51
|
The carotenoid lycopene protects rats against DNA damage induced by Ochratoxin A. Toxicon 2013; 73:96-103. [DOI: 10.1016/j.toxicon.2013.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
|
52
|
Radford R, Frain H, Ryan MP, Slattery C, McMorrow T. Mechanisms of chemical carcinogenesis in the kidneys. Int J Mol Sci 2013; 14:19416-33. [PMID: 24071941 PMCID: PMC3821564 DOI: 10.3390/ijms141019416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.
Collapse
Affiliation(s)
- Robert Radford
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Helena Frain
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael P. Ryan
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Craig Slattery
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tara McMorrow
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
53
|
A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. ScientificWorldJournal 2013; 2013:767482. [PMID: 23710148 PMCID: PMC3654247 DOI: 10.1155/2013/767482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/10/2013] [Indexed: 12/21/2022] Open
Abstract
Physicians are increasingly being asked to diagnose and treat people made ill by exposure to water-damaged environments, mold, and mycotoxins. In addition to avoidance of further exposure to these environments and to items contaminated by these environments, a number of approaches have been used to help persons affected by exposure to restore their health. Illness results from a combination of factors present in water-damaged indoor environments including, mold spores and hyphal fragments, mycotoxins, bacteria, bacterial endotoxins, and cell wall components as well as other factors. Mechanisms of illness include inflammation, oxidative stress, toxicity, infection, allergy, and irritant effects of exposure. This paper reviews the scientific literature as it relates to commonly used treatments such as glutathione, antioxidants, antifungals, and sequestering agents such as Cholestyramine, charcoal, clay and chlorella, antioxidants, probiotics, and induced sweating.
Collapse
|
54
|
|
55
|
Palabiyik SS, Erkekoglu P, Zeybek ND, Kizilgun M, Baydar DE, Sahin G, Giray BK. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. ACTA ACUST UNITED AC 2013; 65:853-61. [PMID: 23332503 DOI: 10.1016/j.etp.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 12/15/2022]
Abstract
This study was designed to investigate the possible protective effect of lycopene against the renal toxic effects of OTA. Male Sprague-Dawley rats (<200 g, n=6) were treated with OTA (0.5 mg/kg/day) and/or lycopene (5 mg/kg/day) by gavage for 14 days. Histopathological examinations were performed and apoptotic cell death in both cortex and medulla was evaluated by TUNEL assay. Besides, biochemical parameters and activities of renal antioxidant selenoenzymes [glutathione peroxidase 1 (GPx1), thioredoxin reductase (TrxR)], catalase (CAT), superoxide dismutase (SOD); concentrations of total glutathione (GSH), and malondialdehyde (MDA) levels were measured. OTA treatment was found to induce oxidative stress in rat kidney, as evidenced by marked decreases in CAT (35%) activity and GSH levels (44%) as well as increase in SOD activity (22%) vs control group. Furthermore, TUNEL analysis revealed a significant increase in the number of TUNEL-positive cells in cortex (49%) and medulla (75%) in OTA administrated group compared to control (p<0.05). Lycopene supplementation with OTA increased GPx1 activity and GSH levels, and decreased apoptotic cell death in both cortex and medulla vs. control. The results of this study showed that at least one of the mechanisms underlying the renal toxicity of OTA is oxidative stress and apoptosis is the major form of cell death caused by OTA. Besides, our data indicate that the natural antioxidant lycopene might be partially protective against OTA-induced nephrotoxicity and oxidative stress in rat.
Collapse
Affiliation(s)
- S Sezin Palabiyik
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
56
|
Stachurska A, Ciesla M, Kozakowska M, Wolffram S, Boesch-Saadatmandi C, Rimbach G, Jozkowicz A, Dulak J, Loboda A. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol Nutr Food Res 2012; 57:504-15. [PMID: 23281030 DOI: 10.1002/mnfr.201200456] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 11/07/2022]
Abstract
SCOPE Ochratoxin A (OTA) is a mycotoxin exhibiting nephrotoxic and potential carcinogenic activity. We investigated the cross-talk between microRNAs, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in ochratoxin A-mediated effects. METHODS AND RESULTS In porcine renal proximal tubular cells, OTA increased expression of profibrotic transforming growth factors β (TGFβ) while concomitantly decreasing expression of Nrf2, HO-1, and erythropoietin. Adenoviral overexpression of Nrf2 counteracted OTA-mediated reduction in HO-1 and erythropoietin expression and cell proliferation as well as increase in reactive oxygen species (ROS) generation and TGFβ expression. Additionally, inhibition of HO activity enhanced whereas adenoviral overexpression of HO-1 reduced expression of TGFβ. Moreover, antioxidants, N-acetyl-cysteine and desferioxamine, prevented OTA-mediated enhancement of ROS generation, and TGFβ expression. Finally, OTA modulated microRNA processing by upregulating LINeage protein 28 and DiGeorge syndrome critical region-8, increasing the total pool of cellular microRNAs and elevating the expression of miR-132 and miR-200c. Inhibition of miR-132 by specific antagomir restored the OTA-driven reduction in Nrf2 expression. Moreover, anti-miR-132 and anti-miR-200c counteracted OTA-mediated decrease in HO-1 levels as well as increase in ROS production and TGFβ expression. CONCLUSION We showed that attenuation of Nrf2 and HO-1 expression through induction of miR-132 and miR-200c by OTA elevates ROS levels and profibrotic TGFβ expression.
Collapse
Affiliation(s)
- Anna Stachurska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Palabiyik S, Erkekoglu P, Zeybek N, Kızılgun M, Sahin G, Giray BK. Ochratoxin A causes oxidative stress and cell death in rat liver. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of ochratoxin A (OTA) on oxidant/antioxidant status and on histopathological changes and apoptotic cell death in livers of male Sprague-Dawley rats has been investigated. OTA (0.5 mg/kg body weight/day) was administered by oral route for 14 days. Plasma biochemical parameters, activities of liver selenoenzymes (glutathione peroxidase-1, thioredoxin reductase) and antioxidant enzymes (catalase, superoxide dismutase, glutathione S-transferase), and levels of total glutathione and thiobarbituric acid reactive substance in hepatic tissue were measured. In addition, histopathological examinations were performed and apoptotic cell death of hepatocytes was evaluated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. OTA exposure was found to induce focal necrosis of hepatocytes and mononuclear cell infiltration. Besides, exposure to OTA caused an imbalance in oxidant and antioxidant parameters in the rat liver, as evidenced by significant decreases in glutathione S-transferase activity and glutathione levels, and marked increases in concentrations of thiobarbituric acid reactive substances. Furthermore, TUNEL analysis revealed a significant ~2.7-fold increase in the number of TUNEL-positive liver cells of rats exposed to OTA compared to the control group. The results of this study showed that oxidative stress is at least one of the mechanisms underlying the hepatic toxicity of OTA, and that both necrosis and apoptosis are types of cell death in the hepatic toxicity of this mycotoxin.
Collapse
Affiliation(s)
- S.S. Palabiyik
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Atatürk University, 25240 Erzurum, Turkey
| | - P. Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| | - N.D. Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, 06100 Ankara, Turkey
| | - M. Kızılgun
- Department of Biochemistry, Diskapi Children's Health and Diseases, Hematology, Oncology Training and Research Hospital, 06590 Ankara, Turkey
| | - G. Sahin
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Eastern Mediterranean University, Famagusta T.R. North Cyprus via Mersin 10, Turkey
| | - B. Kocer Giray
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
58
|
Dimethylarginine dimethylaminohydrolase/nitric oxide synthase pathway in liver and kidney: protective effect of cyanidin 3-O-β-D-glucoside on ochratoxin-A toxicity. Toxins (Basel) 2012; 4:353-63. [PMID: 22778905 PMCID: PMC3386635 DOI: 10.3390/toxins4050353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/06/2012] [Accepted: 04/27/2012] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to evaluate the effect of long-term cyanidin 3-O-β-D-glucoside (C3G) and/or Ochratoxin A (OTA)-exposure on dimethylarginine dimethylamino hydrolase/nitric oxide synthase (DDAH/NOS) pathway in rats. The experiments were performed in rats supplemented with C3G (1 g/kg feed), OTA (200 ppb), and OTA + C3G. After 4 weeks of daily treatment, liver and kidneys were processed for eNOS, iNOS and DDAH-1 Western blotting, nitrite levels evaluation and DDAH activity determination. Results show that OTA is able to induce iNOS both in kidney and liver, whereas OTA is able to induce eNOS and DDAH-1 overexpression and DDAH activation only in kidney, resulting in increased nitrite levels. In kidney of OTA + C3G fed rats, iNOS, eNOS and DDAH-1 expression were less pronounced compared with those observed in the OTA-treated group. Coherent with the decreased iNOS, eNOS and DDAH-1 expression a decrease in nitrite levels and DDAH activity was observed in the OTA + C3G group. Results demonstrate that C3G is able to counteract the deleterious effects of chronic consumption of OTA and also suggest a possible involvement of iNOS-eNOS-DDAH impairment in OTA nephrocarcinogenity.
Collapse
|
59
|
Morsy FA, el Din AAG, Farrag ARH, Badawi MA, Shaffie NM. Ochratoxin A Toxic Effect on Rat Kidneys and the Potential Protective Effect of Ginseng: Histopathologic, Histochemical, and Image Analysis Morphometric Studies. ACTA ACUST UNITED AC 2012. [DOI: 10.3889/mjms.1857-5773.2012.0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
60
|
Mally A. Ochratoxin a and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol Sci 2012; 127:315-30. [PMID: 22403158 DOI: 10.1093/toxsci/kfs105] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mycotoxin and food contaminant ochratoxin A (OTA) is a potent renal carcinogen in rodents, but its mode of action (MoA) is still poorly defined. In 2006, the European Food Safety Authority concluded that there is a "lack of evidence for the existence of OTA-DNA adducts" and thus insufficient evidence to establish DNA reactivity as a MoA for tumor formation by OTA. In reviewing the available database on OTA toxicity, a MoA for renal carcinogenicity of OTA is developed that involves a combination of genetic instability and increased proliferative drive as consequences of OTA-mediated disruption of mitosis, whereby the organ- and site-specificity of tumor formation by OTA is determined by selective renal uptake of OTA into the proximal tubule epithelium. The proposed MoA is critically assessed with respect to concordance of dose-response of the suggested key events and tumor formation, their temporal association, consistency, and biological plausibility. Uncertainties, data gaps and needs for further research are highlighted.
Collapse
Affiliation(s)
- Angela Mally
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
61
|
Lates V, Yang C, Popescu IC, Marty JL. Displacement immunoassay for the detection of ochratoxin A using ochratoxin B modified glass beads. Anal Bioanal Chem 2012; 402:2861-70. [PMID: 22331050 DOI: 10.1007/s00216-012-5721-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 11/24/2022]
Abstract
We report here the development of a new assay for the detection of ochratoxin A (OTA) based on the use of its dechlorinated analogue, ochratoxin B (OTB), in a displacement immunoassay. OTB was immobilised on controlled-pore glass beads followed by the binding of anti-OTA antibody, with anti-IgG antibody peroxidase conjugate used as a label. In this manner, an original bio-sensing material was obtained. Upon incubation of this material with OTA, the toxin competes with OTB for the binding sites of the anti-OTA antibodies and releases the antibody-tagged peroxidase complex into the solution. Compared to classic competitive immunoassays, this newly developed displacement immunoassay presents a similar detection limit and assay time. Moreover, the detection, based on the activity of the horseradish peroxidase, is performed for the first time in situ using wine samples.
Collapse
|
62
|
Pfohl-Leszkowicz A, Manderville RA. An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem Res Toxicol 2011; 25:252-62. [PMID: 22054007 DOI: 10.1021/tx200430f] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring chlorophenolic fungal toxin that contaminates a wide range of food products and poses a cancer threat to humans. The mechanism of action (MOA) for OTA renal carcinogenicity is a controversial issue. In 2005, direct genotoxicity (covalent DNA adduct formation) was proposed as a MOA for OTA-mediated carcinogenicity [ Manderville , R. A. ( 2005 ) Chem. Res. Toxicol. 18 , 1091 - 1097 ]. At that time, inconsistent results had been published on OTA genotoxicity/mutagenicity, and conclusive evidence for OTA-mediated DNA adduction had been lacking. In this update, published data from the past 6-7 years are presented that provide new hypotheses for the MOA of OTA-mediated carcinogenicity. While direct genotoxicity remains a controversial issue for OTA, new findings from the Umemura and Nohmi laboratories provide definitive results for the mutagenicity of OTA in the target tissue (outer medulla) of male rat kidney that rules out oxidative DNA damage. These findings, coupled with our own efforts that provide new structural evidence for DNA adduction by OTA, has strengthened the argument for involvement of direct genotoxicity in OTA-mediated renal carcinogenesis. This MOA should be taken into consideration for OTA human risk assessment.
Collapse
Affiliation(s)
- Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique , UMR CNRS/INPT/UPS 5503, INP/ENSA Toulouse, 1 Avenue Agrobiopole, F-31326 Auzeville-Tolosane, France.
| | | |
Collapse
|
63
|
Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int 2011; 81:559-67. [PMID: 22071594 DOI: 10.1038/ki.2011.371] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endemic (Balkan) nephropathy is a chronic tubulointerstitial disease frequently accompanied by urothelial cell carcinomas of the upper urinary tract. This disorder has recently been linked to exposure to aristolochic acid, a powerful nephrotoxin and human carcinogen. Following metabolic activation, aristolochic acid reacts with genomic DNA to form aristolactam-DNA adducts that generate a unique TP53 mutational spectrum in the urothelium. The aristolactam-DNA adducts are concentrated in the renal cortex, thus serving as biomarkers of internal exposure to aristolochic acid. Here, we present molecular epidemiologic evidence relating carcinomas of the upper urinary tract to dietary exposure to aristolochic acid. DNA was extracted from the renal cortex and urothelial tumor tissue of 67 patients that underwent nephroureterectomy for carcinomas of the upper urinary tract and resided in regions of known endemic nephropathy. Ten patients from nonendemic regions with carcinomas of the upper urinary tract served as controls. Aristolactam-DNA adducts were quantified by (32)P-postlabeling, the adduct was confirmed by mass spectrometry, and TP53 mutations in tumor tissues were identified by chip sequencing. Adducts were present in 70% of the endemic cohort and in 94% of patients with specific A:T to T:A mutations in TP53. In contrast, neither aristolactam-DNA adducts nor specific mutations were detected in tissues of patients residing in nonendemic regions. Thus, in genetically susceptible individuals, dietary exposure to aristolochic acid is causally related to endemic nephropathy and carcinomas of the upper urinary tract.
Collapse
|
64
|
Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B. Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011; 2011:645361. [PMID: 21776264 PMCID: PMC3135259 DOI: 10.1155/2011/645361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The in vitro and in vivo evidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in both in vitro and in vivo test systems. In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.
Collapse
Affiliation(s)
- M. Marin-Kuan
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - V. Ehrlich
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - T. Delatour
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - C. Cavin
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - B. Schilter
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| |
Collapse
|