51
|
Cooper B, Campbell KB. Protection Against Common Bean Rust Conferred by a Gene-Silencing Method. PHYTOPATHOLOGY 2017; 107:920-927. [PMID: 28437139 DOI: 10.1094/phyto-03-17-0095-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rust disease of the dry bean plant, Phaseolus vulgaris, is caused by the fungus Uromyces appendiculatus. The fungus acquires its nutrients and energy from bean leaves using a specialized cell structure, the haustorium, through which it secretes effector proteins that contribute to pathogenicity by defeating the plant immune system. Candidate effectors have been identified by DNA sequencing and motif analysis, and some candidates have been observed in infected leaves by mass spectrometry. To assess their roles in pathogenicity, we have inserted small fragments of genes for five candidates into Bean pod mottle virus. Plants were infected with recombinant virus and then challenged with U. appendiculatus. Virus-infected plants expressing gene fragments for four of five candidate effectors accumulated lower amounts of rust and had dramatically less rust disease. By contrast, controls that included a fungal gene fragment for a septin protein not expressed in the haustorium died from a synergistic reaction between the virus and the fungus. The results imply that RNA generated in the plant moved across the fungal haustorium to silence effector genes important to fungal pathogenicity. This study shows that four bean rust fungal genes encode pathogenicity determinants and that the expression of fungal RNA in the plant can be an effective method for protecting bean plants from rust.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
52
|
de Carvalho MCDCG, Costa Nascimento L, Darben LM, Polizel‐Podanosqui AM, Lopes‐Caitar VS, Qi M, Rocha CS, Carazzolle MF, Kuwahara MK, Pereira GAG, Abdelnoor RV, Whitham SA, Marcelino‐Guimarães FC. Prediction of the in planta Phakopsora pachyrhizi secretome and potential effector families. MOLECULAR PLANT PATHOLOGY 2017; 18:363-377. [PMID: 27010366 PMCID: PMC6638266 DOI: 10.1111/mpp.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance. In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes, as well as the development of sample enrichment strategies and bioinformatics tools, has improved our knowledge of the ASR secretome and its potential effectors. In this context, we used a combination of laser capture microdissection (LCM), RNAseq and a bioinformatics pipeline to identify a total of 36 350 P. pachyrhizi contigs expressed in planta and a predicted secretome of 851 proteins. Some of the predicted secreted proteins had characteristics of candidate effectors: small size, cysteine rich, do not contain PFAM domains (except those associated with pathogenicity) and strongly expressed in planta. A comparative analysis of the predicted secreted proteins present in Pucciniales species identified new members of soybean rust and new Pucciniales- or P. pachyrhizi-specific families (tribes). Members of some families were strongly up-regulated during early infection, starting with initial infection through haustorium formation. Effector candidates selected from two of these families were able to suppress immunity in transient assays, and were localized in the plant cytoplasm and nuclei. These experiments support our bioinformatics predictions and show that these families contain members that have functions consistent with P. pachyrhizi effectors.
Collapse
Affiliation(s)
| | - Leandro Costa Nascimento
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | - Luana M. Darben
- Embrapa sojaPlant BiotechnologyLondrinaParanáCEP 70770‐901Brazil
| | | | - Valéria S. Lopes‐Caitar
- Embrapa sojaPlant BiotechnologyLondrinaParanáCEP 70770‐901Brazil
- Universidade Estadual de LondrinaLondrinaParanáCEP 86057‐970Brazil
| | - Mingsheng Qi
- Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | | | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | | | - Goncalo A. G. Pereira
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | | | - Steven A. Whitham
- Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | | |
Collapse
|
53
|
Maia T, Badel JL, Marin‐Ramirez G, Rocha CDM, Fernandes MB, da Silva JCF, de Azevedo‐Junior GM, Brommonschenkel SH. The Hemileia vastatrix effector HvEC-016 suppresses bacterial blight symptoms in coffee genotypes with the S H 1 rust resistance gene. THE NEW PHYTOLOGIST 2017; 213:1315-1329. [PMID: 27918080 PMCID: PMC6079635 DOI: 10.1111/nph.14334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 05/03/2023]
Abstract
A number of genes that confer resistance to coffee leaf rust (SH 1-SH 9) have been identified within the genus Coffea, but despite many years of research on this pathosystem, the complementary avirulence genes of Hemileia vastatrix have not been reported. After identification of H. vastatrix effector candidate genes (HvECs) expressed at different stages of its lifecycle, we established an assay to characterize HvEC proteins by delivering them into coffee cells via the type-three secretion system (T3SS) of Pseudomonas syringae pv. garcae (Psgc). Employing a calmodulin-dependent adenylate cyclase assay, we demonstrate that Psgc recognizes a heterologous P. syringae T3SS secretion signal which enables us to translocate HvECs into the cytoplasm of coffee cells. Using this Psgc-adapted effector detector vector (EDV) system, we found that HvEC-016 suppresses the growth of Psgc on coffee genotypes with the SH 1 resistance gene. Suppression of bacterial blight symptoms in SH 1 plants was associated with reduced bacterial multiplication. By contrast, HvEC-016 enhanced bacterial multiplication in SH 1-lacking plants. Our findings suggest that HvEC-016 may be recognized by the plant immune system in a SH 1-dependent manner. Thus, our experimental approach is an effective tool for the characterization of effector/avirulence proteins of this important pathogen.
Collapse
Affiliation(s)
- Thiago Maia
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Jorge L. Badel
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Gustavo Marin‐Ramirez
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Cynthia de M. Rocha
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Michelle B. Fernandes
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - José C. F. da Silva
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Gilson M. de Azevedo‐Junior
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Sérgio H. Brommonschenkel
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| |
Collapse
|
54
|
Zhang X, Nguyen N, Breen S, Outram MA, Dodds PN, Kobe B, Solomon PS, Williams SJ. Production of small cysteine-rich effector proteins in Escherichia coli for structural and functional studies. MOLECULAR PLANT PATHOLOGY 2017; 18:141-151. [PMID: 26915457 PMCID: PMC6638209 DOI: 10.1111/mpp.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 05/22/2023]
Abstract
Although the lifestyles and infection strategies of plant pathogens are diverse, a prevailing feature is the use of an arsenal of secreted proteins, known as effectors, which aid in microbial infection. In the case of eukaryotic filamentous pathogens, such as fungi and oomycetes, effector proteins are typically dissimilar, at the protein sequence level, to known protein families and functional domains. Consequently, we currently have a limited understanding of how fungal and oomycete effectors promote disease. Protein biochemistry and structural biology are two methods that can contribute greatly to the understanding of protein function. Both techniques are dependent on obtaining proteins that are pure and functional, and generally require the use of heterologous recombinant protein expression systems. Here, we present a general scheme and methodology for the production and characterization of small cysteine-rich (SCR) effectors utilizing Escherichia coli expression systems. Using this approach, we successfully produced cysteine-rich effectors derived from the biotrophic fungal pathogen Melampsora lini and the necrotrophic fungal pathogen Parastagonospora nodorum. Access to functional recombinant proteins facilitated crystallization and functional experiments. These results are discussed in the context of a general workflow that may serve as a template for others interested in understanding the function of SCR effector(s) from their plant pathogen(s) of interest.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Neal Nguyen
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Susan Breen
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Megan A. Outram
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | | | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Peter S. Solomon
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
55
|
Sperschneider J, Dodds PN, Taylor JM, Duplessis S. Computational Methods for Predicting Effectors in Rust Pathogens. Methods Mol Biol 2017; 1659:73-83. [PMID: 28856642 DOI: 10.1007/978-1-4939-7249-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lower costs and improved sequencing technologies have led to a large number of high-quality rust pathogen genomes and deeper characterization of gene expression profiles during early and late infection stages. However, the set of secreted proteins expressed during infection is too large for experimental investigations and contains not only effectors but also proteins that play a role in niche colonization or in fighting off competing microbes. Therefore, accurate computational prediction is essential for identifying high-priority rust effector candidates from secretomes.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environmental and Life Sciences, CSIRO Agriculture and Food, Underwood Avenue, Floreat, WA, Australia.
| | - Peter N Dodds
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jennifer M Taylor
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Sébastien Duplessis
- INRA, Unité Mixte de Recherche INRA/Université de Lorraine 1136 Interactions Arbres-Microorganismes, INRA Centre Grand Est - Nancy, Champenoux, France
| |
Collapse
|
56
|
Phylogenetics and Phylogenomics of Rust Fungi. FUNGAL PHYLOGENETICS AND PHYLOGENOMICS 2017; 100:267-307. [DOI: 10.1016/bs.adgen.2017.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
Meyer M, Bourras S, Gervais J, Labadie K, Cruaud C, Balesdent MH, Rouxel T. Impact of biotic and abiotic factors on the expression of fungal effector-encoding genes in axenic growth conditions. Fungal Genet Biol 2016; 99:1-12. [PMID: 28034799 DOI: 10.1016/j.fgb.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
In phytopathogenic fungi, the expression of hundreds of small secreted protein (SSP)-encoding genes is induced upon primary infection of plants while no or a low level of expression is observed during vegetative growth. In some species such as Leptosphaeria maculans, this coordinated in-planta upregulation of SSP-encoding genes expression relies on an epigenetic control but the signals triggering gene expression in-planta are unknown. In the present study, biotic and abiotic factors that may relieve suppression of SSP-encoding gene expression during axenic growth of L. maculans were investigated. Some abiotic factors (temperature, pH) could have a limited effect on SSP gene expression. In contrast, two types of cellular stresses induced by antibiotics (cycloheximide, phleomycin) activated strongly the transcription of SSP genes. A transcriptomic analysis to cycloheximide exposure revealed that biological processes such as ribosome biosynthesis and rRNA processing were induced whereas important metabolic pathways such as glycogen and nitrogen metabolism, glycolysis and tricarboxylic acid cycle activity were down-regulated. A quantitatively different expression of SSP-encoding genes compared to plant infection was also detected. Interestingly, the same physico-chemical parameters as those identified here for L. maculans effectors were identified to regulate positively or negatively the expression of bacterial effectors. This suggests that apoplastic phytopathogens may react to similar physiological parameters for regulation of their effector genes.
Collapse
Affiliation(s)
- Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.
| | - Salim Bourras
- Université Paris-Sud, 91400 Orsay, France; Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Karine Labadie
- Centre National de Séquençage, CEA-Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Corinne Cruaud
- Centre National de Séquençage, CEA-Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Marie-Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
58
|
Schlegel M, Münsterkötter M, Güldener U, Bruggmann R, Duò A, Hainaut M, Henrissat B, Sieber CMK, Hoffmeister D, Grünig CR. Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics 2016; 17:1015. [PMID: 27938347 PMCID: PMC5148876 DOI: 10.1186/s12864-016-3369-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Whereas an increasing number of pathogenic and mutualistic ascomycetous species were sequenced in the past decade, species showing a seemingly neutral association such as root endophytes received less attention. In the present study, the genome of Phialocephala subalpina, the most frequent species of the Phialocephala fortinii s.l. - Acephala applanata species complex, was sequenced for insight in the genome structure and gene inventory of these wide-spread root endophytes. RESULTS The genome of P. subalpina was sequenced using Roche/454 GS FLX technology and a whole genome shotgun strategy. The assembly resulted in 205 scaffolds and a genome size of 69.7 Mb. The expanded genome size in P. subalpina was not due to the proliferation of transposable elements or other repeats, as is the case with other ascomycetous genomes. Instead, P. subalpina revealed an expanded gene inventory that includes 20,173 gene models. Comparative genome analysis of P. subalpina with 13 ascomycetes shows that P. subalpina uses a versatile gene inventory including genes specific for pathogens and saprophytes. Moreover, the gene inventory for carbohydrate active enzymes (CAZymes) was expanded including genes involved in degradation of biopolymers, such as pectin, hemicellulose, cellulose and lignin. CONCLUSIONS The analysis of a globally distributed root endophyte allowed detailed insights in the gene inventory and genome organization of a yet largely neglected group of organisms. We showed that the ubiquitous root endophyte P. subalpina has a broad gene inventory that links pathogenic and saprophytic lifestyles.
Collapse
Affiliation(s)
- Markus Schlegel
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zürich, 8092, Zürich, Switzerland
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Department of Genome-oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Berne, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Angelo Duò
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zürich, 8092, Zürich, Switzerland
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
| | - Christian M K Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Dirk Hoffmeister
- Friedrich-Schiller-Universität, Pharmazeutische Mikrobiologie, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Christoph R Grünig
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zürich, 8092, Zürich, Switzerland. .,Microsynth AG, Schützenstrasse 15, 9436, Balgach, Switzerland.
| |
Collapse
|
59
|
Imam J, Singh PK, Shukla P. Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications. Front Microbiol 2016; 7:1488. [PMID: 27725809 PMCID: PMC5035750 DOI: 10.3389/fmicb.2016.01488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023] Open
Abstract
Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various 'omics' tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.
Collapse
Affiliation(s)
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
60
|
Takahara H, Hacquard S, Kombrink A, Hughes HB, Halder V, Robin GP, Hiruma K, Neumann U, Shinya T, Kombrink E, Shibuya N, Thomma BPHJ, O'Connell RJ. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity. THE NEW PHYTOLOGIST 2016; 211:1323-37. [PMID: 27174033 DOI: 10.1111/nph.13994] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 05/20/2023]
Abstract
The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitin-triggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The findings suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function.
Collapse
Affiliation(s)
- Hiroyuki Takahara
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Anja Kombrink
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - H Bleddyn Hughes
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Guillaume P Robin
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Kei Hiruma
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Tomonori Shinya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Erich Kombrink
- Chemical Biology Laboratory, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Richard J O'Connell
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829, Cologne, Germany
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| |
Collapse
|
61
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Islam N. Putative Rust Fungal Effector Proteins in Infected Bean and Soybean Leaves. PHYTOPATHOLOGY 2016; 106:491-9. [PMID: 26780434 DOI: 10.1094/phyto-11-15-0310-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plant-pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but their effector repertoires are not understood. The discovery of rust fungus effectors may eventually help guide decisions and actions that mitigate crop production loss. Therefore, we used mass spectrometry to identify thousands of proteins in infected beans and soybeans and in germinated fungal spores. The comparative analysis between the two helped differentiate a set of 24 U. appendiculatus proteins targeted for secretion that were specifically found in infected beans and a set of 34 U. appendiculatus proteins targeted for secretion that were found in germinated spores and infected beans. The proteins specific to infected beans included family 26 and family 76 glycoside hydrolases that may contribute to degrading plant cell walls. There were also several types of proteins with structural motifs that may aid in stabilizing the specialized fungal haustorium cell that interfaces the plant cell membrane during infection. There were 16 P. pachyrhizi proteins targeted for secretion that were found in infected soybeans, and many of these proteins resembled the U. appendiculatus proteins found in infected beans, which implies that these proteins are important to rust fungal pathology in general. This data set provides insight to the biochemical mechanisms that rust fungi use to overcome plant immune systems and to parasitize cells.
Collapse
Affiliation(s)
- Bret Cooper
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Kimberly B Campbell
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Hunter S Beard
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Wesley M Garrett
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Nazrul Islam
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| |
Collapse
|
62
|
Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN. Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2016; 7:205. [PMID: 26941766 PMCID: PMC4764693 DOI: 10.3389/fpls.2016.00205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
| | - Narayana M. Upadhyaya
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Jana Sperschneider
- Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research OrganisationPerth, WA, Australia
| | - Robert F. Park
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| | - Les J. Szabo
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN, USA
| | - Brian Steffenson
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
| | - Jeff G. Ellis
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Peter N. Dodds
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| |
Collapse
|
63
|
Latest Developments in the Research of Rust Fungi and Their Allies (Pucciniomycotina). ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-29137-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
64
|
Kim KT, Jeon J, Choi J, Cheong K, Song H, Choi G, Kang S, Lee YH. Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association. FRONTIERS IN PLANT SCIENCE 2016; 7:186. [PMID: 26925088 PMCID: PMC4759460 DOI: 10.3389/fpls.2016.00186] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/03/2016] [Indexed: 05/18/2023]
Abstract
Fungal secretome consists of various functional groups of proteins, many of which participate in nutrient acquisition, self-protection, or manipulation of the environment and neighboring organisms. The least characterized component of the secretome is small secreted proteins (SSPs). Some SSPs have been reported to function as effectors, but most remain to be characterized. The composition of major secretome components, such as carbohydrate-active enzymes, proteases, lipases, and oxidoreductases, appear to reflect the lifestyle and ecological niche of individual species. We hypothesize that many SSPs participate in manipulating plants as effectors. Obligate biotrophs likely encode more and diverse effector-like SSPs to suppress host defense compared to necrotrophs, which generally use cell wall degrading enzymes and phytotoxins to kill hosts. Because different secretome prediction workflows have been used in different studies, available secretome data are difficult to integrate for comprehensive comparative studies to test this hypothesis. In this study, SSPs encoded by 136 fungal species were identified from data archived in Fungal Secretome Database (FSD) via a refined secretome workflow. Subsequently, compositions of SSPs and other secretome components were compared in light of taxa and lifestyles. Those species that are intimately associated with host cells, such as biotrophs and symbionts, usually have higher proportion of species-specific SSPs (SSSPs) than hemibiotrophs and necrotrophs, but the latter groups displayed higher proportions of secreted enzymes. Results from our study established a foundation for functional studies on SSPs and will also help understand genomic changes potentially underpinning different fungal lifestyles.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Department of Agricultural Biotechnology, Seoul National UniversitySeoul, South Korea
| | - Jongbum Jeon
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Jaeyoung Choi
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Kyeongchae Cheong
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Hyeunjeong Song
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Gobong Choi
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Yong-Hwan Lee
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Department of Agricultural Biotechnology, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
- Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- *Correspondence: Yong-Hwan Lee
| |
Collapse
|
65
|
Lorrain C, Hecker A, Duplessis S. Effector-Mining in the Poplar Rust Fungus Melampsora larici-populina Secretome. FRONTIERS IN PLANT SCIENCE 2015; 6:1051. [PMID: 26697026 PMCID: PMC4678189 DOI: 10.3389/fpls.2015.01051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/11/2015] [Indexed: 05/24/2023]
Abstract
The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant-parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins (CSEPs) is a major goal in the poplar-poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogs of more than a thousand secreted proteins. Automatized effector-mining pipelines hold great promise for rapid and systematic identification and prioritization of CSEPs for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors from this species.
Collapse
Affiliation(s)
- Cécile Lorrain
- INRA, UMR 1136 Interactions Arbres/Microorganismes INRA/Université de Lorraine, Centre INRA Nancy Lorraine, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes Université de Lorraine/INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Arnaud Hecker
- INRA, UMR 1136 Interactions Arbres/Microorganismes INRA/Université de Lorraine, Centre INRA Nancy Lorraine, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes Université de Lorraine/INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes INRA/Université de Lorraine, Centre INRA Nancy Lorraine, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes Université de Lorraine/INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
66
|
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 2015; 18:453-65. [DOI: 10.1111/cmi.12530] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Cécile Lorrain
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Diane G.O. Saunders
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- The Genome Analysis Centre; Norwich Research Park; Norwich NR4 7UH UK
- The John Innes Centre; Norwich Research Park; Norwich NR4 7UH UK
| | - Joe Win
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Jan Sklenar
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Sophien Kamoun
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| |
Collapse
|
67
|
Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi. PLoS Pathog 2015; 11:e1005228. [PMID: 26506000 PMCID: PMC4624222 DOI: 10.1371/journal.ppat.1005228] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023] Open
Abstract
Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (MagnaportheAvrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. Fungal plant pathogens are of outstanding economic and ecological importance and cause destructive diseases on many cultivated and wild plants. Effector proteins that are secreted during infection to manipulate the host and to promote disease are a key element in fungal virulence. Phytopathogenic fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular functions of this most important class of fungal effectors and the evolutionary mechanisms that generate this tremendous numbers of apparently unrelated proteins are largely unknown. By investigating the 3-dimensional structures of effectors from the rice blast fungus M. oryzae, we discovered an effector family comprising structurally conserved but sequence-unrelated effectors from M. oryzae and the phylogenetically distant wheat pathogen Pyrenophora tritici-repentis that we named MAX-effectors (M. oryzaeAvrs and ToxB). Structure-informed searches of whole genome sequence databases suggest that MAX-effectors are present at low frequencies and with a patchy phylogenetic distribution in many ascomycete phytopathogens. They underwent strong lineage-specific expansion in fungi of the Pyriculariae family that contains M. oryzae where they seem particularly important during biotrophic plant colonization and account for 50% of the cloned Avr effectors and 5–10% of the effector repertoire. Based on our results on the MAX-effectors and the widely accepted concept that fungal effectors evolve according to a birth-and-death model we propose the hypothesis that the majority of the immense numbers of different ascomycete effectors could in fact belong to a limited set of structurally defined families whose members are phylogenetically related.
Collapse
|
68
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 DOI: 10.3389/fpls.2015.00776issn=1664-462x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| |
Collapse
|
69
|
Spanu PD. RNA-protein interactions in plant disease: hackers at the dinner table. THE NEW PHYTOLOGIST 2015; 207:991-995. [PMID: 26237564 DOI: 10.1111/nph.13495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Plants are the source of most of our food, whether directly or as feed for the animals we eat. Our dinner table is a trophic level we share with the microbes that also feed on the primary photosynthetic producers. Microbes that enter into close interactions with plants need to evade or suppress detection and host immunity to access nutrients. They do this by deploying molecular tools - effectors - which target host processes. The mode of action of effector proteins in these events is varied and complex. Recent data from diverse systems indicate that RNA-interacting proteins and RNA itself are delivered by eukaryotic microbes, such as fungi and oomycetes, to host plants and contribute to the establishment of successful interactions. This is evidence that pathogenic microbes can interfere with the host software. We are beginning to see that pathogenic microbes are capable of hacking into the plants' immunity programs.
Collapse
Affiliation(s)
- Pietro D Spanu
- Department of Life Sciences, Room 610 SAFB, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
70
|
Soyer JL, Rouxel T, Fudal I. Chromatin-based control of effector gene expression in plant-associated fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:51-6. [PMID: 26116976 DOI: 10.1016/j.pbi.2015.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/08/2023]
Abstract
Plant-associated fungi often present in their genome areas enriched in repeat sequences and effector genes, the latter being specifically induced in planta. The location of effector genes in regions enriched in repeats has been shown to have an impact on adaptability of fungi but could also provide for tight control of effector gene expression through chromatin-based regulation. The distribution of two repressive histone marks was shown to be an important regulatory layer in two fungal species with different lifestyles. Chromatin-based control of effector gene expression is likely to provide an evolutionary advantage by preventing the expression of genes not needed during vegetative growth and allow for a massive concerted expression at particular time-points of plant infection.
Collapse
Affiliation(s)
- Jessica L Soyer
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany; Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
71
|
Chaudhari P, Ahmed B, Joly DL, Germain H. Effector biology during biotrophic invasion of plant cells. Virulence 2015; 5:703-9. [PMID: 25513771 PMCID: PMC4189876 DOI: 10.4161/viru.29652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several obligate biotrophic phytopathogens, namely oomycetes and fungi, invade and feed on living plant cells through specialized structures known as haustoria. Deploying an arsenal of secreted proteins called effectors, these pathogens balance their parasitic propagation by subverting plant immunity without sacrificing host cells. Such secreted proteins, which are thought to be delivered by haustoria, conceivably reprogram host cells and instigate structural modifications, in addition to the modulation of various cellular processes. As effectors represent tools to assist disease resistance breeding, this short review provides a bird’s eye view on the relationship between the virulence function of effectors and their subcellular localization in host cells.
Collapse
Affiliation(s)
- Prateek Chaudhari
- a Groupe de Recherche en Biologie Végétale; Département de Chimie, Biochimie et Physique; Université du Québec à Trois-Rivières; Trois-Rivières, QC Canada
| | | | | | | |
Collapse
|
72
|
Petre B, Saunders DGO, Sklenar J, Lorrain C, Win J, Duplessis S, Kamoun S. Candidate Effector Proteins of the Rust Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:689-700. [PMID: 25650830 DOI: 10.1094/mpmi-01-15-0003-r] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalog of secreted proteins, some of which have been considered candidate effectors. Unraveling how these proteins function in host cells is a key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localization and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria, and discrete cellular bodies. We also used coimmunoprecipitation (coIP) and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and TOPLESS-related protein 4 from poplar by in planta coIP. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Benjamin Petre
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Diane G O Saunders
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 4 The Genome Analysis Centre, Norwich Research Park, NR4 7UH Norwich, U.K
- 5 The John Innes Centre, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Jan Sklenar
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Cécile Lorrain
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Joe Win
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Sébastien Duplessis
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
73
|
Wang X, McCallum BD, Fetch T, Bakkeren G, Saville BJ. Sr36- and Sr5-Mediated Resistance Response to Puccinia graminis f. sp. tritici Is Associated with Callose Deposition in Wheat Guard Cells. PHYTOPATHOLOGY 2015; 105:728-737. [PMID: 26056723 DOI: 10.1094/phyto-08-14-0213-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Race-specific resistance of wheat to Puccinia graminis f. sp. tritici is primarily posthaustorial and often involves the induction of a hypersensitive response (HR). The aim of this study was to investigate host defense responses induced in interactions between P. graminis f. sp. tritici races and wheat lines carrying different race-specific stem rust resistance (Sr) genes. In incompatible interactions between wheat lines carrying Sr36 in three genetic backgrounds (LMPG, Prelude, or W2691) and avirulent P. graminis f. sp. tritici races MCCFC or RCCDM, callose accumulated within 24 h in wheat guard cells contacted by a P. graminis f. sp. tritici appressorium, and P. graminis f. sp. tritici ingress was inhibited following appressorium formation. Accordingly, the expression of transcripts encoding a callose synthase increased in the incompatible interaction between LMPG-Sr36 and avirulent P. graminis f. sp. tritici race MCCFC. Furthermore, the inhibition of callose synthesis through the infiltration of 2-deoxy-D-glucose (DDG) increased the ability of P. graminis f. sp. tritici race MCCFC to infect LMPG-Sr36. A similar induction of callose deposition in wheat guard cells was also observed within 24 h after inoculation (hai) with avirulent P. graminis f. sp. tritici race HKCJC on LMPG-Sr5 plants. In contrast, this defense response was not induced in incompatible interactions involving Sr6, Sr24, or Sr30. Instead, the induction of an HR and cellular lignification were noted. The manifestation of the HR and cellular lignification was induced earlier (24 hai) and was more extensive in the resistance response mediated by Sr6 compared with those mediated by Sr24 or Sr30. These results indicate that the resistance mediated by Sr36 is similar to that mediated by Sr5 but different from those triggered by Sr6, Sr24, or Sr30. Resistance responses mediated by Sr5 and Sr36 are prehaustorial, and are a result of very rapid recognition of molecules derived from avirulent isolates of P. graminis f. sp. tritici, in contrast to the responses triggered in lines with Sr6, Sr24, and Sr30.
Collapse
Affiliation(s)
- X Wang
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - B D McCallum
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - T Fetch
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - G Bakkeren
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - B J Saville
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| |
Collapse
|
74
|
Sperschneider J, Dodds PN, Gardiner DM, Manners JM, Singh KB, Taylor JM. Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathog 2015; 11:e1004806. [PMID: 26020524 PMCID: PMC4447458 DOI: 10.1371/journal.ppat.1004806] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jana Sperschneider
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Perth, Western Australia, Australia
- * E-mail:
| | - Peter N. Dodds
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| | - Donald M. Gardiner
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - John M. Manners
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| | - Karam B. Singh
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Perth, Western Australia, Australia
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennifer M. Taylor
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
75
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 PMCID: PMC4585107 DOI: 10.3389/fpls.2015.00776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/04/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
- *Correspondence: Sylvain Raffaele, Laboratoire des Interactions Plante Micro-organismes, 24 Chemin de Borde Rouge – Auzeville, 31326 Castanet Tolosan, France
| |
Collapse
|
76
|
Link T, Seibel C, Voegele RT. Early insights into the genome sequence of Uromyces fabae. FRONTIERS IN PLANT SCIENCE 2014; 5:587. [PMID: 25400651 PMCID: PMC4212606 DOI: 10.3389/fpls.2014.00587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/09/2014] [Indexed: 05/29/2023]
Abstract
Uromyces fabae is a major pathogen of broad bean, Vicia faba. U. fabae has served as a model among rust fungi to elucidate the development of infection structures, expression and secretion of cell wall degrading enzymes and gene expression. Using U. fabae, enormous progress was made regarding nutrient uptake and metabolism and in the search for secreted proteins and effectors. Here, we present results from a genome survey of U. fabae. Paired end Illumina sequencing provided 53 Gb of data. An assembly gave 59,735 scaffolds with a total length of 216 Mb. K-mer analysis estimated the genome size to be 329 Mb. Of a representative set of 23,153 predicted proteins we could annotate 10,209, and predict 599 secreted proteins. Clustering of the protein set indicates families of highly likely effectors. We also found new homologs of RTP1p, a prototype rust effector. The U. fabae genome will be an important resource for comparative analyses with U. appendiculatus and P. pachyrhizi and provide information regarding the phylogenetic relationship of the genus Uromyces with respect to other rust fungi already sequenced, namely Puccinia graminis f. sp. tritici, P. striiformis f. sp. tritici, Melampsora lini, and Melampsora larici-populina.
Collapse
Affiliation(s)
- Tobias Link
- *Correspondence: Tobias Link and Ralf T. Voegele, Fachgebiet Phytopathologie, Institut für Phytomedizin, Fakultät Agrarwissenschaften, Universität Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany e-mail: ;
| | | | - Ralf T. Voegele
- *Correspondence: Tobias Link and Ralf T. Voegele, Fachgebiet Phytopathologie, Institut für Phytomedizin, Fakultät Agrarwissenschaften, Universität Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany e-mail: ;
| |
Collapse
|
77
|
Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation. BMC Genomics 2014; 15:722. [PMID: 25159997 PMCID: PMC4161775 DOI: 10.1186/1471-2164-15-722] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Background Since the first fungal genome sequences became available, investigators have been employing comparative genomics to understand how fungi have evolved to occupy diverse ecological niches. The secretome, i.e. the entirety of all proteins secreted by an organism, is of particular importance, as by these proteins fungi acquire nutrients and communicate with their surroundings. Results It is generally assumed that fungi with similar nutritional lifestyles have similar secretome compositions. In this study, we test this hypothesis by annotating and comparing the soluble secretomes, defined as the sets of proteins containing classical signal peptides but lacking transmembrane domains of fungi representing a broad diversity of nutritional lifestyles. Secretome size correlates with phylogeny and to a lesser extent with lifestyle. Plant pathogens and saprophytes have larger secretomes than animal pathogens. Small secreted cysteine-rich proteins (SSCPs), which may comprise many effectors important for the interaction of plant pathogens with their hosts, are defined here to have a mature length of ≤ 300 aa residues, at least four cysteines, and a total cysteine content of ≥5%. SSCPs are found enriched in the secretomes of the Pezizomycotina and Basidiomycota in comparison to Saccharomycotina. Relative SSCP content is noticeably higher in plant pathogens than in animal pathogens, while saprophytes were in between and closer to plant pathogens. Expansions and contractions of gene families and in the number of occurrences of functional domains are largely lineage specific, e.g. contraction of glycoside hydrolases in Saccharomycotina, and are only weakly correlated with lifestyle. However, within a given lifestyle a few general trends exist, such as the expansion of secreted family M14 metallopeptidases and chitin-binding proteins in plant pathogenic Pezizomycotina. Conclusions While the secretomes of fungi with similar lifestyles share certain characteristics, the expansion and contraction of gene families is largely lineage specific, and not shared among all fungi of a given lifestyle. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-722) contains supplementary material, which is available to authorized users.
Collapse
|
78
|
Transcriptomic responses of Phanerochaete chrysosporium to oak acetonic extracts: focus on a new glutathione transferase. Appl Environ Microbiol 2014; 80:6316-27. [PMID: 25107961 DOI: 10.1128/aem.02103-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.
Collapse
|
79
|
Mesarich CH, Griffiths SA, van der Burgt A, Okmen B, Beenen HG, Etalo DW, Joosten MHAJ, de Wit PJGM. Transcriptome sequencing uncovers the Avr5 avirulence gene of the tomato leaf mold pathogen Cladosporium fulvum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:846-57. [PMID: 24678832 DOI: 10.1094/mpmi-02-14-0050-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Cf-5 gene of tomato confers resistance to strains of the fungal pathogen Cladosporium fulvum carrying the avirulence gene Avr5. Although Cf-5 has been cloned, Avr5 has remained elusive. We report the cloning of Avr5 using a combined bioinformatic and transcriptome sequencing approach. RNA-Seq was performed on the sequenced race 0 strain (0WU; carrying Avr5), as well as a race 5 strain (IPO 1979; lacking a functional Avr5 gene) during infection of susceptible tomato. Forty-four in planta-induced C. fulvum candidate effector (CfCE) genes of 0WU were identified that putatively encode a secreted, small cysteine-rich protein. An expressed transcript sequence comparison between strains revealed two polymorphic CfCE genes in IPO 1979. One of these conferred avirulence to IPO 1979 on Cf-5 tomato following complementation with the corresponding 0WU allele, confirming identification of Avr5. Complementation also led to increased fungal biomass during infection of susceptible tomato, signifying a role for Avr5 in virulence. Seven of eight race 5 strains investigated escape Cf-5-mediated resistance through deletion of the Avr5 gene. Avr5 is heavily flanked by repetitive elements, suggesting that repeat instability, in combination with Cf-5-mediated selection pressure, has led to the emergence of race 5 strains deleted for the Avr5 gene.
Collapse
|
80
|
An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog 2014; 10:e1004223. [PMID: 24992661 PMCID: PMC4081816 DOI: 10.1371/journal.ppat.1004223] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.
Collapse
|
81
|
Liang H, Staton M, Xu Y, Xu T, Leboldus J. Comparative expression analysis of resistant and susceptible Populus clones inoculated with Septoria musiva. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:69-78. [PMID: 24767117 DOI: 10.1016/j.plantsci.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 05/24/2023]
Abstract
Septoria musiva is a major pathogen of Populus and can cause leaf spots and stem cankers in susceptible clones. In order to investigate defense mechanisms of Populus in response to S. musiva, differential gene expression in leaf tissues of two resistant (DN34, P. deltoides×nigra; NM6, P. nigra×maximowiczii) and two susceptible clones (DN164, P. deltoides×nigra; NC11505, P. maximowiczii×trichocarpa) was analyzed by RNA-Seq. Of the 511 million reads obtained, 78% and 0.01% were successfully aligned to the genomes of P. trichocarpa and S. musiva, respectively. Functional annotation of differentially expressed genes based on comparisons between resistant and susceptible clones revealed that there were significant differences in the expression of genes involved in disease/stress resistance and oxidation-reduction in mock-inoculated leaves. Four days post inoculation with S. musiva, 36 differentially expressed genes were found to be regulated in the same direction in both resistant clones. The 22 up-regulated loci in resistant clones included genes involved in protein fate, cell wall structure, and responsiveness to various biotic and abiotic stresses. In particular, Potri.008G187100 locus encodes a putative multi antimicrobial extrusion protein and Potri.006G272600 encodes a family1 glycosyltransferase required for pathogen resistance. The differentially expressed loci with increased expression in the susceptible clones corresponded to NB-ARC domain-containing disease resistance protein, phospholipase A 2A, MutT/nudix family protein, and an elicitor-activated gene 3-1 product. The results from this study indicate that strong defense mechanisms involved in oxidation-reduction, protein fate, secondary metabolism, and accumulation of defense-related gene products may contribute to Septoria resistance in DN34 and NM6, while increased expression of hypersensitive response-loci, particularly those encoding NB-ARC domain-containing disease resistance proteins, may contribute to the susceptibility of DN164 and NC11505 through interaction with pathogen effectors.
Collapse
Affiliation(s)
- Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Margaret Staton
- Clemson University Genomics Institute, Clemson, SC 29634, USA
| | - Yi Xu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Tao Xu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Jared Leboldus
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
82
|
Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 2014; 15:336. [PMID: 24886033 PMCID: PMC4039746 DOI: 10.1186/1471-2164-15-336] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood. RESULTS We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns. CONCLUSIONS These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.
Collapse
Affiliation(s)
| | | | | | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France.
| |
Collapse
|
83
|
Link TI, Lang P, Scheffler BE, Duke MV, Graham MA, Cooper B, Tucker ML, van de Mortel M, Voegele RT, Mendgen K, Baum TJ, Whitham SA. The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. MOLECULAR PLANT PATHOLOGY 2014; 15:379-93. [PMID: 24341524 PMCID: PMC6638672 DOI: 10.1111/mpp.12099] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Haustoria of biotrophic rust fungi are responsible for the uptake of nutrients from their hosts and for the production of secreted proteins, known as effectors, which modulate the host immune system. The identification of the transcriptome of haustoria and an understanding of the functions of expressed genes therefore hold essential keys for the elucidation of fungus-plant interactions and the development of novel fungal control strategies. Here, we purified haustoria from infected leaves and used 454 sequencing to examine the haustorial transcriptomes of Phakopsora pachyrhizi and Uromyces appendiculatus, the causal agents of soybean rust and common bean rust, respectively. These pathogens cause extensive yield losses in their respective legume crop hosts. A series of analyses were used to annotate expressed sequences, including transposable elements and viruses, to predict secreted proteins from the assembled sequences and to identify families of candidate effectors. This work provides a foundation for the comparative analysis of haustorial gene expression with further insights into physiology and effector evolution.
Collapse
Affiliation(s)
- Tobias I Link
- Institut für Phytomedizin, FG Phytopathologie, Universität Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Nemri A, Saunders DGO, Anderson C, Upadhyaya NM, Win J, Lawrence GJ, Jones DA, Kamoun S, Ellis JG, Dodds PN. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. FRONTIERS IN PLANT SCIENCE 2014; 5:98. [PMID: 24715894 PMCID: PMC3970004 DOI: 10.3389/fpls.2014.00098] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/28/2014] [Indexed: 05/18/2023]
Abstract
Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.
Collapse
Affiliation(s)
| | | | - Claire Anderson
- Research School of Biological Sciences, College of Medicine, Biology and Environment, Australian National UniversityCanberra, ACT, Australia
| | | | - Joe Win
- The Sainsbury Laboratory, Norwich Research ParkNorwich, UK
| | | | - David A. Jones
- Research School of Biological Sciences, College of Medicine, Biology and Environment, Australian National UniversityCanberra, ACT, Australia
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research ParkNorwich, UK
| | | | | |
Collapse
|
85
|
Talhinhas P, Azinheira HG, Vieira B, Loureiro A, Tavares S, Batista D, Morin E, Petitot AS, Paulo OS, Poulain J, Da Silva C, Duplessis S, Silva MDC, Fernandez D. Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. FRONTIERS IN PLANT SCIENCE 2014; 5:88. [PMID: 24672531 PMCID: PMC3953675 DOI: 10.3389/fpls.2014.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 05/06/2023]
Abstract
Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.
Collapse
Affiliation(s)
- Pedro Talhinhas
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Helena G. Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Bruno Vieira
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Andreia Loureiro
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Sílvia Tavares
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Anne-Sophie Petitot
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Julie Poulain
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Corinne Da Silva
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Sébastien Duplessis
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Diana Fernandez
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| |
Collapse
|
86
|
Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 2014; 10:e1004227. [PMID: 24603691 PMCID: PMC3945186 DOI: 10.1371/journal.pgen.1004227] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.
Collapse
|
87
|
Bruce M, Neugebauer KA, Joly DL, Migeon P, Cuomo CA, Wang S, Akhunov E, Bakkeren G, Kolmer JA, Fellers JP. Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat. FRONTIERS IN PLANT SCIENCE 2014; 4:520. [PMID: 24454317 PMCID: PMC3888938 DOI: 10.3389/fpls.2013.00520] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/02/2013] [Indexed: 05/05/2023]
Abstract
Wheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism, and defense. It is hypothesized that new races emerge as a result of overcoming plant resistance via changes in the secreted effector proteins. To understand gene expression during infection and find genetic differences associated with races, RNA from wheat leaves infected with six different rust races, at 6 days post inoculation, was sequenced using Illumina. As P. triticina is an obligate biotroph, RNA from both the host and fungi were present and separated by alignment to the P. triticina genome and a wheat EST reference. A total of 222,571 rust contigs were assembled from 165 million reads. An examination of the resulting contigs revealed 532 predicted secreted proteins among the transcripts. Of these, 456 were found in all races. Fifteen genes were found with amino acid changes, corresponding to putative avirulence effectors potentially recognized by 11 different leaf rust resistance (Lr) genes. Twelve of the potential avirulence effectors have no homology to known genes. One gene had significant similarity to cerato-platanin, a known fungal elicitor, and another showed similarity to fungal tyrosinase, an enzyme involved in melanin synthesis. Temporal expression profiles were developed for these genes by qRT-PCR and show that the genes expression patterns were consistent between races from infection initiation to just prior to spore eruption.
Collapse
Affiliation(s)
- Myron Bruce
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Department of Plant PathologyManhattan, KS, USA
| | | | - David L. Joly
- Département de biologie, Université de MonctonMoncton, NB, Canada
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State UniversityManhattan, KS, USA
| | | | - Shichen Wang
- Department of Plant Pathology, Kansas State UniversityManhattan, KS, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State UniversityManhattan, KS, USA
| | - Guus Bakkeren
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food CanadaSummerland, BC, Canada
| | - James A. Kolmer
- USDA–ARS Cereal Disease Laboratory, Department of Plant Pathology, University of MinnesotaSt. Paul, MN, USA
| | - John P. Fellers
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Department of Plant PathologyManhattan, KS, USA
- *Correspondence: John P. Fellers, USDA-ARS, Department of Plant Pathology, 4008 Throckmorton Hall, Manhattan, KS 66506, USA e-mail:
| |
Collapse
|
88
|
Persoons A, Morin E, Delaruelle C, Payen T, Halkett F, Frey P, De Mita S, Duplessis S. Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors. FRONTIERS IN PLANT SCIENCE 2014; 5:450. [PMID: 25309551 PMCID: PMC4164029 DOI: 10.3389/fpls.2014.00450] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/20/2014] [Indexed: 05/20/2023]
Abstract
Melampsora larici-populina is a fungal pathogen responsible for foliar rust disease on poplar trees, which causes damage to forest plantations worldwide, particularly in Northern Europe. The reference genome of the isolate 98AG31 was previously sequenced using a whole genome shotgun strategy, revealing a large genome of 101 megabases containing 16,399 predicted genes, which included secreted protein genes representing poplar rust candidate effectors. In the present study, the genomes of 15 isolates collected over the past 20 years throughout the French territory, representing distinct virulence profiles, were characterized by massively parallel sequencing to assess genetic variation in the poplar rust fungus. Comparison to the reference genome revealed striking structural variations. Analysis of coverage and sequencing depth identified large missing regions between isolates related to the mating type loci. More than 611,824 single-nucleotide polymorphism (SNP) positions were uncovered overall, indicating a remarkable level of polymorphism. Based on the accumulation of non-synonymous substitutions in coding sequences and the relative frequencies of synonymous and non-synonymous polymorphisms (i.e., PN/PS ), we identify candidate genes that may be involved in fungal pathogenesis. Correlation between non-synonymous SNPs in genes encoding secreted proteins (SPs) and pathotypes of the studied isolates revealed candidate genes potentially related to virulences 1, 6, and 8 of the poplar rust fungus.
Collapse
Affiliation(s)
- Antoine Persoons
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Christine Delaruelle
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Thibaut Payen
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Fabien Halkett
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Pascal Frey
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Stéphane De Mita
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
| | - Sébastien Duplessis
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesChampenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique/Université de Lorraine Interactions Arbres/MicroorganismesVandoeuvre-lès-Nancy Cedex, France
- *Correspondence: Sébastien Duplessis, INRA, Unité Mixte de Recherche 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, 54280 Champenoux, France e-mail:
| |
Collapse
|
89
|
Cristancho MA, Botero-Rozo DO, Giraldo W, Tabima J, Riaño-Pachón DM, Escobar C, Rozo Y, Rivera LF, Durán A, Restrepo S, Eilam T, Anikster Y, Gaitán AL. Annotation of a hybrid partial genome of the coffee rust (Hemileia vastatrix) contributes to the gene repertoire catalog of the Pucciniales. FRONTIERS IN PLANT SCIENCE 2014; 5:594. [PMID: 25400655 PMCID: PMC4215621 DOI: 10.3389/fpls.2014.00594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/11/2014] [Indexed: 05/20/2023]
Abstract
Coffee leaf rust caused by the fungus Hemileia vastatrix is the most damaging disease to coffee worldwide. The pathogen has recently appeared in multiple outbreaks in coffee producing countries resulting in significant yield losses and increases in costs related to its control. New races/isolates are constantly emerging as evidenced by the presence of the fungus in plants that were previously resistant. Genomic studies are opening new avenues for the study of the evolution of pathogens, the detailed description of plant-pathogen interactions and the development of molecular techniques for the identification of individual isolates. For this purpose we sequenced 8 different H. vastatrix isolates using NGS technologies and gathered partial genome assemblies due to the large repetitive content in the coffee rust hybrid genome; 74.4% of the assembled contigs harbor repetitive sequences. A hybrid assembly of 333 Mb was built based on the 8 isolates; this assembly was used for subsequent analyses. Analysis of the conserved gene space showed that the hybrid H. vastatrix genome, though highly fragmented, had a satisfactory level of completion with 91.94% of core protein-coding orthologous genes present. RNA-Seq from urediniospores was used to guide the de novo annotation of the H. vastatrix gene complement. In total, 14,445 genes organized in 3921 families were uncovered; a considerable proportion of the predicted proteins (73.8%) were homologous to other Pucciniales species genomes. Several gene families related to the fungal lifestyle were identified, particularly 483 predicted secreted proteins that represent candidate effector genes and will provide interesting hints to decipher virulence in the coffee rust fungus. The genome sequence of Hva will serve as a template to understand the molecular mechanisms used by this fungus to attack the coffee plant, to study the diversity of this species and for the development of molecular markers to distinguish races/isolates.
Collapse
Affiliation(s)
- Marco A. Cristancho
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
- *Correspondence: Marco A. Cristancho, Department of Plant Pathology, National Center for Coffee Research – CENICAFÉ, Km 4 vía a Manizales, Chinchiná 2427, Colombia e-mail:
| | - David Octavio Botero-Rozo
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
- Departamento de Ciencias Biológicas, Universidad de los AndesBogotá, Colombia
| | - William Giraldo
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Javier Tabima
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
- Departamento de Ciencias Biológicas, Universidad de los AndesBogotá, Colombia
| | | | - Carolina Escobar
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Yomara Rozo
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Luis F. Rivera
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Andrés Durán
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Silvia Restrepo
- Departamento de Ciencias Biológicas, Universidad de los AndesBogotá, Colombia
| | - Tamar Eilam
- Institute for Cereal Crops Improvement, Tel Aviv UniversityTel Aviv, Israel
| | - Yehoshua Anikster
- Institute for Cereal Crops Improvement, Tel Aviv UniversityTel Aviv, Israel
| | - Alvaro L. Gaitán
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| |
Collapse
|
90
|
Pendleton AL, Smith KE, Feau N, Martin FM, Grigoriev IV, Hamelin R, Nelson CD, Burleigh JG, Davis JM. Duplications and losses in gene families of rust pathogens highlight putative effectors. FRONTIERS IN PLANT SCIENCE 2014; 5:299. [PMID: 25018762 PMCID: PMC4071342 DOI: 10.3389/fpls.2014.00299] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/06/2014] [Indexed: 05/20/2023]
Abstract
Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.
Collapse
Affiliation(s)
- Amanda L. Pendleton
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Katherine E. Smith
- Southern Research Station, Southern Institute of Forest Genetics, USDA Forest ServiceSaucier, MS, USA
| | - Nicolas Feau
- Department of Forest Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Francis M. Martin
- Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, INRA-Nancy, UMR Institut National de la Recherche Agronomique – Université de LorraineChampenoux, France
| | - Igor V. Grigoriev
- US Department of Energy, Joint Genome InstituteWalnut Creek, CA, USA
| | - Richard Hamelin
- Department of Forest Sciences, University of British ColumbiaVancouver, BC, Canada
| | - C. Dana Nelson
- Southern Research Station, Southern Institute of Forest Genetics, USDA Forest ServiceSaucier, MS, USA
| | - J. Gordon Burleigh
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Biology Department, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - John M. Davis
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- School of Forest Resources and Conservation, University of FloridaGainesville, FL, USA
- *Correspondence: John M. Davis, School of Forest Resources and Conservation, University of Florida, 365 Newins-Ziegler Hall, Gainesville, FL 32611, USA e-mail:
| |
Collapse
|
91
|
Petre B, Joly DL, Duplessis S. Effector proteins of rust fungi. FRONTIERS IN PLANT SCIENCE 2014; 5:416. [PMID: 25191335 PMCID: PMC4139122 DOI: 10.3389/fpls.2014.00416] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/04/2014] [Indexed: 05/19/2023]
Abstract
Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.
Collapse
Affiliation(s)
- Benjamin Petre
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy LorraineChampenoux, France
- UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, Université de LorraineVandoeuvre-lès-Nancy, France
- The Sainsbury Laboratory, Norwich Research ParkNorwich, UK
| | - David L. Joly
- Département de Biologie, Université de MonctonMoncton, NB, Canada
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy LorraineChampenoux, France
- UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, Université de LorraineVandoeuvre-lès-Nancy, France
- *Correspondence: Sébastien Duplessis, INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, Champenoux 54280, France e-mail:
| |
Collapse
|
92
|
Abstract
Live-cell imaging assisted by fluorescent markers has been fundamental to understanding the focused secretory 'warfare' that occurs between plants and biotrophic pathogens that feed on living plant cells. Pathogens succeed through the spatiotemporal deployment of a remarkably diverse range of effector proteins to control plant defences and cellular processes. Some effectors can be secreted by appressoria even before host penetration, many enter living plant cells where they target diverse subcellular compartments and others move into neighbouring cells to prepare them before invasion. This Review summarizes the latest advances in our understanding of the cell biology of biotrophic interactions between plants and their eukaryotic filamentous pathogens based on in planta analyses of effectors.
Collapse
|
93
|
Hacquard S, Delaruelle C, Frey P, Tisserant E, Kohler A, Duplessis S. Transcriptome analysis of poplar rust telia reveals overwintering adaptation and tightly coordinated karyogamy and meiosis processes. FRONTIERS IN PLANT SCIENCE 2013; 4:456. [PMID: 24312107 PMCID: PMC3835972 DOI: 10.3389/fpls.2013.00456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/23/2013] [Indexed: 05/24/2023]
Abstract
Most rust fungi have a complex life cycle involving up to five different spore-producing stages. The telial stage that produces melanized overwintering teliospores is one of these and plays a fundamental role for generating genetic diversity as karyogamy and meiosis occur at that stage. Despite the importance of telia for the rust life cycle, almost nothing is known about the fungal genetic programs that are activated in this overwintering structure. In the present study, the transcriptome of telia produced by the poplar rust fungus Melampsora larici-populina has been investigated using whole genome exon oligoarrays and RT-qPCR. Comparative expression profiling at the telial and uredinial stages identifies genes specifically expressed or up-regulated in telia including osmotins/thaumatin-like proteins (TLPs) and aquaporins that may reflect specific adaptation to overwintering as well numerous lytic enzymes acting on plant cell wall, reflecting extensive cell wall remodeling at that stage. The temporal dynamics of karyogamy was followed using combined RT-qPCR and DAPI-staining approaches. This reveals that fusion of nuclei and induction of karyogamy-related genes occur simultaneously between the 25 and 39 days post inoculation time frame. Transcript profiling of conserved meiosis genes indicates a preferential induction right after karyogamy and corroborates that meiosis begins prior to overwintering and is interrupted in Meiosis I (prophase I, diplonema stage) until teliospore germination in early spring.
Collapse
Affiliation(s)
- Stéphane Hacquard
- INRA, UMR 1136, Interactions Arbres-MicroorganismesChampenoux, France
- UMR 1136, Université de Lorraine, Interactions Arbres-MicroorganismesVandoeuvre-lès-Nancy, France
| | - Christine Delaruelle
- INRA, UMR 1136, Interactions Arbres-MicroorganismesChampenoux, France
- UMR 1136, Université de Lorraine, Interactions Arbres-MicroorganismesVandoeuvre-lès-Nancy, France
| | - Pascal Frey
- INRA, UMR 1136, Interactions Arbres-MicroorganismesChampenoux, France
- UMR 1136, Université de Lorraine, Interactions Arbres-MicroorganismesVandoeuvre-lès-Nancy, France
| | - Emilie Tisserant
- INRA, UMR 1136, Interactions Arbres-MicroorganismesChampenoux, France
- UMR 1136, Université de Lorraine, Interactions Arbres-MicroorganismesVandoeuvre-lès-Nancy, France
| | - Annegret Kohler
- INRA, UMR 1136, Interactions Arbres-MicroorganismesChampenoux, France
- UMR 1136, Université de Lorraine, Interactions Arbres-MicroorganismesVandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA, UMR 1136, Interactions Arbres-MicroorganismesChampenoux, France
- UMR 1136, Université de Lorraine, Interactions Arbres-MicroorganismesVandoeuvre-lès-Nancy, France
| |
Collapse
|
94
|
Rafiqi M, Jelonek L, Akum NF, Zhang F, Kogel KH. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. FRONTIERS IN PLANT SCIENCE 2013; 4:228. [PMID: 23874344 PMCID: PMC3708536 DOI: 10.3389/fpls.2013.00228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/10/2013] [Indexed: 05/03/2023]
Abstract
One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig UniversityGiessen, Germany
| | | | - Ndifor F. Akum
- Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig UniversityGiessen, Germany
| | - Feng Zhang
- Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig UniversityGiessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig UniversityGiessen, Germany
| |
Collapse
|
95
|
Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. PLoS One 2013; 8:e67150. [PMID: 23840606 PMCID: PMC3694141 DOI: 10.1371/journal.pone.0067150] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/14/2013] [Indexed: 12/31/2022] Open
Abstract
Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.
Collapse
Affiliation(s)
- Diana P. Garnica
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Narayana M. Upadhyaya
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Peter N. Dodds
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - John P. Rathjen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
96
|
Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, Ver Loren van Themaat E. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci U S A 2013; 110:E2219-28. [PMID: 23696672 PMCID: PMC3683789 DOI: 10.1073/pnas.1306807110] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ~200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production.
Collapse
Affiliation(s)
| | | | - Takaki Maekawa
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Saskia Vernaldi
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Emiel Ver Loren van Themaat
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| |
Collapse
|
97
|
Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, Surana P, Whigham E, Nettleton D, Bogdanove AJ, Wise RP, Schweizer P, Bindschedler LV, Spanu PD. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:633-42. [PMID: 23441578 DOI: 10.1094/mpmi-01-13-0005-r] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordei produces a large number of proteins predicted to be secreted from haustoria. Fifty of these Blumeria effector candidates (BEC) were screened by host-induced gene silencing (HIGS), and eight were identified that contribute to infection. One shows similarity to β-1,3 glucosyltransferases, one to metallo-proteases, and two to microbial secreted ribonucleases; the remainder have no similarity to proteins of known function. Transcript abundance of all eight BEC increases dramatically in the early stages of infection and establishment of haustoria, consistent with a role in that process. Complementation analysis using silencing-insensitive synthetic cDNAs demonstrated that the ribonuclease-like BEC 1011 and 1054 are bona fide effectors that function within the plant cell. BEC1011 specifically interferes with pathogen-induced host cell death. Both are part of a gene superfamily unique to the powdery mildew fungi. Structural modeling was consistent, with BEC1054 adopting a ribonuclease-like fold, a scaffold not previously associated with effector function.
Collapse
Affiliation(s)
- Clara Pliego
- Department of Life Science, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Poplar genetic engineering: promoting desirable wood characteristics and pest resistance. Appl Microbiol Biotechnol 2013; 97:5669-79. [DOI: 10.1007/s00253-013-4940-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
|
99
|
Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, Dubcovsky J, Saunders DGO, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 2013; 14:270. [PMID: 23607900 PMCID: PMC3640902 DOI: 10.1186/1471-2164-14-270] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici (PST) is one of the most devastating diseases of wheat worldwide. To design effective breeding strategies that maximize the potential for durable disease resistance it is important to understand the molecular basis of PST pathogenicity. In particular, the characterisation of the structure, function and evolutionary dynamics of secreted effector proteins that are detected by host immune receptors can help guide and prioritize breeding efforts. However, to date, our knowledge of the effector repertoire of cereal rust pathogens is limited. RESULTS We re-sequenced genomes of four PST isolates from the US and UK to identify effector candidates and relate them to their distinct virulence profiles. First, we assessed SNP frequencies between all isolates, with heterokaryotic SNPs being over tenfold more frequent (5.29 ± 2.23 SNPs/kb) than homokaryotic SNPs (0.41 ± 0.28 SNPs/kb). Next, we implemented a bioinformatics pipeline to integrate genomics, transcriptomics, and effector-focused annotations to identify and classify effector candidates in PST. RNAseq analysis highlighted transcripts encoding secreted proteins that were significantly enriched in haustoria compared to infected tissue. The expression of 22 candidate effector genes was characterised using qRT-PCR, revealing distinct temporal expression patterns during infection in wheat. Lastly, we identified proteins that displayed non-synonymous substitutions specifically between the two UK isolates PST-87/7 and PST-08/21, which differ in virulence to two wheat varieties. By focusing on polymorphic variants enriched in haustoria, we identified five polymorphic effector candidates between PST-87/7 and PST-08/21 among 2,999 secreted proteins. These allelic variants are now a priority for functional validation as virulence/avirulence effectors in the corresponding wheat varieties. CONCLUSIONS Integration of genomics, transcriptomics, and effector-directed annotation of PST isolates has enabled us to move beyond the single isolate-directed catalogues of effector proteins and develop a framework for mining effector proteins in closely related isolates and relate these back to their defined virulence profiles. This should ultimately lead to more comprehensive understanding of the PST pathogenesis system, an important first step towards developing more effective surveillance and management strategies for one of the most devastating pathogens of wheat.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Viticulture & Enology, University of California Davis, Davis, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Duan G, Christian N, Schwachtje J, Walther D, Ebenhöh O. The Metabolic Interplay between Plants and Phytopathogens. Metabolites 2013; 3:1-23. [PMID: 24957887 PMCID: PMC3901261 DOI: 10.3390/metabo3010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/18/2012] [Accepted: 12/31/2012] [Indexed: 12/18/2022] Open
Abstract
Plant diseases caused by pathogenic bacteria or fungi cause major economic damage every year and destroy crop yields that could feed millions of people. Only by a thorough understanding of the interaction between plants and phytopathogens can we hope to develop strategies to avoid or treat the outbreak of large-scale crop pests. Here, we studied the interaction of plant-pathogen pairs at the metabolic level. We selected five plant-pathogen pairs, for which both genomes were fully sequenced, and constructed the corresponding genome-scale metabolic networks. We present theoretical investigations of the metabolic interactions and quantify the positive and negative effects a network has on the other when combined into a single plant-pathogen pair network. Merged networks were examined for both the native plant-pathogen pairs as well as all other combinations. Our calculations indicate that the presence of the parasite metabolic networks reduce the ability of the plants to synthesize key biomass precursors. While the producibility of some precursors is reduced in all investigated pairs, others are only impaired in specific plant-pathogen pairs. Interestingly, we found that the specific effects on the host's metabolism are largely dictated by the pathogen and not by the host plant. We provide graphical network maps for the native plant-pathogen pairs to allow for an interactive interrogation. By exemplifying a systematic reconstruction of metabolic network pairs for five pathogen-host pairs and by outlining various theoretical approaches to study the interaction of plants and phytopathogens on a biochemical level, we demonstrate the potential of investigating pathogen-host interactions from the perspective of interacting metabolic networks that will contribute to furthering our understanding of mechanisms underlying a successful invasion and subsequent establishment of a parasite into a plant host.
Collapse
Affiliation(s)
- Guangyou Duan
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany.
| | - Nils Christian
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen City AB24 3UE, Aberdeen, United Kingdom.
| | - Jens Schwachtje
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany.
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany.
| | - Oliver Ebenhöh
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen City AB24 3UE, Aberdeen, United Kingdom.
| |
Collapse
|