51
|
Murthy S, Larson-Casey JL, Ryan AJ, He C, Kobzik L, Carter AB. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure. FASEB J 2015; 29:3527-36. [PMID: 25953850 PMCID: PMC4511206 DOI: 10.1096/fj.15-271304] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 01/04/2023]
Abstract
Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Shubha Murthy
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alan J Ryan
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lester Kobzik
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
52
|
|
53
|
Bates MA, Brandenberger C, Langohr I, Kumagai K, Harkema JR, Holian A, Pestka JJ. Silica Triggers Inflammation and Ectopic Lymphoid Neogenesis in the Lungs in Parallel with Accelerated Onset of Systemic Autoimmunity and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse. PLoS One 2015; 10:e0125481. [PMID: 25978333 PMCID: PMC4433215 DOI: 10.1371/journal.pone.0125481] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/18/2015] [Indexed: 01/02/2023] Open
Abstract
Genetic predisposition and environmental factors influence the development of human autoimmune disease. Occupational exposure to crystalline silica (cSiO2) has been etiologically linked to increased incidence of autoimmunity, including systemic lupus erythematosus (SLE), but the underlying mechanisms are poorly understood. The purpose of this study was to test the hypothesis that early repeated short-term cSiO2 exposure will modulate both latency and severity of autoimmunity in the lupus-prone female NZBWF1 mouse. Weekly intranasal exposure to cSiO2 (0.25 and 1.0 mg) for 4 wk beginning at 9 wk of age both reduced latency and increased intensity of glomerulonephritis. cSiO2 elicited robust inflammatory responses in the lungs as evidenced by extensive perivascular and peribronchial lymphoplasmacytic infiltration consisting of IgG-producing plasma cells, and CD45R+ and CD3+ lymphocytes that were highly suggestive of ectopic lymphoid tissue (ELT). In addition, there were elevated concentrations of immunoglobulins and the cytokines MCP-1, TNF-α and IL-6 in bronchoalveolar lavage fluid. cSiO2-associated kidney and lung effects paralleled dose-dependent elevations of autoantibodies and proinflammatory cytokines in plasma. Taken together, cSiO2-induced pulmonary inflammation and ectopic lymphoid neogenesis in the NZBWF1 mouse corresponded closely to systemic inflammatory and autoimmune responses as well as the early initiation of pathological outcomes in the kidney. These findings suggest that following airway exposure to crystalline silica, in mice genetically prone to SLE, the lung serves as a platform for triggering systemic autoimmunity and glomerulonephritis.
Collapse
Affiliation(s)
- Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Christina Brandenberger
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Ingeborg Langohr
- Department of Pathobiological Studies, School of Veterinary Medicine, Louisiana State University, Baton Rogue, Louisiana, United States of America
| | - Kazuyoshi Kumagai
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack R. Harkema
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
54
|
Gilberti RM, Knecht DA. Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway. Mol Biol Cell 2014; 26:518-29. [PMID: 25428990 PMCID: PMC4310742 DOI: 10.1091/mbc.e14-08-1301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells can take up particles by both opsonized and nonopsonized pathways. Silica and latex, but not zymosan, can be taken up by the nonopsonized pathway. Uptake of silica, but not latex, is toxic to macrophages. Nonopsonized phagocytosis is characterized and found to have key differences from the complement- and antibody-opsonized pathways. Silica inhalation leads to the development of the chronic lung disease silicosis. Macrophages are killed by uptake of nonopsonized silica particles, and this is believed to play a critical role in the etiology of silicosis. However, the mechanism of nonopsonized-particle uptake is not well understood. We compared the molecular events associated with nonopsonized- and opsonized-particle phagocytosis. Both Rac and RhoA GTPases are activated upon nonopsonized-particle exposure, whereas opsonized particles activate either Rac or RhoA. All types of particles quickly generate a PI(3,4,5)P3 and F-actin response at the particle attachment site. After formation of a phagosome, the events related to endolysosome-to-phagosome fusion do not significantly differ between the pathways. Inhibitors of tyrosine kinases, actin polymerization, and the phosphatidylinositol cascade prevent opsonized- and nonopsonized-particle uptake similarly. Inhibition of silica particle uptake prevents silica-induced cell death. Microtubule depolymerization abolished uptake of complement-opsonized and nonopsonized particles but not Ab-opsonized particles. Of interest, regrowth of microtubules allowed uptake of new nonopsonized particles but not ones bound to cells in the absence of microtubules. Although complement-mediated uptake requires macrophages to be PMA-primed, untreated cells phagocytose nonopsonized silica and latex. Thus it appears that nonopsonized-particle uptake is accomplished by a pathway with unique characteristics.
Collapse
Affiliation(s)
- Renée M Gilberti
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
55
|
Infusion of bone marrow mononuclear cells reduces lung fibrosis but not inflammation in the late stages of murine silicosis. PLoS One 2014; 9:e109982. [PMID: 25299237 PMCID: PMC4192548 DOI: 10.1371/journal.pone.0109982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/15/2014] [Indexed: 01/11/2023] Open
Abstract
We hypothesized that infusion of bone marrow mononuclear cells (BMMCs) in the late stages of silica-induced damage would reduce the remodelling process in a murine model of silicosis. C57BL/6 mice were assigned to 2 groups. In the SIL group, mice were instilled with a silica particle suspension intratracheally. Control (C) mice received saline under the same protocol. On the 40th day, some of the animals from both groups were killed. The others were treated with either saline or BMMCs (1×106cells) intravenously (C+BMMC and SIL+BMMC), and the mice were killed 70 days after the start of the protocol. In the mice in the SIL+BMMC group, collagen deposition, the presence of silica particles inside nodules, the presence of macrophages and cells reactive for inducible nitric oxide synthase were reduced. Lung parameters also improved. Beyond that, the total and differential cellularity of bronchoalveolar lavage fluid, immunoexpression of transforming growth factor-β, the number of T regulatory cells and apoptosis were increased. However, the presence of male donor cells in lung tissue was not observed using GFP+ cells (40d) or Y chromosome DNA (70d). Therefore, BMMC therapy in the late stages of experimental silicosis improved lung function by diminishing fibrosis but inflammatory cells persisted, which could be related to expansion of T regulatory cells, responsible for the beneficial effects of cell therapy.
Collapse
|
56
|
Uncoupling between inflammatory and fibrotic responses to silica: evidence from MyD88 knockout mice. PLoS One 2014; 9:e99383. [PMID: 25050810 PMCID: PMC4106757 DOI: 10.1371/journal.pone.0099383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
The exact implication of innate immunity in granuloma formation and irreversible lung fibrosis remains to be determined. In this study, we examined the lung inflammatory and fibrotic responses to silica in MyD88-knockout (KO) mice. In comparison to wild-type (WT) mice, we found that MyD88-KO animals developed attenuated lung inflammation, neutrophil accumulation and IL-1β release in response to silica. Granuloma formation was also less pronounced in MyD88-KO mice after silica. This limited inflammatory response was not accompanied by a concomitant attenuation of lung collagen accumulation after silica. Histological analyses revealed that while pulmonary fibrosis was localized in granulomas in WT animals, it was diffusely distributed throughout the parenchyma in MyD88-KO mice. Robust collagen accumulation was also observed in mice KO for several other components of innate immunity (IL-1R, IL-1, ASC, NALP3, IL-18R, IL-33R, TRIF, and TLR2-3-4,). We additionally show that pulmonary fibrosis in MyD88-KO mice was associated with the accumulation of pro-fibrotic regulatory T lymphocytes (T regs) and pro-fibrotic cytokine expression (TGF-β, IL-10 and PDGF-B), not with T helper (Th) 17 cell influx. Our findings indicate that the activation of MyD88-related innate immunity is central in the establishment of particle-induced lung inflammatory and granuloma responses. The development of lung fibrosis appears uncoupled from inflammation and may be orchestrated by a T reg-associated pathway.
Collapse
|
57
|
Role of lysosomes in silica-induced inflammasome activation and inflammation in absence of MARCO. J Immunol Res 2014; 2014:304180. [PMID: 25054161 PMCID: PMC4099041 DOI: 10.1155/2014/304180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 01/13/2023] Open
Abstract
MARCO is the predominant scavenger receptor for recognition and binding of silica particles by alveolar macrophages (AM). Previously, it was shown that mice null for MARCO have a greater inflammatory response to silica, but the mechanism was not described. The aim of this study was to determine the relationship between MARCO and NLRP3 inflammasome activity. Silica increased NLRP3 inflammasome activation and release of the proinflammatory cytokine, IL-1β, to a greater extent in MARCO−/− AM compared to wild type (WT) AM. Furthermore, in MARCO−/− AM there was greater cathepsin B release from phagolysosomes, Caspase-1 activation, and acid sphingomyelinase activity compared to WT AM, supporting the critical role played by lysosomal membrane permeabilization (LMP) in triggering silica-induced inflammation. The difference in sensitivity to LMP appears to be in cholesterol recycling since increasing cholesterol in AM by treatment with U18666A decreased silica-induced NLRP3 inflammasome activation, and cells lacking MARCO were less able to sequester cholesterol following silica treatment. Taken together, these results demonstrate that MARCO contributes to normal cholesterol uptake in macrophages; therefore, in the absence of MARCO, macrophages are more susceptible to a greater inflammatory response by particulates known to cause NLRP3 inflammasome activation and the effect is due to increased LMP.
Collapse
|
58
|
Machado MN, Schmidt AC, Saldiva PHN, Faffe DS, Zin WA. Pulmonary functional and morphological damage after exposure to tripoli dust. Respir Physiol Neurobiol 2014; 196:17-24. [DOI: 10.1016/j.resp.2014.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
59
|
El-Agamy DS, Sharawy MH, Ammar EM. Agmatine attenuates silica-induced pulmonary fibrosis. Hum Exp Toxicol 2014; 33:650-60. [DOI: 10.1177/0960327114521047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase ( p < 0.001) and reduced glutathione ( p < 0.05) activities with significant decrease in the lung malondialdehyde ( p < 0.001) content as compared to the silica group. Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects.
Collapse
Affiliation(s)
- DS El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - MH Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - EM Ammar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
60
|
Zhang L, He YL, Li QZ, Hao XH, Zhang ZF, Yuan JX, Bai YP, Jin YL, Liu N, Chen G, Yun X, Yao SQ. N-acetylcysteine alleviated silica-induced lung fibrosis in rats by down-regulation of ROS and mitochondrial apoptosis signaling. Toxicol Mech Methods 2014; 24:212-9. [PMID: 24392833 DOI: 10.3109/15376516.2013.879974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) is a normal metabolic product of cellular respiration, but too much ROS can induce cell apoptosis. Here, we used N-acetylcysteine (NAC) to inhibit ROS activity to explore the effects of NAC on silica-induced pulmonary fibrosis in rats and provide evidence for study on the mechanism of silicosis. 24 adult male Sprague-Dawley rats weighing 180-220 g were randomly divided into three groups with eight rats in each group. Silicosis model group and NAC group were adopted non-tracheal exposure method of disposable intrapulmonary injection of 50 g/L, silica suspension 1 mL to establish animal silicosis model, NAC group treated with 600 mg/kg NAC by gavage from the right day of modeling, all animals were sacrificed after 28 days. The level of ROS contents and mitochondrial transmembrane potential changes of AM, the mRNA expression level of type I and type III procollagen, cytochrome C, cysteinyl aspartate specific protease-9 and caspase-3 were detected. The severity of pathological changes and pulmonary fibrosis were observed by pathologic specimens. It was showed that ROS contents and MTP changes were lower in the NAC group compared with the silicosis model group, other indexes were lower in the NAC group than the model group, but higher than those of the control group, the degree of lung fibrotic lesions observed from the pathological slices showed the same trend. These data indicated that NAC can reduce ROS content of AM in silica exposure rats, the mitochondrial apoptosis pathway can also be inhibited, the severity of pulmonary fibrosis alleviated as a result.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Hebei United University , Tangshan, Hebei , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Fric J, Zelante T, Ricciardi-Castagnoli P. Phagocytosis of Particulate Antigens - All Roads Lead to Calcineurin/NFAT Signaling Pathway. Front Immunol 2014; 4:513. [PMID: 24409187 PMCID: PMC3885923 DOI: 10.3389/fimmu.2013.00513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jan Fric
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Teresa Zelante
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Paola Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| |
Collapse
|
62
|
Mohiuddin, Keka IS, Evans TJ, Hirota K, Shimizu H, Kono K, Takeda S, Hirano S. A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Arch Toxicol 2013; 88:145-60. [PMID: 23963510 DOI: 10.1007/s00204-013-1084-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
Although carbon nanotubes (CNTs) are promising nanomaterials, their potential carcinogenicity is a major concern. We previously established a genetic method of analyzing genotoxicity of chemical compounds, where we evaluated their cytotoxic effect on the DT40 lymphoid cell line comparing DNA-repair-deficient isogenic clones with parental wild-type cells. However, application of our DT40 system for the cytotoxic and genotoxic evaluation of nanomaterials seemed to be difficult, because DT40 cells only poorly internalized nanoparticles. To solve this problem, we have constructed a chimeric gene encoding a trans-membrane receptor consisting of the 5' region of the transferrin receptor (TR) gene (to facilitate internalization of nanoparticles) and the 3' region of the macrophage receptor with collagenous structure (MARCO) gene (which is a receptor for environmental particles). We expressed the resulting MARCO-TR chimeric receptor on DNA-repair-proficient wild-type cells and mutants deficient in base excision repair (FEN1 (-/-)) and translesion DNA synthesis (REV3 (-/-)). We demonstrated that the chimera mediates uptake of particles such as fluorescence-tagged polystyrene particles and multi-walled carbon nanotubes (MWCNTs), with very poor uptake of those particles by DT40 cells not expressing the chimera. MWCNTs were cytotoxic and this effect was greater in FEN1 (-/-)and REV3 (-/-) cells than in wild-type cells. Furthermore, MWCNTs induced greater oxidative damage (measured as 8-OH-dG formation) and a larger number of mitotic chromosomal aberrations in repair-deficient cells compared to repair-proficient cells. Taken together, our novel assay system using the chimeric receptor-expressing DT40 cells provides a sensitive method to screen for genotoxicity of CNTs and possibly other nanomaterials.
Collapse
Affiliation(s)
- Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Sharawy MH, El-Agamy DS, Shalaby AA, Ammar ESM. Protective effects of methyl palmitate against silica-induced pulmonary fibrosis in rats. Int Immunopharmacol 2013; 16:191-8. [DOI: 10.1016/j.intimp.2013.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 01/26/2023]
|
64
|
Pollard KM, Kono DH. Requirements for innate immune pathways in environmentally induced autoimmunity. BMC Med 2013; 11:100. [PMID: 23557436 PMCID: PMC3616845 DOI: 10.1186/1741-7015-11-100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/07/2013] [Indexed: 02/06/2023] Open
Abstract
There is substantial evidence that environmental triggers in combination with genetic and stochastic factors play an important role in spontaneous autoimmune disease. Although the specific environmental agents and how they promote autoimmunity remain largely unknown, in part because of diverse etiologies, environmentally induced autoimmune models can provide insights into potential mechanisms. Studies of idiopathic and environmentally induced systemic autoimmunity show that they are mediated by common adaptive immune response genes. By contrast, although the innate immune system is indispensable for autoimmunity, there are clear differences in the molecular and cellular innate components that mediate specific systemic autoimmune diseases, suggesting distinct autoimmune-promoting pathways. Some of these differences may be related to the bifurcation of toll-like receptor signaling that distinguishes interferon regulatory factor 7-mediated type I interferon production from nuclear factor-κB-driven proinflammatory cytokine expression. Accordingly, idiopathic and pristane-induced systemic autoimmunity require both type I interferon and proinflammatory cytokines whereas the less aggressive mercury-induced autoimmunity, although dependent on nucleic acid-binding toll-like receptors, does not require type I interferon but needs proinflammatory cytokines. Scavenger receptors and the inflammasome may contribute to silica-induced autoimmunity. Greater understanding of the innate mechanisms responsible for idiopathic and environmentally induced autoimmunity should yield new information into the processes that instigate and drive systemic autoimmunity.
Collapse
Affiliation(s)
- Kenneth Michael Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
65
|
Manzano-León N, Mas-Oliva J, Sevilla-Tapia L, Morales-Bárcenas R, Serrano J, O Neill MS, García-Cuellar CM, Quintana R, Vázquez-López I, Osornio-Vargas AR. Particulate matter promotes in vitro receptor-recognizable low-density lipoprotein oxidation and dysfunction of lipid receptors. J Biochem Mol Toxicol 2013; 27:69-76. [PMID: 23297186 DOI: 10.1002/jbt.21452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/07/2012] [Indexed: 01/22/2023]
Abstract
Particulate matter may promote cardiovascular disease, possibly as a consequence of its oxidative potential. Studies using susceptible animals indicate that particulate matter aggravates atherosclerosis by increasing lipid/macrophage content in plaques. Macrophage lipid uptake requires oxidized low-density lipoprotein and scavenger receptors; same receptors are involved in particulate matter uptake. We studied in vitro particulate matter potential to oxidize low-density lipoproteins and subsequent cell uptake through scavenger receptors. Particulate matter-induced low-density lipoproteins oxidation was evaluated by the thiobarbituric acid assay. Binding/internalization was tested in wild type and scavenger receptor-transfected Chinese hamster ovary cells, and in RAW264.7 cells using fluorescently labeled low-density lipoproteins. Dose-dependent binding/internalization only occurred in scavenger receptor-transfected Chinese hamster ovary cells and RAW264.7 cells. Competition binding/internalization using particles showed that particulate matter induced decreased binding (∼50%) and internalization (∼70%) of particle-oxidized low-density lipoproteins and native low-density lipoproteins. Results indicate that particulate matter was capable of oxidizing low-density lipoproteins, favoring macrophage internalization, and also altered scavenger and low-density lipoproteins receptor function.
Collapse
|
66
|
Sellamuthu R, Umbright C, Roberts JR, Chapman R, Young SH, Richardson D, Cumpston J, McKinney W, Chen BT, Frazer D, Li S, Kashon M, Joseph P. Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats. Inhal Toxicol 2012; 24:570-9. [PMID: 22861000 DOI: 10.3109/08958378.2012.697926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m(3), 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Rajendran Sellamuthu
- Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Płoski R, Szymański K, Bednarczuk T. The genetic basis of graves' disease. Curr Genomics 2012; 12:542-63. [PMID: 22654555 PMCID: PMC3271308 DOI: 10.2174/138920211798120772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/09/2023] Open
Abstract
The presented comprehensive review of current knowledge about genetic factors predisposing to Graves’ disease (GD) put emphasis on functional significance of observed associations. In particular, we discuss recent efforts aimed at refining diseases associations found within the HLA complex and implicating HLA class I as well as HLA-DPB1 loci. We summarize data regarding non-HLA genes such as PTPN22, CTLA4, CD40, TSHR and TG which have been extensively studied in respect to their role in GD. We review recent findings implicating variants of FCRL3 (gene for FC receptor-like-3 protein), SCGB3A2 (gene for secretory uteroglobin-related protein 1- UGRP1) as well as other unverified possible candidate genes for GD selected through their documented association with type 1 diabetes mellitus: Tenr–IL2–IL21, CAPSL (encoding calcyphosine-like protein), IFIH1(gene for interferon-induced helicase C domain 1), AFF3, CD226 and PTPN2. We also review reports on association of skewed X chromosome inactivation and fetal microchimerism with GD. Finally we discuss issues of genotype-phenotype correlations in GD.
Collapse
Affiliation(s)
- Rafał Płoski
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Poland
| | | | | |
Collapse
|
68
|
Madala SK, Edukulla R, Davis KR, Schmidt S, Davidson C, Kitzmiller JA, Hardie WD, Korfhagen TR. Resistin-like molecule α1 (Fizz1) recruits lung dendritic cells without causing pulmonary fibrosis. Respir Res 2012; 13:51. [PMID: 22726462 PMCID: PMC3485088 DOI: 10.1186/1465-9921-13-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Resistin-like molecule alpha or found in inflammatory zone protein (Fizz1) is increased in pulmonary epithelial cells and also in limited amounts by other lung cells during various lung injuries and fibrosis. However, the direct role of Fizz1 produced in the pulmonary epithelium has not been determined. METHODS Fizz1 Transgenic mice (CCSP/Fizz1) were generated that overexpress Fizz1 in the lung epithelium under the control of a doxycycline (Dox) inducible lung epithelial cell specific promoter Scgb1a1 (Clara cell secretory protein, CCSP). Histology and FACS analysis of lung cells were used to identify the direct effects of Fizz1 in the transgenic mice (Dox treated) when compared with control (CCSP/-) mice. Intratracheal bleomycin sulfate or silica in saline and saline alone were used to study the role of Fizz1 during bleomycin- and silica-induced pulmonary fibrosis in CCSP/Fizz1 and CCSP/- mice. Weight change, pulmonary inflammation, and fibrosis were assessed 10 days post bleomycin or 28 days post silica challenge. RESULTS When CCSP/Fizz1 mice were fed Dox food, elevated Fizz1 protein was detected in lung homogenates by western blot. Lungs of mice in which Fizz1 was induced in the epithelium contained increased lung cells staining for CD11c and F4/80 by FACS analysis consistent with increased dendritic cells however, no changes were observed in the percentage of interstitial macrophages compared to CCSP/- controls. No significant changes were found in the lung histology of CCSP/Fizz1 mice after up to 8 weeks of overexpression compared to CCSP/- controls. Overexpression of Fizz1 prior to challenge or following challenge with bleomycin or silica did not significantly alter airway inflammation or fibrosis compared to control mice. CONCLUSIONS The current study demonstrates that epithelial cell derived Fizz1 is sufficient to increase the bone-marrow derived dendritic cells in the lungs, but it is not sufficient to cause lung fibrosis or alter chemical or particle-induced fibrosis.
Collapse
|
69
|
Hirano S, Fujitani Y, Furuyama A, Kanno S. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells. Toxicol Appl Pharmacol 2012; 259:96-103. [DOI: 10.1016/j.taap.2011.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/30/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
70
|
Beamer CA, Seaver BP, Shepherd DM. Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation but not fibrosis. Toxicol Sci 2012; 126:554-68. [PMID: 22273745 DOI: 10.1093/toxsci/kfs024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is responsible for mediating a variety of pharmacological and toxicological effects caused by halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, recent evidence has revealed that the AhR also has numerous physiological roles aside from xenobiotic metabolism, including regulation of immune and inflammatory signaling as well as normal development and homeostasis of several organs. To investigate the role of the AhR in crystalline silica (SiO(2))-induced inflammation and fibrosis, C57Bl/6 and AhR(-/)(-) mice were exposed to SiO(2) or vehicle. Similarly, C57Bl/6 mice were exposed to SiO(2) and TCDD either simultaneously or sequentially to assess whether AhR activation alters inflammation and fibrosis. SiO(2)-induced acute lung inflammation was more severe in AhR(-)(/-) mice; however, the fibrotic response of AhR(-)(/-) mice was attenuated compared with C57Bl/6 mice. In a model of chronic SiO(2) exposure, AhR activation by TCDD in C57Bl/6 mice resulted in reduced inflammation; however, the fibrotic response was not affected. Bone marrow-derived macrophages (BMM) from AhR(-)(/-) mice also produced higher levels of cytokines and chemokines in response to SiO(2). Analysis of gene expression revealed that BMM derived from AhR(-)(/-) mice exhibit increased levels of pro-interleukin (IL)-1β, IL-6, and Bcl-2, yet decreased levels of signal transducers and activators of transcription (STAT)2, STAT5a, and serpin B2 (Pai-2) in response to SiO(2).
Collapse
Affiliation(s)
- Celine A Beamer
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
71
|
Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63:967-1000. [PMID: 21880988 DOI: 10.1124/pr.111.004523] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) superfamily of soluble or membrane-bound protein receptors is characterized by the presence of one or several repeats of an ancient and highly conserved protein module, the SRCR domain. This superfamily (SRCR-SF) has been in constant and progressive expansion, now up to more than 30 members. The study of these members is attracting growing interest, which parallels that in innate immunity. No unifying function has been described to date for the SRCR domains, this being the result of the limited knowledge still available on the physiology of most members of the SRCR-SF, but also of the sequence versatility of the SRCR domains. Indeed, involvement of SRCR-SF members in quite different functions, such as pathogen recognition, modulation of the immune response, epithelial homeostasis, stem cell biology, and tumor development, have all been described. This has brought to us new information, unveiling the possibility that targeting or supplementing SRCR-SF proteins could result in diagnostic and/or therapeutic benefit for a number of physiologic and pathologic states. Recent research has provided structural and functional insight into these proteins, facilitating the development of means to modulate the activity of SRCR-SF members. Indeed, some of these approaches are already in use, paving the way for a more comprehensive use of SRCR-SF members in the clinic. The present review will illustrate some available evidence on the potential of well known and new members of the SRCR-SF in this regard.
Collapse
Affiliation(s)
- Vanesa Gabriela Martínez
- Center Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
72
|
Cox LAT. An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:1543-1560. [PMID: 21477084 DOI: 10.1111/j.1539-6924.2011.01610.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Whether crystalline silica (CS) exposure increases risk of lung cancer in humans without silicosis, and, if so, whether the exposure-response relation has a threshold, have been much debated. Epidemiological evidence is ambiguous and conflicting. Experimental data show that high levels of CS cause lung cancer in rats, although not in other species, including mice, guinea pigs, or hamsters; but the relevance of such animal data to humans has been uncertain. This article applies recent insights into the toxicology of lung diseases caused by poorly soluble particles (PSPs), and by CS in particular, to model the exposure-response relation between CS and risk of lung pathologies such as chronic inflammation, silicosis, fibrosis, and lung cancer. An inflammatory mode of action is described, having substantial empirical support, in which exposure increases alveolar macrophages and neutrophils in the alveolar epithelium, leading to increased reactive oxygen species (ROS) and nitrogen species (RNS), pro-inflammatory mediators such as TNF-alpha, and eventual damage to lung tissue and epithelial hyperplasia, resulting in fibrosis and increased lung cancer risk among silicotics. This mode of action involves several positive feedback loops. Exposures that increase the gain factors around such loops can create a disease state with elevated levels of ROS, TNF-alpha, TGF-beta, alveolar macrophages, and neutrophils. This mechanism implies a "tipping point" threshold for the exposure-response relation. Applying this new model to epidemiological data, we conclude that current permissible exposure levels, on the order of 0.1 mg/m³, are probably below the threshold for triggering lung diseases in humans.
Collapse
|
73
|
Rabolli V, Lo Re S, Uwambayinema F, Yakoub Y, Lison D, Huaux F. Lung fibrosis induced by crystalline silica particles is uncoupled from lung inflammation in NMRI mice. Toxicol Lett 2011; 203:127-34. [PMID: 21414392 DOI: 10.1016/j.toxlet.2011.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/11/2022]
Abstract
Previous studies in rats have suggested a causal relationship between progressive pulmonary inflammation and lung fibrosis induced by crystalline silica particles. We report here that, in NMRI mice, the lung response to silica particles is accompanied by a mild and non progressive pulmonary inflammation which is dispensable for the development of lung fibrosis. We found that glucocorticoid (dexamethasone) dramatically reduced lung injury, cellular inflammation and pro-inflammatory cytokine expression (TNF-α, IL-1β and KC) but had no significant effect on silica-induced lung fibrosis and expression of the fibrogenic and suppressive cytokines TGF-β and IL-10 in mice. Other anti-inflammatory molecules such as the COX inhibitor piroxicam or the phosphodiesterase 5 inhibitor sildenafil also reduced lung inflammation without modifying collagen, TGF-β or IL-10 lung content. Our findings indicate that the development of lung fibrosis in silica-treated NMRI mice is not driven by inflammatory lung responses and suggest that suppressive cytokines may represent critical fibrotic factors and potential therapeutic targets in silicosis.
Collapse
Affiliation(s)
- Virginie Rabolli
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
74
|
Chistiakov DA, Voronova NV, Turakulov RI, Savost'anov KV. The -112G>A polymorphism of the secretoglobin 3A2 (SCGB3A2) gene encoding uteroglobin-related protein 1 (UGRP1) increases risk for the development of Graves' disease in subsets of patients with elevated levels of immunoglobulin E. J Appl Genet 2010; 52:201-7. [PMID: 21170691 DOI: 10.1007/s13353-010-0022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/03/2023]
Abstract
The human secretoglobin 3A2 (SCGB3A2) gene encoding secretory uteroglobin-related protein 1 (UGRP1) resides on the chromosome region 5q31-33 that harbors a susceptibility locus to several autoimmune and inflammatory diseases, including asthma and Graves' disease (GD). Recently, association between the marker rs1368408 (-112G >A), located in the promoter region of the SCGB3A2 gene, and susceptibility to GD was found in Chinese and UK Caucasians. The study aim was to evaluate whether this polymorphism confers GD susceptibility in a large population cohort comprising 1,474 Russian GD patients and 1,619 controls. The marker rs1368408 was studied using a TaqMan allele discrimination assay. Serum levels of UGRP1 and immunoglobulin E (IgE) were assessed using enzyme-linked immunosorbent assay (ELISA) analyses. Association between the allele A of SCGB3A2 and a higher risk of GD (odds ratio [OR] = 1.33, P = 2.9 × 10(-5)) was shown. Both affected and non-affected carriers of the higher risk genotype A/A had significantly decreased levels of serum UGRP1 compared to the subjects homozygous for G/G (93 ± 37 pg/ml vs. 132 ± 45 pg/ml, P = 0.0011 for GD patients; 77 ± 28 pg/ml vs. 119 ± 33 pg/ml, P = 0.0019 for controls). Serum IgE levels were significantly higher in non-affected subjects homozygous for A/A compared to control individuals homozygous for G/G (153 ± 46 IU/ml vs. 122 ± 40 IU/ml, P = 0.0095). Our data suggest that the carriage of the SCGB3A2 -112A/A variant increases the risk for GD in subsets of patients with elevated levels of IgE, a hallmark of allergic asthma. Therefore, the SCGB3A2 -112G >A polymorphism may be considered as a likely marker linking susceptibility to allergy/asthma and GD on chromosome 5q31-33.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Diagnostics, National Research Center GosNIIgenetika, 1st Dorozhny Proezd 1, 117545, Moscow, Russia.
| | | | | | | |
Collapse
|
75
|
Beyerle A, Irmler M, Beckers J, Kissel T, Stoeger T. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm 2010; 7:727-37. [PMID: 20429563 DOI: 10.1021/mp900278x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyethylene imine (PEI) based polycations, successfully used for gene therapy or RNA interference in vitro as well as in vivo, have been shown to cause well-known adverse side effects, especially high cytotoxicity. Therefore, various modifications have been developed to improve safety and efficiency of these nonviral vector systems, but profound knowledge about the underlying mechanisms responsible for the high cytotoxicity of PEI is still missing. In this in vitro study, we focused on stress and toxicity pathways triggered by PEI-based vector systems to be used for pulmonary application and two well-known lung toxic particles: fine crystalline silica (CS) and nanosized ZnO (NZO). The cytotoxicity profiles of all stressors were investigated in alveolar epithelial-like type II cells (LA4) to define concentrations with matching toxicity levels (cell viability >60% and LDH release <10%) for subsequent qRT-PCR-based gene array analysis. Within the first 6 h pathway analysis revealed for CS an extrinsic apoptotic signaling (TNF pathway) in contrast to the intrinsic apoptotic pathway (mitochondrial signaling) which was induced by PEI 25 kDa after 24 h treatment. The following causative chain of events seems conceivable: reactive oxygen species derived from particle surface toxicity triggers TNF signaling in the case of CS, whereby endosomal swelling and rupture upon endocytotic PEI 25 kDa uptake causes intracellular stress and mitochondrial alterations, finally leading to apoptotic cell death at higher doses. PEG modification most notably reduced the cytotoxicity of PEI 25 kDa but increased proinflammatory signaling on mRNA and even protein level. Hence in view of the lung as a sensitive target organ this inflammatory stimulation might cause unwanted side effects related to respiratory and cardiovascular disorders. Thus further optimization of the PEI-based vector systems is still needed for pulmonary application.
Collapse
Affiliation(s)
- Andrea Beyerle
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munchen, and Institute of Experimental Genetics, Helmholtz Zentrum Munchen, Germany
| | | | | | | | | |
Collapse
|
76
|
Sun Y, Yang F, Yan J, Li Q, Wei Z, Feng H, Wang R, Zhang L, Zhang X. New anti-fibrotic mechanisms of n-acetyl-seryl-aspartyl-lysyl-proline in silicon dioxide-induced silicosis. Life Sci 2010; 87:232-9. [DOI: 10.1016/j.lfs.2010.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/01/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
|
77
|
Abstract
Susceptibility to most autoimmune diseases is dependent on polygenic inheritance, environmental factors, and poorly defined stochastic events. One of the significant challenges facing autoimmune disease research is in identifying the specific events that trigger loss of tolerance and autoimmunity. Although many intrinsic factors, including age, sex, and genetics, contribute to autoimmunity, extrinsic factors such as drugs, chemicals, microbes, or other environmental factors can also act as important initiators. This review explores how certain extrinsic factors, namely, drugs and chemicals, can promote the development of autoimmunity, focusing on a few better characterized agents that, in most instances, have been shown to produce autoimmune manifestations in human populations. Mechanisms of autoimmune disease induction are discussed in terms of research obtained using specific animal models. Although a number of different pathways have been delineated for drug/chemical-induced autoimmunity, some similarities do exist, and a working model is proposed.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | |
Collapse
|
78
|
Beamer CA, Migliaccio CT, Jessop F, Trapkus M, Yuan D, Holian A. Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol 2010; 88:547-57. [PMID: 20576854 DOI: 10.1189/jlb.0210108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lung is constantly exposed to potentially pathogenic particles and microorganisms. It has become evident recently that not only innate but also adaptive immune responses to particulates, such as SiO(2) entering the respiratory tract, are complex and dynamic events. Although the cellular mechanisms and anatomical consequences involved in the development of silicosis have been studied extensively, they still remain poorly understood. Based on their capacity for immune regulation, lymphocytes may play a key role in the respiratory response to environmental challenge by SiO(2). The objective of this study was to characterize the impact of SiO(2) exposure on respiratory immune processes, with particular emphasis on evaluating the importance of lymphocytes in the murine silicosis model. Therefore, lymphopenic mice, including NK-deficient, Rag1(-/-), or a combination (Rag1(-/-) NK-depleted), were used and demonstrated that SiO(2)-induced fibrosis and inflammation can occur independently of T, B, NK T, and NK cells. Studies in Rag1(-/-) mice suggest further that lymphocytes may participate in the regulation of SiO(2)-induced inflammation through modulation of the Nalp3 inflammasome. This observation may have clinical relevance in the treatment of inflammatory and fibrotic lung diseases that are refractory or respond suboptimally to current therapeutics.
Collapse
Affiliation(s)
- Celine A Beamer
- University of Montana, Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, Skaggs Building, Room 285A, Missoula, MT 59812-1552, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Giordano G, van den Brûle S, Lo Re S, Triqueneaux P, Uwambayinema F, Yakoub Y, Couillin I, Ryffel B, Michiels T, Renauld JC, Lison D, Huaux F. Type I interferon signaling contributes to chronic inflammation in a murine model of silicosis. Toxicol Sci 2010; 116:682-92. [PMID: 20513754 DOI: 10.1093/toxsci/kfq158] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lung disorders induced by inhaled inorganic particles such as crystalline silica are characterized by chronic inflammation and pulmonary fibrosis. Here, we demonstrate the importance of type I interferon (IFN) in the development of crystalline silica-induced lung inflammation in mice, revealing that viruses and inorganic particles share similar signaling pathways. We found that instillation of silica is followed by the upregulation of IFN-beta and IRF-7 and that granulocytes (GR1(+)) and macrophages/dendritic cells (CD11c(+)) are major producers of type I IFN in response to silica. Two months after silica administration, both IFNAR- and IRF-7-deficient mice produced significantly less pulmonary inflammation and chemokines (KC and CCL2) than competent mice but developed similar lung fibrosis. Our data indicate that type I IFN contributes to the chronic lung inflammation that accompanies silica exposure in mice. Type I IFN is, however, dispensable in the development of silica-induced acute lung inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Giulia Giordano
- Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lacher SE, Johnson C, Jessop F, Holian A, Migliaccio CT. Murine pulmonary inflammation model: a comparative study of anesthesia and instillation methods. Inhal Toxicol 2010; 22:77-83. [PMID: 20017595 DOI: 10.3109/08958370902929969] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Various techniques have been utilized historically to generate acute pulmonary inflammation in the murine system. Crystalline silica exposure results in acute inflammation followed by pulmonary fibrosis. Methods of exposure are varied in their techniques, as well as types of anesthesia. Therefore, the current study sought to compare the effects of two major anesthesia (isoflurane and ketamine) and three routes of instillation, intranasal (IN), intratracheal (IT), and trans-oral (TO), on markers of inflammation. Mice were anesthetized with isoflurane or ketamine and instilled IN with silica or phosphate-buffered saline (PBS). Mice were sacrificed and lavaged after 3 days. To assess inflammation, alveolar cells were assessed by cytospin and lavage fluid was analyzed for inflammatory cytokines and total protein. While all parameters were increased in silica-exposed groups, regardless of anesthesia type, there were significant increases in neutrophils and total protein in mice anesthetized with ketamine, compared to isoflurane. In comparing instillation techniques, mice were anesthetized with isoflurane and instilled IN, IT, or TO with silica. Increases were observed in all parameters, except tumor necrosis factor-alpha, following IT silica instillation as compared to the IN and TO instillation groups. In addition, fluorescent microsphere uptake by alveolar macrophages supported the notion that all methods of instillation were uniform, but IT had significantly greater dispersion. Taken together, these data show that each method of exposure tested generated significant inflammation among the silica groups, and any differences in parameters or techniques should be taken into consideration when developing an animal model to study pulmonary diseases.
Collapse
Affiliation(s)
- Sarah E Lacher
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | | | | | | | | |
Collapse
|
81
|
Reddy NM, Suryanarayana V, Kalvakolanu DV, Yamamoto M, Kensler TW, Hassoun PM, Kleeberger SR, Reddy SP. Innate immunity against bacterial infection following hyperoxia exposure is impaired in NRF2-deficient mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:4601-8. [PMID: 19734219 DOI: 10.4049/jimmunol.0901754] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxygen supplementation is used as therapy to support critically ill patients with severe respiratory impairment. Although hyperoxia has been shown to enhance the lung susceptibility to subsequent bacterial infection, the mechanisms underlying enhanced susceptibility remain enigmatic. We have reported that disruption of NF-E2-related factor 2 (Nrf2), a master transcription regulator of various stress response pathways, enhances susceptibility to hyperoxia-induced acute lung injury in mice, and have also demonstrated an association between a polymorphism in the NRF2 promoter and increased susceptibility to acute lung injury. In this study, we show that Nrf2-deficient (Nrf2(-/-)) but not wild-type (Nrf2(+/+)) mice exposed to sublethal hyperoxia succumbed to death during recovery after Pseudomonas aeruginosa infection. Nrf2-deficiency caused persistent bacterial pulmonary burden and enhanced levels of inflammatory cell infiltration as well as edema. Alveolar macrophages isolated from Nrf2(-/-) mice exposed to hyperoxia displayed persistent oxidative stress and inflammatory cytokine expression concomitant with diminished levels of antioxidant enzymes, such as Gclc, required for glutathione biosynthesis. In vitro exposure of Nrf2(-/-) macrophages to hyperoxia strongly diminished their antibacterial activity and enhanced inflammatory cytokine expression compared with Nrf2(+/+) cells. However, glutathione supplementation during hyperoxic insult restored the ability of Nrf2(-/-) cells to mount antibacterial response and suppressed cytokine expression. Thus, loss of Nrf2 impairs lung innate immunity and promotes susceptibility to bacterial infection after hyperoxia exposure, ultimately leading to death of the host.
Collapse
Affiliation(s)
- Narsa M Reddy
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Room. E7610, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|