51
|
Abstract
Plant growth and development are significantly influenced by the presence and activity of microorganisms. To date, the best-studied plant-interacting microbes are Gram-negative bacteria, but many representatives of both the high and low G+C Gram-positives have excellent biocontrol, plant growth-promoting and bioremediation activities. Moreover, actinorhizal symbioses largely contribute to the global biological nitrogen fixation and many Gram-positive bacteria promote other types of symbioses in tripartite interactions. Finally, several prominent and devastating phytopathogens are Gram-positive. We summarize the present knowledge of the beneficial and detrimental interactions of Gram-positive bacteria with plants to underline the importance of this particular group of bacteria.
Collapse
Affiliation(s)
- Isolde Francis
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Gent, Belgium
| | | | | |
Collapse
|
52
|
Nissinen R, Xia Y, Mattinen L, Ishimaru CA, Knudson DL, Knudson SE, Metzler M, Pirhonen M. The putative secreted serine protease Chp-7 is required for full virulence and induction of a nonhost hypersensitive response by Clavibacter michiganensis subsp. sepedonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:809-19. [PMID: 19522563 DOI: 10.1094/mpmi-22-7-0809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular biological studies on Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot of potato, have gained greater feasibility due to the recent availability of whole genomic sequences and genetic tools for related taxa. Here, we describe the first report of construction and characterization of a transposon (Tn) mutant library of C. michiganensis subsp. sepedonicus sp. strain R10. Since virulence of R10 in potato has been shown previously to be associated with elicitation of a nonhost hypersensitive response (HR), the mutant library was screened initially for loss of HR in tobacco. The screen identified two HR-negative mutants containing Tn insertions within the same gene, CMS2989 (chp-7), although at distinct locations. chp-7 is one of 11 pat-1 homologs in C. michiganensis subsp. sepedonicus. HR-negative mutants of R10 multiplied to the same extent as wild type in planta but were less virulent in potato. Complementation with chp-7 restored virulence as well as the HR phenotype. Together, these findings demonstrate a role for chp-7 in C. michiganensis subsp. sepedonicus-plant interactions.
Collapse
Affiliation(s)
- Riitta Nissinen
- Department of Applied Biology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin. Appl Microbiol Biotechnol 2009; 83:305-13. [DOI: 10.1007/s00253-009-1872-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
|
54
|
Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 2009; 19:1033-43. [PMID: 19270083 DOI: 10.1101/gr.084848.108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We present here the complete 2.4-Mb genome of the cellulolytic actinobacterial thermophile Acidothermus cellulolyticus 11B. New secreted glycoside hydrolases and carbohydrate esterases were identified in the genome, revealing a diverse biomass-degrading enzyme repertoire far greater than previously characterized and elevating the industrial value of this organism. A sizable fraction of these hydrolytic enzymes break down plant cell walls, and the remaining either degrade components in fungal cell walls or metabolize storage carbohydrates such as glycogen and trehalose, implicating the relative importance of these different carbon sources. Several of the A. cellulolyticus secreted cellulolytic and xylanolytic enzymes are fused to multiple tandemly arranged carbohydrate binding modules (CBM), from families 2 and 3. For the most part, thermophilic patterns in the genome and proteome of A. cellulolyticus were weak, which may be reflective of the recent evolutionary history of A. cellulolyticus since its divergence from its closest phylogenetic neighbor Frankia, a mesophilic plant endosymbiont and soil dweller. However, ribosomal proteins and noncoding RNAs (rRNA and tRNAs) in A. cellulolyticus showed thermophilic traits suggesting the importance of adaptation of cellular translational machinery to environmental temperature. Elevated occurrence of IVYWREL amino acids in A. cellulolyticus orthologs compared to mesophiles and inverse preferences for G and A at the first and third codon positions also point to its ongoing thermoadaptation. Additional interesting features in the genome of this cellulolytic, hot-springs-dwelling prokaryote include a low occurrence of pseudogenes or mobile genetic elements, an unexpected complement of flagellar genes, and the presence of three laterally acquired genomic islands of likely ecophysiological value.
Collapse
Affiliation(s)
- Ravi D Barabote
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Komeda H, Asano Y. A novel d-stereoselective amino acid amidase from Brevibacterium iodinum: Gene cloning, expression and characterization. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
Hogenhout SA, Loria R. Virulence mechanisms of Gram-positive plant pathogenic bacteria. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:449-456. [PMID: 18639483 DOI: 10.1016/j.pbi.2008.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 05/07/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
Actinobacteria and Firmicutes comprise a group of highly divergent prokaryotes known as Gram-positive bacteria, which are ancestral to Gram-negative bacteria. Comparative genomics is revealing that, though plant virulence genes are frequently located on plasmids or in laterally acquired gene clusters, they are rarely shared with Gram-negative bacterial plant pathogens and among Gram-positive genera. Gram-positive bacterial pathogens utilize a variety of virulence strategies to invade their plant hosts, including the production of phytotoxins to allow intracellular and intercellular replication, production of cytokinins to generate gall tissues for invasion, secretion of proteins to induce cankers and the utilization and manipulation of sap-feeding insects for introduction into the phloem sieve cells. Functional analysis of novel virulence genes utilized by Actinobacteria and Firmicutes is revealing how these ancient prokaryotes manipulate plant, and sometimes insect, metabolic processes for their own benefit.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich NR4 7UH, United Kingdom.
| | | |
Collapse
|
57
|
Zerillo MM, Van Sluys MA, Camargo LEA, Monteiro-Vitorello CB. Characterization of new IS elements and studies of their dispersion in two subspecies of Leifsonia xyli. BMC Microbiol 2008; 8:127. [PMID: 18655699 PMCID: PMC2516522 DOI: 10.1186/1471-2180-8-127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 07/25/2008] [Indexed: 12/05/2022] Open
Abstract
Background Leifsonia xyli is a xylem-inhabiting bacterial species comprised of two subspecies: L. xyli subsp. xyli (Lxx) and L. xyli subsp. cynodontis (Lxc). Lxx is the causal agent of ratoon stunting disease in sugarcane commercial fields and Lxc colonizes the xylem of several grasses causing either mild or no symptoms of disease. The completely sequenced genome of Lxx provided insights into its biology and pathogenicity. Since IS elements are largely reported as an important source of bacterial genome diversification and nothing is known about their role in chromosome architecture of L. xyli, a comparative analysis of Lxc and Lxx elements was performed. Results Sample sequencing of Lxc genome and comparative analysis with Lxx complete DNA sequence revealed a variable number of IS transposable elements acting upon genomic diversity. A detailed characterization of Lxc IS elements and a comparative review with IS elements of Lxx are presented. Each genome showed a unique set of elements although related to same IS families when considering features such as similarity among transposases, inverted and direct repeats, and element size. Most of the Lxc and Lxx IS families assigned were reported to maintain transposition at low levels using translation regulatory mechanisms, consistent with our in silico analysis. Some of the IS elements were found associated with rearrangements and specific regions of each genome. Differences were also found in the effect of IS elements upon insertion, although none of the elements were preferentially associated with gene disruption. A survey of transposases among genomes of Actinobacteria showed no correlation between phylogenetic relatedness and distribution of IS families. By using Southern hybridization, we suggested that diversification of Lxc isolates is also mediated by insertion sequences in probably recent events. Conclusion Collectively our data indicate that transposable elements are involved in genome diversification of Lxc and Lxx. The IS elements were probably acquired after the divergence of the two subspecies and are associated with genome organization and gene contents. In addition to enhancing understanding of IS element dynamics in general, these data will contribute to our ongoing comparative analyses aimed at understanding the biological differences of the Lxc and Lxx.
Collapse
Affiliation(s)
- Marcelo M Zerillo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
58
|
Abstract
The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds.
Collapse
|
59
|
Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie van Leeuwenhoek 2008; 94:3-10. [PMID: 18392685 DOI: 10.1007/s10482-008-9240-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/14/2008] [Indexed: 01/13/2023]
|
60
|
Bentley SD, Corton C, Brown SE, Barron A, Clark L, Doggett J, Harris B, Ormond D, Quail MA, May G, Francis D, Knudson D, Parkhill J, Ishimaru CA. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J Bacteriol 2008; 190:2150-60. [PMID: 18192393 PMCID: PMC2258862 DOI: 10.1128/jb.01598-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/01/2008] [Indexed: 12/21/2022] Open
Abstract
Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome.
Collapse
Affiliation(s)
- Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hsiao YM, Zheng MH, Hu RM, Yang TC, Tseng YH. Regulation of the pehA gene encoding the major polygalacturonase of Xanthomonas campestris by Clp and RpfF. Microbiology (Reading) 2008; 154:705-713. [DOI: 10.1099/mic.0.2007/012930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, ROC
| | - Mei-Huei Zheng
- Institute of Biotechnology, Chaoyang University of Technology, Taichung 413, Taiwan, ROC
| | - Rouh-Mei Hu
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 413, Taiwan, ROC
| | - Tsuey-Ching Yang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, ROC
| | - Yi-Hsiung Tseng
- Institute of Medical Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, ROC
| |
Collapse
|
62
|
The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol 2008; 190:2138-49. [PMID: 18192381 DOI: 10.1128/jb.01595-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.
Collapse
|
63
|
Holtsmark I, Takle GW, Brurberg MB. Expression of putative virulence factors in the potato pathogen Clavibacter michiganensis subsp. sepedonicus during infection. Arch Microbiol 2007; 189:131-9. [PMID: 17846750 DOI: 10.1007/s00203-007-0301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/29/2007] [Accepted: 08/18/2007] [Indexed: 01/05/2023]
Abstract
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.
Collapse
Affiliation(s)
- Ingrid Holtsmark
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk, Høgskoleveien 7, 1432 , As, Norway
| | | | | |
Collapse
|
64
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 638] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
65
|
Akimkina T, Venien-Bryan C, Hodgkin J. Isolation, characterization and complete nucleotide sequence of a novel temperate bacteriophage Min1, isolated from the nematode pathogen Microbacterium nematophilum. Res Microbiol 2007; 158:582-90. [PMID: 17869067 DOI: 10.1016/j.resmic.2007.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/25/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
We report the discovery, properties and complete sequence (46,365bp) of Min1, the first bacteriophage to be reported for the coryneform genus Microbacterium. This temperate phage is normally integrated into a stable plasmid, pMN1, found in cells of Microbacterium nematophilum, a pathogen of certain soil nematodes including Caenorhabditis elegans, but it can also grow lytically. The phage is lambdoid in morphology and in sequence, belonging to the family Siphoviridae. General and specific features of the genome are discussed, together with possible contributions of the phage to host virulence.
Collapse
Affiliation(s)
- Tatiana Akimkina
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | |
Collapse
|
66
|
Stackebrandt E, Brambilla E, Richert K. Gene Sequence Phylogenies of the Family Microbacteriaceae. Curr Microbiol 2007; 55:42-6. [PMID: 17551787 DOI: 10.1007/s00284-006-0569-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/07/2007] [Indexed: 11/28/2022]
Abstract
The type strains of 32 species of 13 genera of the family Microbacteriaceae were analysed with respect to gene-coding phylogeny for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA), and polyphosphate kinase (ppk). The resulting gene trees were compared with the 16S rRNA gene phylogeny of the same strains. The topology of neighbour-joining and maximum parsimony phylogenetic trees, based on nucleic-acid sequences and protein sequences of housekeeping genes, differed from one another, and no gene tree was identical to that of the 16S rRNA gene tree. Most genera analysed containing >1 strain formed phylogenetically coherent taxa. The three pathovars of Curtobacterium flaccumfaciens clustered together to the exclusion of the type strains of other Curtobacterium species in all DNA - and protein-based analyses. In no tree did the distribution of a major taxonomic marker, i.e., diaminobutyric acid versus lysine and/or ornithine in the peptidoglycan, or acyl type of peptidoglycan, correlate with the phylogenetic position of the organisms. The changing phylogenetic position of Agrococcus jenensis was unexpected: This strain defined individual lineages in the trees based on 16S rRNA and gyrB and showed identity with Microbacterium saperdae in the other three gene trees.
Collapse
Affiliation(s)
- Erko Stackebrandt
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7B, 38124, Braunschweig, Germany.
| | | | | |
Collapse
|
67
|
Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 2007; 24:1073-109. [PMID: 17898898 DOI: 10.1039/b514050c] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.
Collapse
|
68
|
Kovaleva GY, Gelfand MS. Regulation of methionine/cysteine biosynthesis in Corynebacterium glutamicum and related organisms. Mol Biol 2007. [DOI: 10.1134/s0026893307010177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Sutcliffe IC, Hutchings MI. Putative lipoproteins identified by bioinformatic genome analysis of Leifsonia xyli ssp. xyli, the causative agent of sugarcane ratoon stunting disease. MOLECULAR PLANT PATHOLOGY 2007; 8:121-128. [PMID: 20507484 DOI: 10.1111/j.1364-3703.2006.00377.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Leifsonia xyli ssp. xyli is the causative agent of ratoon stunting disease, a major cause of economic loss in sugarcane crops. Understanding of the biology of this pathogen has been hampered by its fastidious growth characteristics in vitro. However, the recent release of a genome sequence for this organism has allowed significant novel insights. Further to this, we have performed a bioinformatic analysis of the lipoproteins encoded in the L. xyli genome. These analyses suggest that lipoproteins represent c. 2.0% of the L. xyli predicted proteome. Functional analyses suggest that lipoproteins make an important contribution to the physiology of the pathogen and may influence its ability to cause disease in planta.
Collapse
Affiliation(s)
- Iain C Sutcliffe
- Biomolecular and Biomedical Research Centre, School of Applied Sciences, Ellison Building, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | |
Collapse
|
70
|
Hashimi SM, Wall MK, Smith AB, Maxwell A, Birch RG. The phytotoxin albicidin is a novel inhibitor of DNA gyrase. Antimicrob Agents Chemother 2007; 51:181-7. [PMID: 17074789 PMCID: PMC1797663 DOI: 10.1128/aac.00918-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/20/2006] [Accepted: 10/20/2006] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most coumarins and quinolones. Albicidin blocks the religation of the cleaved DNA intermediate during the gyrase catalytic sequence and also inhibits the relaxation of supercoiled DNA by gyrase and topoisomerase IV. Unlike the coumarins, albicidin does not inhibit the ATPase activity of gyrase. In contrast to the quinolones, the albicidin concentration required to stabilize the gyrase cleavage complex increases 100-fold in the absence of ATP. The slow peptide poisons microcin B17 and CcdB also access ATP-dependent conformations of gyrase to block religation, but in contrast to albicidin, they do not inhibit supercoiling under routine assay conditions. Some mutations in gyrA, known to confer high-level resistance to quinolones or CcdB, confer low-level resistance or hypersensitivity to albicidin in Escherichia coli. Within the albicidin biosynthesis region in X. albilineans is a gene encoding a pentapeptide repeat protein designated AlbG that binds to E. coli DNA gyrase and that confers a sixfold increase in the level of resistance to albicidin in vitro and in vivo. These results demonstrate that DNA gyrase is the molecular target of albicidin and that X. albilineans encodes a gyrase-interacting protein for self-protection. The novel features of the gyrase-albicidin interaction indicate the potential for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Saeed M Hashimi
- Botany Department--SIB, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | |
Collapse
|
71
|
Akimkina T, Yook K, Curnock S, Hodgkin J. Genome characterization, analysis of virulence and transformation of Microbacterium nematophilum, a coryneform pathogen of the nematode Caenorhabditis elegans. FEMS Microbiol Lett 2006; 264:145-51. [PMID: 17010162 DOI: 10.1111/j.1574-6968.2006.00469.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A coryneform bacterium designated Microbacterium nematophilum has previously been reported to act as a pathogen for Caenorhabditis elegans. This bacterium is able to colonize the rectum of infected worms and cause localized swelling, constipation and slowed growth. Additional isolates and analysis of this bacterium are described here. Tests of pathogenicity on other Caenorhabditis nematodes show that M. nematophilum infection is lethal to most species in the genus, in contrast to its relatively mild effects on C. elegans. The size and geometry of the pathogen genome have been determined as a closed circular molecule of 2.85 Mb with high G+C content. Bacteria also harbor a 55 kb plasmid, pMN1, which is largely composed of a lysogenic bacteriophage genome. Mutagenesis experiments have yielded stable avirulent mutants of M. nematophilum. As a first step towards molecular genetic analysis, methods for low-efficiency transformation of M. nematophilum have been developed.
Collapse
Affiliation(s)
- Tatiana Akimkina
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
72
|
Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D. How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiol Rev 2006; 30:734-59. [PMID: 16911042 DOI: 10.1111/j.1574-6976.2006.00031.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Actinobacteridae group of bacteria includes pathogens, plant commensals, endosymbionts as well as inhabitants of the gastrointestinal tract. For various reasons, these microorganisms represent a growing area of interest with respect to genomics, molecular biology and genetics. This review will discuss the current knowledge on the molecular players that allow actinobacteria to contend with heat stress, with an emphasis on bifidobacteria. We describe the principal molecular chaperones involved in heat stress. Temporal expression of heat-shock genes based on functional genomics in members of the Actinobacteridae group is also discussed, as well as the emerging molecular mechanisms controlling the heat-stress response.
Collapse
Affiliation(s)
- Marco Ventura
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
73
|
Bostock JM, Huang G, Hashimi SM, Zhang L, Birch RG. A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. J Appl Microbiol 2006; 101:151-60. [PMID: 16834602 DOI: 10.1111/j.1365-2672.2006.02899.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. METHODS AND RESULTS Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. CONCLUSIONS AlbF is the first apparent single-component antibiotic-specific efflux pump from a gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. SIGNIFICANCE AND IMPACT OF THE STUDY Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.
Collapse
Affiliation(s)
- J M Bostock
- Department of Botany, SIB, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
74
|
Gao B, Paramanathan R, Gupta RS. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 2006; 90:69-91. [PMID: 16670965 DOI: 10.1007/s10482-006-9061-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
The Actinobacteria constitute one of the main phyla of Bacteria. Presently, no morphological and very few molecular characteristics are known which can distinguish species of this highly diverse group. In this work, we have analyzed the genomes of four actinobacteria (viz. Mycobacterium leprae TN, Leifsonia xyli subsp. xyli str. CTCB07, Bifidobacterium longum NCC2705 and Thermobifida fusca YX) to search for proteins that are unique to Actinobacteria. Our analyses have identified 233 actinobacteria-specific proteins, homologues of which are generally not present in any other bacteria. These proteins can be grouped as follows: (i) 29 proteins uniquely present in most sequenced actinobacterial genomes; (ii) 6 proteins present in almost all actinobacteria except Bifidobacterium longum and another 37 proteins absent in B. longum and few other species; (iii) 11 proteins which are mainly present in Corynebacterium, Mycobacterium and Nocardia (CMN) subgroup as well as Streptomyces, T. fusca and Frankia sp., but they are not found in Bifidobacterium and Micrococcineae; (iv) 8 proteins that are specific for T. fusca and Streptomyces species, plus 2 proteins also present in the Frankia species; (v) 13 proteins that are specific for the Corynebacterineae or the CMN group; (vi) 14 proteins only found in Mycobacterium and Nocardia; (vii) 24 proteins unique to different Mycobacterium species; (viii) 8 proteins specific to the Micrococcineae; (ix) 85 proteins which are distributed sporadically in actinobacterial species. Additionally, many examples of lateral gene transfer from Actinobacteria to Magnetospirillum magnetotacticum have also been identified. The identified proteins provide novel molecular means for defining and circumscribing the Actinobacteria phylum and a number of subgroups within it. The distribution of these proteins also provides useful information regarding interrelationships among the actinobacterial subgroups. Most of these proteins are of unknown function and studies aimed at understanding their cellular functions should reveal common biochemical and physiological characteristics unique to either all actinobacteria or particular subgroups of them. The identified proteins also provide potential targets for development of drugs that are specific for actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, L8N3Z5, Hamilton, Canada
| | | | | |
Collapse
|
75
|
Setubal JC, Moreira LM, da Silva ACR. Bacterial phytopathogens and genome science. Curr Opin Microbiol 2006; 8:595-600. [PMID: 16125997 DOI: 10.1016/j.mib.2005.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
There are now fourteen completed genomes of bacterial phytopathogens, all of which have been generated in the past six years. These genomes come from a phylogenetically diverse set of organisms, and range in size from 870 kb to more than 6Mb. The publication of these annotated genomes has significantly helped our understanding of bacterial plant disease. These genomes have also provided important information about bacterial evolution. Examples of recently completed genomes include: Pseudomonas syringae pv tomato, which is notable for its large repertoire of effector proteins; Leifsonia xyli subsp. xyli, the first Gram-positive bacterial genome to be sequenced; and Phytoplasma asteris, the small genome that lacks important functions previously thought to be essential in a bacterium.
Collapse
Affiliation(s)
- João C Setubal
- Virginia Bioinformatics Institute and Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060-0477, USA
| | | | | |
Collapse
|
76
|
Champoiseau P, Daugrois JH, Girard JC, Royer M, Rott PC. Variation in Albicidin Biosynthesis Genes and in Pathogenicity of Xanthomonas albilineans, the Sugarcane Leaf Scald Pathogen. PHYTOPATHOLOGY 2006; 96:33-45. [PMID: 18944203 DOI: 10.1094/phyto-96-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Total genomic DNA from 137 strains of Xanthomonas albilineans from worldwide locations was hybridized with two DNA probes that together harbor the entire 49-kb albicidin biosynthesis gene cluster and two additional 3-kb genomic regions required for albicidin production. Fourteen haplotypes and two major genetic groups (albicidin [ALB]-restriction fragment length polymorphism [RFLP] A and ALB-RFLP B) were identified, and strains that were isolated after recent outbreaks of leaf scald disease belonged to group ALB-RFLP B. Albicidin genetic diversity was very similar to the previously described genetic diversity of the pathogen based on the whole genome. No relationship was found between variability of albicidin biosynthesis genes and the amount of albicidin produced in vitro by X. albilineans. Leaf scald-susceptible sugarcane cv. H70-144 was inoculated with 20 strains of the pathogen belonging to different ALB-RFLP haplotypes. Among them, 10 strains from Guadeloupe belonged to the same ALB-RFLP group but differed in the amount of albicidin produced in vitro. Strains were distributed in at least three different pathogenicity groups based on symptom severity and pathogen population density in the stalk. These two pathogenicity factors varied concurrently; however, no relationship between variation in albicidin biosynthesis genes, variation in the amount of albicidin produced in vitro, and variation in pathogenicity of X. albilineans was found. Further investigation is necessary to identify other genes involved in pathogenicity of X. albilineans.
Collapse
|
77
|
Abstract
The present review considered: (a) the factors that conditioned the early transition from non-life to life; (b) genome structure and complexity in prokaryotes, eukaryotes, and organelles; (c) comparative human chromosome genomics; and (d) the Brazilian contribution to some of these studies. Understanding the dialectical conflict between freedom and organization is fundamental to give meaning to the patterns and processes of organic evolution.
Collapse
Affiliation(s)
- Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
78
|
Gao B, Gupta RS. Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 2005; 55:2401-2412. [PMID: 16280504 DOI: 10.1099/ijs.0.63785-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria with a high G+C content are currently recognized as a distinct phylum, Actinobacteria, on the basis of their branching in 16S rRNA trees. Except for an insert in the 23S rRNA, there are no unique biochemical or molecular characteristics known at present that can distinguish this group from all other bacteria. In this work, three conserved indels (i.e. inserts or deletions) are described in three widely distributed proteins that are distinctive characteristics of the Actinobacteria and are not found in any other groups of bacteria. The identified signatures are a 2 aa deletion in cytochrome-c oxidase subunit 1 (Cox1), a 4 aa insert in CTP synthetase and a 5 aa insert in glutamyl-tRNA synthetase (GluRS). Additionally, the actinobacterial specificity of the large insert in the 23S rRNA was also tested. Using primers designed for conserved regions flanking these signatures, fragments of most of these genes were amplified from 23 actinobacterial species, covering many different families and orders, for which no sequence information was previously available. All the 61 sequenced fragments, except two in GluRS, were found to contain the indicated signatures. The presence of these signatures in various species from 20 families within this phylum provides evidence that they are likely distinctive characteristics of the entire phylum, which were introduced in a common ancestor of this group. The absence of all four of these signatures in Symbiobacterium thermophilum suggests that this species, which is distantly related to other actinobacteria in 16S rRNA and CTP synthetase trees, may not be a part of the phylum Actinobacteria. The identified signatures provide novel molecular means for defining and circumscribing the phylum Actinobacteria. Functional studies on them should prove helpful in understanding novel biochemical and physiological characteristics of this group of bacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Canada L8N 3Z5
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Canada L8N 3Z5
| |
Collapse
|
79
|
Lawrence JG. Common themes in the genome strategies of pathogens. Curr Opin Genet Dev 2005; 15:584-8. [PMID: 16188434 DOI: 10.1016/j.gde.2005.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/14/2005] [Indexed: 12/21/2022]
Abstract
Genomes of pathogenic bacteria evolve by large-scale changes in gene inventory. The continual acquisition of genomic islands, which refines their metabolic arsenal, is offset by gene loss. Far from this being a passive deletion of genes no longer useful to pathogens, the removal of genes encoding problematic metabolic process and immunogenic surface antigens might be strongly beneficial. Genomes of virulent eukaryotes show the footprint of similar genomic alterations, including acquisition of genes by lateral transfer, and genome degradation in obligate pathogens. These common features suggest that unicellular pathogens share common strategies for adaptation.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
80
|
Affiliation(s)
- Nicholas Thomson
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | |
Collapse
|
81
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447482 DOI: 10.1002/cfg.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
82
|
Affiliation(s)
- Claire M Fraser
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
83
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
84
|
|