51
|
Cai F, Liu J, Li C, Wang J. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR. Int J Mol Sci 2015; 16:28077-86. [PMID: 26602924 PMCID: PMC4691030 DOI: 10.3390/ijms161226083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/11/2023] Open
Abstract
Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR) can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER) stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA). Meanwhile; real-time polymerase chain reaction (real-time PCR) and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78); C/EBP homologous protein (CHOP) and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR.
Collapse
Affiliation(s)
- Fei Cai
- Department of Pharmacology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Cairong Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China.
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
52
|
Cai F, Liu J, Li C, Wang J. Intracellular Calcium Plays a Critical Role in the Microcystin-LR-Elicited Neurotoxicity Through PLC/IP3 Pathway. Int J Toxicol 2015; 34:551-8. [PMID: 26395499 DOI: 10.1177/1091581815606352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotoxicity of microcystin-leucine-arginine (MCLR) has been widely reported. However, the mechanism is not fully understood. Using primary hippocampal neurons, we tested the hypothesis that MCLR-triggered activation in intracellular free calcium concentration ([Ca(2+)](i)) induces the death of neurons. Microcystin-leucine-arginine inhibited cell viability at a range of 0.1 to 30 μmol/L and caused a dose-dependent increase in [Ca(2+)](i). This increase in [Ca(2+)](i) was observed in Ca(2+)-free media and blocked by an endoplasmic reticulum Ca(2+) pump inhibitor, suggesting intracellular Ca(2+) release. Moreover, pretreatment of hippocampal neurons with intracellular Ca(2+) chelator (O,O'-bis (2-aminophenyl) ethyleneglycol-N,N,N',N'-tetraacetic acid, tetraacetoxy-methyl ester) and inositol 1,4,5-trisphosphate receptor antagonist (2-aminoethoxydiphenyl borate) could block both the Ca(2+) mobilization and the neuronal death following MCLR exposure. In contrast, the ryanodine receptor inhibitor (dantrolene) did not ameliorate the effect of MCLR. In conclusion, MCLR disrupts [Ca(2+)](i) homeostasis in neurons by releasing Ca(2+) from intracellular stores, and this increase in [Ca(2+)](i) may be a key determinant in the mechanism underlying MCLR-induced neurotoxicity.
Collapse
Affiliation(s)
- Fei Cai
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cairong Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
53
|
Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 2015; 101:92-100. [DOI: 10.1016/j.toxicon.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
54
|
Li G, Yan W, Dang Y, Li J, Liu C, Wang J. The role of calcineurin signaling in microcystin-LR triggered neuronal toxicity. Sci Rep 2015; 5:11271. [PMID: 26059982 PMCID: PMC4462030 DOI: 10.1038/srep11271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing neurotoxicity, but the exact mechanisms of action still remain unclear. Using proteomic analysis, forty-five proteins were identified to be significantly altered in hippocampal neurons of rats treated with MCLR. Among them, Ca(2+)-activated phosphatase calcineurin (CaN) and the nuclear factor of activated T-cells isoform c3 (NFATc3) were up-regulated remarkably. Validation of the changes in CaN and NFATc3 expression by Western blotting demonstrated CaN cleavage and subsequent NFATc3 nuclear translocation were generated, suggesting that exposure to MCLR leads to activation of CaN, which in turn activates NFATc3. Activation of CaN signaling has been reported to result in apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. In agreement with this, our results revealed that treatment of neurons with the CaN inhibitor FK506 blocked the reduction in Bad dephosphorylation and cytochrome c (cyt c) release triggered by MCLR. Consistent with these biochemical results, we observed a marked decrease in apoptotic and necrotic cell death after MCLR exposure in the presence of FK506, supporting the hypothesis that MCLR appeared to cause neuronal toxicity by activation of CaN and the CaN-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
55
|
Meng G, Liu J, Lin S, Guo Z, Xu L. Microcystin-LR-caused ROS generation involved in p38 activation and tau hyperphosphorylation in neuroendocrine (PC12) cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:366-374. [PMID: 24142891 DOI: 10.1002/tox.21914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/23/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Microcystin-LR (MC-LR), a potent specific hepatotoxin produced by cyanobacteria, has recently been reported to show neurotoxicity. Our previous study demonstrated that MC-LR caused the reorganization of cytoskeleton architectures and hyperphosphorylation of the cytoskeletal-associated proteins tau and HSP27 in neuroendocrine PC12 cell line by direct PP2A inhibition and indirect p38 mitogen-activated protein kinase (MAPK) activation. It has been shown that oxidative stress is extensively associated with MC-LR toxicity, mainly resulting from an excessive production of reactive oxygen species (ROS). However, the mechanisms by which ROS mediates the cytotoxic action of MC-LR are unclear. In the present study, we investigated whether ROS might play a critical role in MC-LR-induced hyperphosphorylation of microtubule-associated protein tau and the activation of the MAPKs in PC12 cell line. The results showed that MC-LR had time- and concentration-dependent effects on ROS generation, p38-MAPK activation and tau phosphorylation. The time-course studies indicated similar biphasic changes in ROS generation and tau hyperphosphorylation, which started to increase within 1 h and reached the maximum level at 3 h followed by a decrease after prolonged treatment. Furthermore, pretreatment with the antioxidants, N-acetylcysteine and vitamin C, significantly decreased MC-LR-induced ROS generation and effectively attenuated p38-MAPK activation as well as tau hyperphosphorylation. Taken together, these findings suggest that ROS generation triggered by MC-LR is a key intracellular event that contributes to an induction of p38-MAPK activation and tau phosphorylation, and that blockade of this ROS-mediated redox-sensitive signal cascades may attenuate the toxic effects of MC-LR.
Collapse
Affiliation(s)
- Guanmin Meng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China; Department of Biochemistry, School of Medicine, Zhejiang University, 866th Yu Hang Tang Road, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
56
|
Buratti FM, Testai E. Species- and congener-differences in microcystin-LR and -RR GSH conjugation in human, rat, and mouse hepatic cytosol. Toxicol Lett 2015; 232:133-40. [DOI: 10.1016/j.toxlet.2014.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
57
|
Zhao S, Li G, Chen J. A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. J Proteomics 2015; 114:197-213. [DOI: 10.1016/j.jprot.2014.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/14/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023]
|
58
|
Morrison JP, Sharma AK, Rao D, Pardo ID, Garman RH, Kaufmann W, Bolon B. Fundamentals of translational neuroscience in toxicologic pathology: optimizing the value of animal data for human risk assessment. Toxicol Pathol 2014; 43:132-9. [PMID: 25398755 DOI: 10.1177/0192623314558306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A half-day Society of Toxicologic Pathology continuing education course on "Fundamentals of Translational Neuroscience in Toxicologic Pathology" presented some current major issues faced when extrapolating animal data regarding potential neurological consequences to assess potential human outcomes. Two talks reviewed functional-structural correlates in rodent and nonrodent mammalian brains needed to predict behavioral consequences of morphologic changes in discrete neural cell populations. The third lecture described practical steps for ensuring that specimens from rodent developmental neurotoxicity tests will be processed correctly to produce highly homologous sections. The fourth talk detailed demographic factors (e.g., species, strain, sex, and age); physiological traits (body composition, brain circulation, pharmacokinetic/pharmacodynamic patterns, etc.); and husbandry influences (e.g., group housing) known to alter the effects of neuroactive agents. The last presentation discussed the appearance, unknown functional effects, and potential relevance to humans of polyethylene glycol (PEG)-associated vacuoles within the choroid plexus epithelium of animals. Speakers provided real-world examples of challenges with data extrapolation among species or with study design considerations that may impact the interpretability of results. Translational neuroscience will be bolstered in the future as less invasive and/or more quantitative techniques are devised for linking overt functional deficits to subtle anatomic and chemical lesions.
Collapse
Affiliation(s)
| | | | - Deepa Rao
- National Toxicology Program, National Institute of Environmental Health Sciences and Integrated Laboratory Systems, Research Triangle Park, North Carolina, USA
| | | | - Robert H Garman
- Consultants in Veterinary Pathology, Inc., Murrysville, Pennsylvania, USA
| | | | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Columbus, Ohio, USA
| |
Collapse
|
59
|
Wang H, Liu J, Lin S, Wang B, Xing M, Guo Z, Xu L. MCLR-induced PP2A inhibition and subsequent Rac1 inactivation and hyperphosphorylation of cytoskeleton-associated proteins are involved in cytoskeleton rearrangement in SMMC-7721 human liver cancer cell line. CHEMOSPHERE 2014; 112:141-153. [PMID: 25048900 DOI: 10.1016/j.chemosphere.2014.03.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria-derived toxin microcystin-LR (MCLR) has been widely investigated in its effects on normal cells, there is little information concerning its effects on cancer cells. In the present study, the SMMC-7721 human liver cancer cell line treated with MCLR was used to investigate the change of PP2A, cytoskeleton rearrangement, phosphorylation levels of PP2A substrates that related with cytoskeleton stability and explored underlying mechanisms. Here, we confirmed that MCLR entered into SMMC-7721 cells, bound to PP2A/C subunit and inhibited the activity of PP2A. The upregulation of phosphorylation of the PP2A/C subunit and PP2A regulation protein α4, as well as the change in the association of PP2A/C with α4, were responsible for the decrease in PP2A activity. Another novel finding is that the rearrangement of filamentous actin and microtubules led by MCLR may attribute to the increased phosphorylation of HSP27, VASP and cofilin due to PP2A inhibition. As a result of weakened interactions with PP2A and alterations in its subcellular localization, Rac1 may contribute to the cytoskeletal rearrangement induced by MCLR in SMMC-7721 cells. The current paper presents the first report demonstrating the characteristic of PP2A in MCLR exposed cancer cells, which were more susceptible to MCLR compared with the normal cell lines we previously found, which may be owing to the absence of some type of compensatory mechanisms. The hyperphosphorylation of cytoskeleton-associated proteins and Rac1 inactivation which were induced by inhibition of PP2A are shown to be involved in cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuyan Lin
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Beilei Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingluan Xing
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zonglou Guo
- Department of Biosystem Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
60
|
Hou J, Li L, Xue T, Long M, Su Y, Wu N. Damage and recovery of the ovary in female zebrafish i.p.-injected with MC-LR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:110-118. [PMID: 25005048 DOI: 10.1016/j.aquatox.2014.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Up to now, in vivo studies on toxic effects of microcystins (MCs) on the reproductive system are limited and the underlying molecular mechanisms of MCs-induced reproductive toxicity remain to be elucidated. In an acute toxic experiment, female zebrafish (Danio rerio) were injected intraperitoneally (i.p.) at doses of 50 and 200 μg MC-LR/kg body weight (BW) respectively, and histopathological lesions and antioxidant enzymatic activities and gene expression in the ovary were studied at 1, 3, 12, 24, 48 and 168 h post injection (hpi). Pathological lesions of zebrafish ovary progressed in severity and extent with the increasing exposure time and dose within 12 hpi. Concurrently, the increases in malondialdehyde (MDA) contents as well as the enzymatic activities and transcriptional levels of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) showed the occurrence of oxidative stress, indicating that MC-LR induced adverse effects on the structure and functional activity of zebrafish ovary. Oxidative stress plays a significant role in the reproductive toxicity of MC-LR. The significant decrease of glutathione (GSH) content in zebrafish ovary suggested the importance of MC-LR detoxification by glutathione S-transferases (GST) via GSH. The final recovery of histostructure and antioxidative indices indicated that ovarian efficient antioxidant defense system might be an important mechanism of zebrafish to counteract MC-LR. Although the negative effects of MC-LR can be overcome by ovarian antioxidant system in this study, the potential reproductive risks of MC-LR should not be neglected because of its wide occurrence.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R.China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, P.R.China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R.China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R.China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, P.R.China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R.China.
| | - Ting Xue
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R.China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, P.R.China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R.China
| | - Meng Long
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R.China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, P.R.China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R.China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R.China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, P.R.China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R.China
| | - Ning Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R.China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, P.R.China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R.China
| |
Collapse
|
61
|
Delzor A, Couratier P, Boumédiène F, Nicol M, Druet-Cabanac M, Paraf F, Méjean A, Ploux O, Leleu JP, Brient L, Lengronne M, Pichon V, Combès A, El Abdellaoui S, Bonneterre V, Lagrange E, Besson G, Bicout DJ, Boutonnat J, Camu W, Pageot N, Juntas-Morales R, Rigau V, Masseret E, Abadie E, Preux PM, Marin B. Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme. BMJ Open 2014; 4:e005528. [PMID: 25180055 PMCID: PMC4156816 DOI: 10.1136/bmjopen-2014-005528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS. METHODS AND ANALYSIS The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case-control study, in the subpopulation living in the identified areas, will gather information about patients' occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls. ETHICS AND DISSEMINATION The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Aurélie Delzor
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Philippe Couratier
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Farid Boumédiène
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Marie Nicol
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Michel Druet-Cabanac
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - François Paraf
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Annick Méjean
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Olivier Ploux
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Jean-Philippe Leleu
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Luc Brient
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Marion Lengronne
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Saïda El Abdellaoui
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Vincent Bonneterre
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
| | - Emmeline Lagrange
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Dominique J Bicout
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
- Biomathematics and Epidemiology, Environment and Health Prediction in Populations (EPSP), VetAgro Sup, Marcy-l'Etoile, France
| | - Jean Boutonnat
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - William Camu
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Nicolas Pageot
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Raul Juntas-Morales
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Valérie Rigau
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Estelle Masseret
- UMR 5119 ECOSYM, Ecology of Coastal Marine Systems, UM2-CNRS-IRD-Ifremer-UM1, University Montpellier II, Montpellier, France
| | - Eric Abadie
- Environment Resources Laboratory/Languedoc-Roussillon, Ifremer, Sète, France
| | - Pierre-Marie Preux
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Benoît Marin
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| |
Collapse
|
62
|
Chen L, Zhang X, Chen J, Zhang X, Fan H, Li S, Xie P. NF-κB plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis. Toxicon 2014; 87:120-30. [PMID: 24932741 DOI: 10.1016/j.toxicon.2014.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/26/2023]
Abstract
Microcystins (MCs) are well-known cyanobacterial toxins produced in eutrophic waters and can act as potential carcinogens and have caused serious risk to human health. However, pleiotropic even paradoxical actions of cells exposure to MCs have been reported, and the mechanisms of MC-induced tumorigenesis and apoptosis are still unknown. In this study, we performed the first comprehensive in vitro investigation on carcinogenesis associated with nuclear factor kappa B (NF-κB) and its downstream genes in HeLa cells (Human cervix adenocarcinoma cell line from epithelial cells) exposure to MC-RR. HeLa cells were treated with 0, 20, 40, 60, and 80 µg/mL MC-RR for 4, 8, 12, and 24 h. HeLa cells presented dualistic responses to different doses of MCs. CCK8 assay showed that MC-RR exposure evidently enhanced cell viability of HeLa cells at lower MCs doses. Cell cycle and apoptosis analysis revealed that lower MCs doses promoted G1/S transition and cell proliferation while higher doses of MCs induced apoptosis, with a dose-dependent manner. Electrophoretic mobility shift assay (EMSA) revealed that MC-RR could increase/decrease NF-κB activity at lower/higher MC-RR doses, respectively. Furthermore, the expression of NF-κB downstream target genes including c-FLIP, cyclinD1, c-myc, and c-IAP2 showed the same variation trend as NF-κB activity both at mRNA and protein levels, which were induced by lower doses of MC-RR and suppressed by higher doses. Our data verified for the first time that NF-κB pathway may mediate MC-induced cell proliferation and apoptosis and provided a better understanding of the molecular mechanism for potential carcinogenicity of MC-RR.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuezhen Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huihui Fan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shangchun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
63
|
Genotoxicity of microcystin-LR in in vitro and in vivo experimental models. BIOMED RESEARCH INTERNATIONAL 2014; 2014:949521. [PMID: 24955368 PMCID: PMC4052155 DOI: 10.1155/2014/949521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/30/2014] [Indexed: 01/21/2023]
Abstract
Microcystin-LR (MCLR) is a cyanobacterial toxin known for its acute hepatotoxicity. Despite being recognized as tumour promoter, its genotoxicity is far from being completely clarified, particularly in organs other than liver. In this work, we used the comet and/or the micronucleus (MN) assays to study the genotoxicity of MCLR in kidney- (Vero-E6) and liver-derived (HepG2) cell lines and in blood cells from MCLR-exposed mice. MCLR treatment (5 and 20 μM) caused a significant induction in the MN frequency in both cell lines and, interestingly, a similar positive effect was observed in mouse reticulocytes (37.5 μg MCLR/kg, i.p. route). Moreover, the FISH-based analysis of the MN content (HepG2 cells) suggested that MCLR induces both chromosome breaks and loss. On the other hand, the comet assay results were negative in Vero-E6 cells and in mouse leukocytes, with the exception of a transient increase in the level of DNA damage 30 minutes after mice exposure. Overall, the present findings contributed to increase the weight of evidence in favour of MCLR genotoxicity, based on its capacity to induce permanent genetic damage either in vitro or in vivo. Moreover, they suggest a clastogenic and aneugenic mode of action that might underlie a carcinogenic effect.
Collapse
|
64
|
Survival, growth and toxicity of Microcystis aeruginosa PCC 7806 in experimental conditions mimicking some features of the human gastro-intestinal environment. Chem Biol Interact 2014; 215:54-61. [DOI: 10.1016/j.cbi.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/21/2014] [Accepted: 03/15/2014] [Indexed: 01/06/2023]
|
65
|
Fan H, Cai Y, Xie P, Xiao W, Chen J, Ji W, Zhao S. Microcystin-LR stabilizes c-myc protein by inhibiting protein phosphatase 2A in HEK293 cells. Toxicology 2014; 319:69-74. [DOI: 10.1016/j.tox.2014.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/14/2022]
|
66
|
Zeng C, Sun H, Xie P, Wang J, Zhang G, Chen N, Yan W, Li G. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:25-32. [PMID: 24555956 DOI: 10.1016/j.aquatox.2014.01.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
We previously demonstrated that cyanobacteria-derived microcystin-leucine-arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L(-1)) for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L(-1) MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53-Bax-Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.
Collapse
Affiliation(s)
- Cheng Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Sun
- Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
67
|
Li W, Chen J, Xie P, He J, Guo X, Tuo X, Zhang W, Wu L. Rapid conversion and reversible conjugation of glutathione detoxification of microcystins in bighead carp (Aristichthys nobilis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:18-25. [PMID: 24362245 DOI: 10.1016/j.aquatox.2013.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
The glutathione and cysteine conjugates of microcystin (MC-GSH and MC-Cys, respectively) are two important metabolites in the detoxification of microcystins (MCs). Although studies have quantitated both conjugates, the reason why the amounts of MC-GSH are much lower than those of MC-Cys in various animal organs remains unknown. In this study, MC-RR-GSH and MC-RR-Cys were respectively i.p. injected into the cyanobacteria-eating bighead carp (Aristichthys nobilis), to explore the biotransformation and detoxification mechanisms of the two conjugates. The contents of MC-RR, MC-RR-GSH, MC-RR-Cys and MC-RR-N-acetyl-cysteine (MC-RR-Nac, the acetylation product of MC-RR-Cys) in the liver, kidney, intestine and blood of bighead carp in both groups were quantified via liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). In the MC-RR-GSH-treated group, the MC-RR-Cys content in the kidney increased 96.7-fold from 0.25 to 0.5h post-injection, demonstrating that MC-RR-GSH acts as a highly reactive intermediate and is rapidly converted to MC-RR-Cys. The presence of MC-RR in both MC-RR-GSH- and MC-RR-Cys-treated groups indicates, for the first time, that MC conjugation with the thiol of GSH/Cys is a reversible process in vivo. Total MC-RR concentrations dissociated from MC-RR-Cys were lower than those from MC-RR-GSH, suggesting that MC-RR-Cys is more capable of detoxifying MC-RR. MC-RR-Cys was the most effectively excreted form in both the kidney and intestine, as the ratios of MC-RR-Cys to MC-RR reached as high as 15.2, 2.9 in the MC-RR-GSH-treated group and 63.4, 19.1 in the MC-RR-Cys-treated group. Whereas MC-RR-Nac could not be found in all of the samples of the present study. Our results indicate that MC-RR-GSH was rapidly converted to MC-RR-Cys and then excreted, and that both glutathione and cysteine conjugates could release MC-RR. This study quantitatively proves the importance of the GSH detoxification pathway and furthers our understanding of the biochemical mechanism by which bighead carp are resistant to toxic cyanobacteria.
Collapse
Affiliation(s)
- Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | - Xiaochun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | - Wei Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | - Laiyan Wu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| |
Collapse
|
68
|
Wang J, Lin F, Cai F, Yan W, Zhou Q, Xie L. Microcystin-LR inhibited hippocampal long-term potential via regulation of the glycogen synthase kinase-3β pathway. CHEMOSPHERE 2013; 93:223-229. [PMID: 23701903 DOI: 10.1016/j.chemosphere.2013.04.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
We previously demonstrated that Cyanobacteria-derived microcystin-LR (MCLR) is able to induce cognitive dysfunction, but the mechanism is not understood. Long-term potential (LTP) in hippocampus is regarded as an important cellular mechanism of learning and memory. Here, the aim of this study was to evaluate the role of MCLR in LTP of hippocampal dentate gyrus (DG) by in vivo electrophysiological recording. We found that MCLR could suppress the induction of LTP in rat hippocampus, whereas simultaneous inhibition of glycogen synthase kinase-3β (GSK-3β) by LiCl or SB216763 attenuated the LTP impairments by MCLR. Furthermore, a decrease of the phosphorylated level at Ser9 of GSK-3β was observed by western blotting after intracerebroventricular (ICV) injection of MCLR, indicating GSK-3β was activated by MCLR. In addition, we showed that ICV administration of MCLR slightly stimulated activity of protein phosphatases (PPs) in the brain, which might activate GSK-3β via dephosphorylation of Ser9 site. Taken together, these findings demonstrated that GSK-3β plays a crucial role in regulating MCLR-induced cognitive deficit.
Collapse
Affiliation(s)
- Jianghua Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan 430070, PR China
| | | | | | | | | | | |
Collapse
|
69
|
The conjugation of microcystin-RR by human recombinant GSTs and hepatic cytosol. Toxicol Lett 2013; 219:231-8. [DOI: 10.1016/j.toxlet.2013.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/18/2023]
|
70
|
Stipa G, Manganelli M, Lolli F. Cyanobacteria biomagnification and amyotrophic lateral sclerosis. Med Hypotheses 2013; 81:356-7. [PMID: 23673195 DOI: 10.1016/j.mehy.2013.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
71
|
Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:726954. [PMID: 23710288 PMCID: PMC3654362 DOI: 10.1155/2013/726954] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes.
Collapse
|
72
|
Global effects of subchronic treatment of microcystin-LR on rat splenetic protein levels. J Proteomics 2012; 77:383-93. [DOI: 10.1016/j.jprot.2012.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/28/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022]
|
73
|
Heussner AH, Mazija L, Fastner J, Dietrich DR. Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 2012; 265:263-71. [PMID: 23064102 DOI: 10.1016/j.taap.2012.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/27/2012] [Accepted: 10/06/2012] [Indexed: 11/19/2022]
Abstract
Blue-green algae (Spirulina sp., Aphanizomenon flos-aquae) and Chlorella sp. are commercially distributed as organic algae dietary supplements. Cyanobacterial dietary products in particular have raised serious concerns, as they appeared to be contaminated with toxins e.g. microcystins (MCs) and consumers repeatedly reported adverse health effects following consumption of these products. The aim of this study was to determine the toxin contamination and the in vitro cytotoxicity of algae dietary supplement products marketed in Germany. In thirteen products consisting of Aph. flos-aquae, Spirulina and Chlorella or mixtures thereof, MCs, nodularins, saxitoxins, anatoxin-a and cylindrospermopsin were analyzed. Five products tested in an earlier market study were re-analyzed for comparison. Product samples were extracted and analyzed for cytotoxicity in A549 cells as well as for toxin levels by (1) phosphatase inhibition assay (PPIA), (2) Adda-ELISA and (3) LC-MS/MS. In addition, all samples were analyzed by PCR for the presence of the mcyE gene, a part of the microcystin and nodularin synthetase gene cluster. Only Aph. flos-aquae products were tested positive for MCs as well as the presence of mcyE. The contamination levels of the MC-positive samples were ≤ 1 μg MC-LR equivalents g(-1) dw. None of the other toxins were found in any of the products. However, extracts from all products were cytotoxic. In light of the findings, the distribution and commercial sale of Aph. flos-aquae products, whether pure or mixed formulations, for human consumption appear highly questionable.
Collapse
Affiliation(s)
- A H Heussner
- Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|