-92. [PMID: 22414438 DOI: 10.1094/mpmi-12-11-0322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
59
|
Ding Z, Wang C, Chen S, Yu S. Diversity and selective sweep in the OsAMT1;1 genomic region of rice. BMC Evol Biol 2011; 11:61. [PMID: 21385389 PMCID: PMC3062601 DOI: 10.1186/1471-2148-11-61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ammonium is one of the major forms in which nitrogen is available for plant growth. OsAMT1;1 is a high-affinity ammonium transporter in rice (Oryza sativa L.), responsible for ammonium uptake at low nitrogen concentration. The expression pattern of the gene has been reported. However, variations in its nucleotides and the evolutionary pathway of its descent from wild progenitors are yet to be elucidated. In this study, nucleotide diversity of the gene OsAMT1;1 and the diversity pattern of seven gene fragments spanning a genomic region approximately 150 kb long surrounding the gene were surveyed by sequencing a panel of 216 rice accessions including both cultivated rice and wild relatives. RESULTS Nucleotide polymorphism (Pi) of OsAMT1;1 was as low as 0.00004 in cultivated rice (Oryza sativa), only 2.3% of that in the common wild rice (O. rufipogon). A single dominant haplotype was fixed at the locus in O. sativa. The test values for neutrality were significantly negative in the entire region stretching 5' upstream and 3' downstream of the gene in all accessions. The value of linkage disequilibrium remained high across a 100 kb genomic region around OsAMT1;1 in O. sativa, but fell rapidly in O. rufipogon on either side of the promoter of OsAMT1;1, demonstrating a strong natural selection within or nearby the ammonium transporter. CONCLUSIONS The severe reduction in nucleotide variation at OsAMT1;1 in rice was caused by a selective sweep around OsAMT1;1, which may reflect the nitrogen uptake system under strong selection by the paddy soil during the domestication of rice. Purifying selection also occurred before the wild rice diverged into its two subspecies, namely indica and japonica. These findings would provide useful insights into the processes of evolution and domestication of nitrogen uptake genes in rice.
Collapse
Affiliation(s)
- Zehong Ding
- National Key Laboratory of Crop Genetic Improvement, and the College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chongrong Wang
- National Key Laboratory of Crop Genetic Improvement, and the College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Sheng Chen
- School of Plant Biology, and International Centre for Plant Breeding Education and Research, The University of Western Australia, Crawley, WA 6009, Australia
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, and the College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
60
|
Kato Y, Konishi M, Shigyo M, Yoneyama T, Yanagisawa S. Characterization of plant eukaryotic translation initiation factor 6 (eIF6) genes: The essential role in embryogenesis and their differential expression in Arabidopsis and rice. Biochem Biophys Res Commun 2010; 397:673-8. [PMID: 20570652 DOI: 10.1016/j.bbrc.2010.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 12/26/2022]
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is an essential component of ribosome biogenesis. In our present study, we characterize plant eIF6 genes for the first time. Although a single gene encodes eIF6 in yeast and animals, two genes were found to encode proteins homologous to animal and yeast eIF6 in Arabidopsis and rice, denoted At-eIF6;1 and At-eIF6;2, and Os-eIF6;1 and Os-eIF6;2, respectively. Analysis of the yeast eif6 (tif6) mutant suggested that plant eIF6, at least in the case of At-eIF6;1, can complement the essential function of eIF6 in yeast. Evidence for the essential role of eIF6 in plants was also provided by the embryonic-lethal phenotype of the at-eif6;1 mutant. In contrast, At-eIF6;2 appears not to be essential due to its very low expression level and the normal growth phenotype of the eif6;2 mutants. Consistent with the putative role of plant eIF6 in ribosome biogenesis, At-eIF6;1 is predominately expressed in tissues where cell division actively proceeds under the control of intronic cis-regulatory elements. On the other hand, both Os-eIF6;1 and Os-eIF6;2 are probably active genes because they are expressed at significant expression levels. Interestingly, the supply of ammonium nitrate as a plant nutrient was found to induce specifically the expression of Os-eIF6;2. Our present findings indicate that the eIF6 genes have differently evolved in plant and animal kingdoms and also in distinct plant species.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
61
|
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. ANNALS OF BOTANY 2010; 105:1141-57. [PMID: 20299346 PMCID: PMC2887065 DOI: 10.1093/aob/mcq028] [Citation(s) in RCA: 723] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. SCOPE An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. CONCLUSIONS This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
Collapse
|
62
|
Abstract
In addition to light, water and CO(2), plants require a number of mineral nutrients, in particular the macronutrients nitrogen, sulphur, phosphorus, magnesium, calcium and potassium. After uptake from the soil by the root system they are either immediately assimilated into organic compounds or distributed within the plant for usage in different tissues. A good understanding of how the transport of macronutrients into and between plant cells is adjusted to different environmental conditions is essential to achieve an increase of nutrient usage efficiency and nutritional value in crops. Here, we review the current state of knowledge regarding the regulation of macronutrient transport, taking both a physiological and a mechanistic approach. We first describe how nutrient transport is linked to environmental and internal cues such as nutrient, carbon and water availability via hormonal, metabolic and physical signals. We then present information on the molecular mechanisms for regulation of transport proteins, including voltage gating, auto-inhibition, interaction with other proteins, oligomerization and trafficking. Combining of evidence for different nutrients, signals and regulatory levels creates an opportunity for making new connections within a large body of data, and thus contributes to an integrative understanding of nutrient transport.
Collapse
Affiliation(s)
- Anna Amtmann
- Plant Sciences Group, Faculty of Biomedical and Life Science, University of Glasgow, Glasgow G128QQ, UK
| | - Michael R Blatt
- Plant Sciences Group, Faculty of Biomedical and Life Science, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
63
|
Bernard SM, Habash DZ. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. THE NEW PHYTOLOGIST 2009; 182:608-620. [PMID: 19422547 DOI: 10.1111/j.1469-8137.2009.02823.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.
Collapse
Affiliation(s)
- Stéphanie M Bernard
- Earth Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Dimah Z Habash
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
64
|
Hirano T, Satoh Y, Ohki A, Takada R, Arai T, Michiyama H. Inhibition of ammonium assimilation restores elongation of seminal rice roots repressed by high levels of exogenous ammonium. PHYSIOLOGIA PLANTARUM 2008; 134:183-90. [PMID: 18419739 DOI: 10.1111/j.1399-3054.2008.01117.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elongation of seminal and lateral roots of rice seedlings was markedly inhibited by high ammonium levels in growth medium. However, high exogenous nitrate concentrations had little inhibitory effect on root growth. The objective of this study was to elucidate the relationship between inhibition of rice root growth induced by high ammonium conditions and ammonium assimilation in the seedlings. Activity of glutamine synthetase (GS) was kept at a low level in the seminal roots of the seedlings grown under high nitrate levels. In contrast, high ammonium levels significantly enhanced the GS activity in the roots, so that Gln abundantly accumulated in the shoots. These results indicate that ammonium assimilation may be activated in the seminal roots under high ammonium conditions. Application of methionine sulfoximine (MSO), an inhibitor of GS, relieved the repression of the seminal root elongation induced by high ammonium concentrations. However, the elongation of lateral roots remained inhibited even under the same condition. Furthermore, MSO drastically increased ammonium level and remarkably decreased Gln level in the shoots grown under high ammonium conditions. These results show that, for rice seedlings, an assimilatory product of ammonium, and not ammonium itself, may serve as an endogenous indicator of the nitrogen status involved in the inhibition of seminal root elongation induced by high levels of exogenous ammonium.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Graduate School of Agriculture, Meijo University, Shiogamaguchi, Tenpaku, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
65
|
Kudo T, Kawai A, Yamaya T, Hayakawa T. Cellular distribution of ACT domain repeat protein 9, a nuclear localizing protein, in rice (Oryza sativa). PHYSIOLOGIA PLANTARUM 2008; 133:167-79. [PMID: 18282189 DOI: 10.1111/j.1399-3054.2008.01051.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulatory ACT domains serve as amino acid-binding sites in certain amino acid metabolic enzymes and transcriptional regulators in bacteria. The ACT domain repeat protein (ACR) family in plants is primarily composed of four copies of the domain homologous to those of the bacteria Gln sensor GLND. In the current study, to evaluate the possible involvement of the protein OsACR9 in the Gln-sensing system related to nitrogen (N) metabolism in rice (Oryza sativa L.), subcellular localization of OsACR9 and its accumulation and cellular distribution in various rice organs were examined by transient expression analysis and immunological methods using a monospecific antibody, respectively. Transient expression analysis of OsACR9 fused with a synthetic green fluorescent protein in cultured rice cells suggested nuclear localization of OsACR9. In rice roots, OsACR9 protein was distributed in epidermis, exodermis, sclerenchyma and vascular parenchyma cells, and its accumulation markedly increased after supply of NH(+)(4). In rice leaf samples, OsACR9 protein was abundant in the vascular parenchyma and mestome-sheath cells of young leaf blades at the early stage of development and in the vascular parenchyma and phloem-companion cells of mature leaf sheaths. OsACR9 protein also showed a high level of accumulation in vascular parenchyma cells of dorsal vascular bundles and aleurone cells in young rice grains at the early stage of ripening. The possibility of the nuclear protein OsACR9 acting as a Gln sensor in rice is subsequently discussed through comparison of its spatiotemporal expression with that of Gln-responsive N-assimilatory genes.
Collapse
Affiliation(s)
- Toru Kudo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
66
|
Huang Z, Liang M, Peng J, Xing T, Wang X. Exogenous ammonium inhibits petal pigmentation and expansion in Gerbera hybrida. PHYSIOLOGIA PLANTARUM 2008; 133:254-265. [PMID: 18346082 DOI: 10.1111/j.1399-3054.2008.01071.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Petal pigmentation is the most important aspect in natural flower coloration. In the present study, the inhibition of petal pigmentation by exogenous ammonium was investigated. Ray floret petals detached from inflorescences of Gerbera hybrida (Shenzhen No. 5) were cultured in vitro on media supplied with different forms of nitrogen and its assimilated compounds. The expression of a set of genes involved in anthocyanin biosynthesis and regulation was determined by Northern blotting assay. It was found that ammonium (NH4+), not nitrate (NO3-), in millimolar concentrations inhibited anthocyanin accumulation. The expressions of Gerbera chalcone synthase 1 (GCHS1), Gerbera chalcone synthase 2 (GCHS2) and Gerbera dihydroflavonol-4-reductase (GDFR) decreased, while six other related genes showed no significant changes after NH4+ treatment. Further studies on NH4+ function indicated that glutamine (Gln) acted as a downstream factor of NH4+ to suppress petal pigmentation. Both exogenous Gln and NH4+ were found to inhibit anthocyanin accumulation in the petals, and the application of Gln was also found to inhibit the expressions of GCHS1, GCHS2 and GDFR. The application of NH4+ also resulted in an increase in the activity of Gerbera glutamine synthetase (EC 6.3.1.2) along with a rapid increase of Gln content. When methionine sulfoximine, an inhibitor of glutamine synthetase (GS), was added, it was found to block the NH4+-induced inhibition of pigmentation. From these experiments, we conclude that the NH4+-induced suppression of petal pigmentation is not because of NH4+ toxicity, and the inhibition of pigmentation caused by the addition of exogenous NH4+ is the result of its assimilation into Gln.
Collapse
Affiliation(s)
- Zhigang Huang
- College of Life Sciences, South China Normal University, Guangdong Key Lab of Biotechnology for Plant Development, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
67
|
Cai C, Wang JY, Zhu YG, Shen QR, Li B, Tong YP, Li ZS. Gene structure and expression of the high-affinity nitrate transport system in rice roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:443-51. [PMID: 18713378 DOI: 10.1111/j.1744-7909.2008.00642.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently, some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp. japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from mono-cotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse transcription-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members. The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate influx, and acidic pH (pH 5.0) enhanced the nitrate influx in 1 h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.
Collapse
Affiliation(s)
- Chao Cai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
68
|
Jackson LE, Burger M, Cavagnaro TR. Roots, nitrogen transformations, and ecosystem services. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:341-63. [PMID: 18444903 DOI: 10.1146/annurev.arplant.59.032607.092932] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review considers some of the mechanistic processes that involve roots in the soil nitrogen (N) cycle, and their implications for the ecological functions that retain N within ecosystems: 1) root signaling pathways for N transport systems, and feedback inhibition, especially for NO(3)(-) uptake; 2) dependence on the mycorrhizal and Rhizobium/legume symbioses and their tradeoffs for N acquisition; 3) soil factors that influence the supply of NH(4)(+) and NO(3)(-) to roots and soil microbes; and 4) rhizosphere processes that increase N cycling and retention, such as priming effects and interactions with the soil food web. By integrating information on these plant-microbe-soil N processes across scales and disciplinary boundaries, we propose ideas for better manipulating ecological functions and processes by which the environment provides for human needs, i.e., ecosystem services. Emphasis is placed on agricultural systems, effects of N deposition in natural ecosystems, and ecosystem responses to elevated CO(2) concentrations. This shows the need for multiscale approaches to increase human dependence on a biologically based N supply.
Collapse
Affiliation(s)
- Louise E Jackson
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
69
|
Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wirén N. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:522-34. [PMID: 17026539 DOI: 10.1111/j.1365-313x.2006.02887.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In Arabidopsis four root-expressed AMT genes encode functional ammonium transporters, which raises the question of their role in primary ammonium uptake. After pre-culturing under nitrogen-deficiency conditions, we quantified the influx of (15)N-labeled ammonium in T-DNA insertion lines and observed that the loss of either AMT1;1 or AMT1;3 led to a decrease in the high-affinity ammonium influx of approximately 30%. Under nitrogen-sufficient conditions the ammonium influx was lower in Columbia glabra compared with Wassilewskija (WS), and AMT1;1 did not contribute significantly to the ammonium influx in Col-gl. Ectopic expression of AMT1;3 under the control of a 35S promoter in either of the insertion lines amt1;3-1 or amt1;1-1 increased the ammonium influx above the level of their corresponding wild types. In transgenic lines carrying AMT-promoter-GFP constructs, the promoter activities of AMT1;1 and AMT1;3 were both upregulated under nitrogen-deficiency conditions and were localized to the rhizodermis, including root hairs. AMT gene-GFP fusions that were stably expressed under the control of their own promoters were localized to the plasma membrane. The double insertion line amt1;1-1amt1;3-1 showed a decreased sensitivity to the toxic ammonium analog methylammonium and a decrease in the ammonium influx of up to 70% relative to wild-type plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake capacity in Arabidopsis roots under nitrogen-deficiency conditions.
Collapse
Affiliation(s)
- Dominique Loqué
- Molekulare Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hayakawa T, Kudo T, Ito T, Takahashi N, Yamaya T. ACT Domain Repeat Protein 7, ACR7, Interacts with a Chaperone HSP18.0-CII in Rice Nuclei. ACTA ACUST UNITED AC 2006; 47:891-904. [PMID: 16720649 DOI: 10.1093/pcp/pcj062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The regulatory ACT domains serve as amino acid-binding sites in some amino acid metabolic enzymes and transcriptional regulators in bacteria. To elucidate the molecular roles of the glutamine (Gln)-sensing system in nitrogen (N) metabolism in plants, we isolated six genes encoding ACT domain repeat proteins (ACR1, and ACR5-ACR9) from rice (Oryza sativa L.) using genomic information on the primary structure composed of four copies of the domain homologous to those of bacterial Gln sensor GLND. Since expression of ACR7 was the most abundant of the six ACR orthologous genes, we focused on this ACR in the current study. Gene products of ACR7 were most abundant in young developing leaf blades of rice, and ACR7 protein is specifically localized in the nucleus of the parenchyma cells of phloem and xylem in the vascular bundles. A yeast two-hybrid screen identified a small heat stress protein (HSP18.0-CII) as a protein interacting with ACR7. Transient expression analysis of HSP18.0-CII:sGFP in cultured rice cells, followed by co-immunoprecipitation, suggests that the nuclear ACR7 indeed interacted with nucleocytoplasmic HSP18.0-CII in vivo. The potential ability of nuclear protein ACR7 to bind Gln and the possibility of the protein acting as a Gln sensor in rice leaves is discussed.
Collapse
Affiliation(s)
- Toshihiko Hayakawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan.
| | | | | | | | | |
Collapse
|
71
|
Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:153-163. [PMID: 32689222 DOI: 10.1071/fp05165] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/21/2005] [Indexed: 06/11/2023]
Abstract
A transgenic approach was undertaken to investigate the role of a rice ammonium transporter (OsAMT1-1) in ammonium uptake and consequent ammonium assimilation under different nitrogen regimes. Transgenic lines overexpressing OsAMT1-1 were produced by Agrobacterium-mediated transformation of two rice cultivars, Taipei 309 and Jarrah, with an OsAMT1-1 cDNA gene construct driven by the maize ubiquitin promoter. Transcript levels of OsAMT1-1 in both Taipei 309 and Jarrah transgenic lines correlated positively with transgene copy number. Shoot and root biomass of some transgenic lines decreased during seedling and early vegetative stage compared to the wild type, especially when grown under high (2 mm) ammonium nutrition. Transgenic plants, particularly those of cv. Jarrah recovered in the mid-vegetative stage under high ammonium nutrition. Roots of the transgenic plants showed increased ammonium uptake and ammonium content. We conclude that the decreased biomass of the transgenic lines at early stages of growth might be caused by the accumulation of ammonium in the roots owing to the inability of ammonium assimilation to match the greater ammonium uptake.
Collapse
Affiliation(s)
- Mohammad S Hoque
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2000, Australia
| | - Josette Masle
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2000, Australia
| | - Michael K Udvardi
- Department of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 2000, Australia. Current address: Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Peter R Ryan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | |
Collapse
|
72
|
Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T. Interaction of N-acetylglutamate kinase with a PII-like protein in rice. PLANT & CELL PHYSIOLOGY 2004; 45:1768-78. [PMID: 15653795 DOI: 10.1093/pcp/pch199] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PII protein in bacteria is a sensor for 2-oxoglutarate and a transmitter for glutamine signaling. We identified an OsGlnB gene that encoded a bacterial PII-like protein in rice. Yeast two-hybrid analysis showed that an OsGlnB gene product interacted with N-acetylglutamate kinase 1 (OsNAGK1) and PII-like protein (OsGlnB) itself in rice. In cyanobacteria, NAGK is a key enzyme in arginine biosynthesis. Transient expression of OsGlnB cDNA or OsNAGK1 cDNA fused with sGFP in rice leaf blades strongly suggested that the PII-like protein as well as OsNAGK1 protein is located in chloroplasts. Both OsGlnB and OsNAGK1 genes were expressed in roots, leaf blades, leaf sheaths and spikelets of rice, and these two genes were coordinately expressed in leaf blades during the life span. Thus, PII-like protein in rice plants is potentially able to interact with OsNAGK1 protein in vivo. This finding will provide a clue to the precise physiological function of PII-like protein in rice.
Collapse
Affiliation(s)
- Kenjiro Sugiyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | | | | | | | | |
Collapse
|
73
|
Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. PLANT & CELL PHYSIOLOGY 2004; 45:1640-7. [PMID: 15574840 DOI: 10.1093/pcp/pch190] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rice plants in paddy fields prefer to utilize ammonium as a major nitrogen source. Glutamine synthetase (GS) serves for assimilation of ammonium in rice root, and ameliorates the toxic effect of ammonium excess. Among the three isoenzymes of the cytosolic GS1 gene family in rice, OsGLN1;1 and OsGLN1;2 were abundantly expressed in roots. Analysis of the purified enzymes showed that OsGLN1;1 and OsGLN1;2 can be classified into high-affinity subtypes with relatively high V(max) values, as compared with the major high-affinity isoenzyme, GLN1;1, in Arabidopsis. Low-affinity forms of GS1 comparable to those in Arabidopsis (GLN1;2 and GLN1;3) were absent in rice roots. The OsGLN1;1 and OsGLN1;2 transcripts showed reciprocal responses to ammonium supply in the surface cell layers of roots. OsGLN1;1 accumulated in dermatogen, epidermis and exodermis under nitrogen-limited condition. By contrast, OsGLN1;2 was abundantly expressed in the same cell layers under nitrogen-sufficient conditions, replenishing the loss of OsGLN1;1 following ammonium treatment. Within the central cylinder of elongating zone, OsGLN1;1 and OsGLN1;2 were both induced by ammonium, which was distinguishable from the response observed in the surface cell layers. The high-capacity Gln synthetic activities of OsGLN1;1 and OsGLN1;2 facilitate active ammonium assimilation in specific cell types in rice roots.
Collapse
Affiliation(s)
- Keiki Ishiyama
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, 230-0045 Japan
| | | | | | | | | |
Collapse
|
74
|
Loqué D, von Wirén N. Regulatory levels for the transport of ammonium in plant roots. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1293-305. [PMID: 15133056 DOI: 10.1093/jxb/erh147] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ammonium is an attractive nitrogen form for root uptake due to its permanent availability and the reduced state of the nitrogen. On the other hand, ammonium fluxes are difficult to control because ammonium represents an equilibrium between NH4+ and NH3, which are two N forms with different membrane permeabilities. There is increasing evidence that AMT-type ammonium transporters represent the major entry pathways for root uptake of NH4+. Since excess uptake of ammonium might cause toxicity and since ammonium is also released from catabolic processes within the cell, ammonium uptake across the root plasma membrane has to be tightly regulated. To take over a function in cellular ammonium homeostasis, various AMT transporters are synthesized that differ in their biochemical properties, their localization, and in their regulation at the transcriptional level. At the same time, AMT-driven transport is subject to control by the nitrogen status of a local root portion as well as of the whole plant. In this review, the focus is on the different levels at which AMT-dependent ammonium uptake is regulated and the gaps in current knowledge are highlighted.
Collapse
Affiliation(s)
- Dominique Loqué
- Institut für Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | |
Collapse
|