51
|
Relle M, Cash H, Brochhausen C, Strand D, Menke J, Galle PR, Schwarting A. New perspectives on the renal slit diaphragm protein podocin. Mod Pathol 2011; 24:1101-10. [PMID: 21499232 PMCID: PMC3182839 DOI: 10.1038/modpathol.2011.58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Podocin is a critical component of the glomerular filtration barrier, its mutations causing recessive steroid-resistant nephrotic syndrome. A GenBank analysis of the human podocin (NPHS2) gene resulted in the possible existence of a new splice variant of podocin in the kidney, missing the in-frame of exon 5, encoding the prohibitin homology domain. Using RT-polymerase chain reaction and immunoblotting followed by sequence analysis, we are for the first time able to prove the expression of a novel podocin isoform (isoform 2), exclusively and constitutively expressed in human podocytes. Furthermore, we reveal singular extrarenal podocin expression in human and murine testis. Our data show the Sertoli cells of the seminiferous tubules to be the origin of testicular podocin. Confocal laser microscopy illustrates the co-localization of podocin with filamentous actin within Sertoli cells, suggesting a role of podocin in the blood/testis barrier. These results led to the rationale to examine podocin expression in testes of men with Sertoli cell-only syndrome, a disorder characterized by azoospermia. Interestingly, we observed a complete down-regulation of podocin mRNA in Sertoli cell-only syndrome, indicating a possible role of podocin in the pathogenesis of this germinal aplasia. Men with Sertoli cell-only syndrome show normal renal podocin expression, suggesting an alternate regulation of the testicular promoter. Our findings may change the perception of podocin and give new insights into the ultrastructure of glomerular slit diaphragm and the blood/testis barrier.
Collapse
Affiliation(s)
- Manfred Relle
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany.
| | - Hannes Cash
- Department of Urology, Charité-University Medicine, Berlin, Germany
| | | | - Dennis Strand
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Julia Menke
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Peter R Galle
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
52
|
Chen H, Fok KL, Yu S, Jiang J, Chen Z, Gui Y, Cai Z, Chan HC. CD147 is required for matrix metalloproteinases-2 production and germ cell migration during spermatogenesis. Mol Hum Reprod 2011; 17:405-14. [PMID: 21343160 DOI: 10.1093/molehr/gar013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis is a highly programmed process that requires the degradation of the extracellular matrix and the remodeling of tight junctions (TJ) to facilitate differentiating germ cell migration. Matrix metalloproteinases (MMPs) are essential in regulating Sertoli cell TJ in the testis. CD147 is known to stimulate the production of MMPs in tumor metastasis and its knockout mice are infertile. However, the functional relationship between CD147 and MMPs in spermatogenesis has not been investigated. In the present study, we examined the expression profile of CD147 and MMPs during mouse testicular development by RT-PCR, western blot and immunofluorescence staining. We also examined CD147 involvement in the production of MMP-2 and the migration of germ cells (GC-1 and GC-2 cells) using CD147 antibody or synthetic microRNA mimics-mediated knockdown. The results showed that CD147 was present at all stages of testicular development from 7 to 56 days post-partum (dpp). CD147 expression was found to increase after 21 days from moderate levels in 7 and 14 days. Of the eight MMPs studied, MMP-2, MMP-7, MMP-9 and MMP-23 were detected to have changes in expression during testicular development, with MMP-2 showing the largest change. CD147 and MMP-2 were co-localized in spermatogonia, spermatocytes and round spermatids in mouse testis, while in human testis, they were co-localized in spermatocytes and round spermatids. MMP-2 expression and migration of GC-1 and GC-2 cells were reduced by interfering with CD147 expression and function in vitro. These data suggest that CD147 regulates migration of spermatogonia and spermatocytes via induction of MMP-2 production during spermatogenesis.
Collapse
Affiliation(s)
- Hao Chen
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, PR China
| | | | | | | | | | | | | | | |
Collapse
|
53
|
An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials 2010; 31:4492-505. [DOI: 10.1016/j.biomaterials.2010.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/10/2010] [Indexed: 11/24/2022]
|
54
|
Kim BG, Cho CM, Lee YA, Kim BJ, Kim KJ, Kim YH, Min KS, Kim CG, Ryu BY. Enrichment of Testicular Gonocytes and Genetic Modification Using Lentiviral Transduction in Pigs1. Biol Reprod 2010; 82:1162-9. [DOI: 10.1095/biolreprod.109.079558] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
55
|
Moore BC, Hamlin HJ, Botteri NL, Lawler AN, Mathavan KK, Guillette LJ. Posthatching development of Alligator mississippiensis ovary and testis. J Morphol 2010; 271:580-95. [PMID: 20013789 PMCID: PMC2851832 DOI: 10.1002/jmor.10818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated ovary and testis development of Alligator mississippiensis during the first 5 months posthatch. To better describe follicle assembly and seminiferous cord development, we used histochemical techniques to detect carbohydrate-rich extracellular matrix components in 1-week, 1-month, 3-month, and 5-month-old gonads. We found profound morphological changes in both ovary and testis. During this time, oogenesis progressed up to diplotene arrest and meiotic germ cells increasingly interacted with follicular cells. Concomitant with follicles becoming invested with full complements of granulosa cells, a periodic acid Schiff's (PAS)-positive basement membrane formed. As follicles enlarged and thecal layers were observed, basement membranes and thecal compartments gained periodic acid-methionine silver (PAMS)-reactive fibers. The ovarian medulla increased first PAS- and then PAMS reactivity as it fragmented into wide lacunae lined with low cuboidal to squamous epithelia. During this same period, testicular germ cells found along the tubule margins were observed progressing from spermatogonia to round spermatids located within the center of tubules. Accompanying this meiotic development, interstitial Leydig cell clusters become more visible and testicular capsules thickened. During the observed testis development, the thickening tunica albuginea and widening interstitial tissues showed increasing PAS- and PAMS reactivity. We observed putative intersex structures in both ovary and testis. On the coelomic aspect of testes were cell clusters with germ cell morphology and at the posterior end of ovaries, we observed "medullary rests" resembling immature testis cords. We hypothesize laboratory conditions accelerated gonad maturation due to optimum conditions, including nutrients and temperature. Laboratory alligators grew more rapidly and with increased body conditions compared with previous measured, field-caught animals. Additionally, we predict the morphological maturation observed in these gonads is concomitant with increased endocrine activities.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Cheng CY, Mruk DD. Regulation of blood-testis barrier dynamics by focal adhesion kinase (FAK): an unexpected turn of events. Cell Cycle 2009; 8:3493-9. [PMID: 19823026 DOI: 10.4161/cc.8.21.9833] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The blood-testis barrier (BTB) is conferred by co-existing tight junctions (TJs), basal ectoplasmic specializations (basal ES), desmosome-like junctions and gap junctions (GJs) between adjacent Sertoli cells near the basement membrane in the seminiferous epithelium. While the concept of the BTB has been known for more than a century and its significance to spermatogenesis discerned for more than five decades, its regulation has remained largely unknown. Recent studies, however, have demonstrated that focal adhesion kinase (FAK), a modulator of the integrin-based signaling that plays a crucial role in cell movement, apoptosis, cell survival and gene expression at the focal adhesion complex (FAC, also known as focal contact, a cell-matrix anchoring junction type), is an integrated component of the BTB, associated with the TJ-integral membrane protein occludin and its adaptor zonula occludens-1 (ZO-1). Herein, we summarize recent findings in the field regarding the significance of FAK in conferring BTB integrity based on some unexpected observations. We also critically discuss the role of FAK in regulating the timely "opening" and "closing" of the BTB to facilitate the transit of primary preleptotene spermatocytes across the BTB at stage VIII of the seminiferous epithelial cycle of spermatogenesis. Lastly, we describe a working model, which can be used to design future functional experiments to explore the involvement of FAK in BTB dynamics by investigators in the field.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.
| | | |
Collapse
|
57
|
Yao PL, Lin YC, Richburg JH. Mono-(2-ethylhexyl) phthalate-induced disruption of junctional complexes in the seminiferous epithelium of the rodent testis is mediated by MMP2. Biol Reprod 2009; 82:516-27. [PMID: 19828778 DOI: 10.1095/biolreprod.109.080374] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Tight junctions between Sertoli cells of the testicular seminiferous epithelium establishes the blood-testis barrier (BTB) and creates a specialized adluminal microenvironment above the BTB that is required for the development of the germ cells that reside there. Actin filament-based anchoring junctions between Sertoli cells and germ cells are important for maintaining close physical contact between these cells as well as regulating the release of mature spermatids into the lumen. Previously, we reported that Sertoli cell injury in rodents after mono-(2-ethylhexyl) phthalate (MEHP) exposure results in the activation of matrix metalloproteinase 2 (MMP2) and increases the sensitivity of germ cells to undergo apoptosis. A disruption in the physical association between Sertoli cells and germ cells and premature loss of germ cells from the seminiferous epithelium has been widely described after phthalate treatment. In this study, we investigate the functional participation of MMP2 in the mechanism underlying MEHP-induced disruption of junction complexes and the resultant loss of germ cells. Exposure of C57BL/6J mice to MEHP (1 g/kg, oral gavage) decreased the expression of occludin in the tight junctions between Sertoli cells and caused gaps between adjacent Sertoli cells as observed by transmission electron microscopy. A reduced expression of laminin-gamma3 and beta1-integrin in apical ectoplasmic specializations between Sertoli cells and germ cells in a time-dependent manner was also observed. Treatment with specific MMP2 inhibitors (TIMP2 and SB-3CT) both in vitro and in vivo significantly suppressed MEHP-induced germ cell sloughing and changes in the expression of these junctional proteins, indicating that MMP-2 plays a primary role in this process. Furthermore, the detachment of germ cells from Sertoli cells appears to be independent of the apoptotic signaling process since MEHP-induced germ cell detachment from Sertoli cells could not be prevented by the addition of a pan-caspase inhibitor (z-VAD-FMK).
Collapse
Affiliation(s)
- Pei-Li Yao
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1 University Station, Austin, TX 78712-1074, USA
| | | | | |
Collapse
|
58
|
Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 2009; 44:245-63. [PMID: 19622063 PMCID: PMC2758293 DOI: 10.1080/10409230903061207] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During spermatogenesis in adult rat testes, fully developed spermatids (i.e. spermatozoa) at the luminal edge of the seminiferous epithelium undergo "spermiation" at stage VIII of the seminiferous epithelial cycle. This is manifested by the disruption of the apical ectoplasmic specialization (apical ES) so that spermatozoa can enter the tubule lumen and to complete their maturation in the epididymis. At the same time, the blood-testis barrier (BTB) located near the basement membrane undergoes extensive restructuring to allow transit of preleptotene spermatocytes so that post-meiotic germ cells complete their development behind the BTB. While spermiation and BTB restructuring take place concurrently at opposite ends of the Sertoli cell epithelium, the biochemical mechanism(s) by which they are coordinated were not known until recently. Studies have shown that fragments of laminin chains are generated from the laminin/integrin protein complex at the apical ES via the action of MMP-2 (matrix metalloprotease-2) at spermiation. These peptides serve as the local autocrine factors to destabilize the BTB. These laminin peptides also exert their effects on hemidesmosome which, in turn, further potentiates BTB restructuring. Thus, a novel apical ES-BTB-hemidesmosome regulatory loop is operating in the seminiferous epithelium to coordinate these two crucial cellular events of spermatogenesis. This functional loop is further assisted by the Par3/Par6-based polarity protein complex in coordination with cytokines and testosterone at the BTB. Herein, we provide a critical review based on the latest findings in the field regarding the regulation of these cellular events. These recent findings also open up a new window for investigators studying blood-tissue barriers.
Collapse
Affiliation(s)
- C Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|
59
|
|
60
|
Debrand E, El Jai Y, Spence L, Bate N, Praekelt U, Pritchard CA, Monkley SJ, Critchley DR. Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms. FEBS J 2009; 276:1610-28. [PMID: 19220457 PMCID: PMC2702505 DOI: 10.1111/j.1742-4658.2009.06893.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Talins are large adaptor proteins that link the integrin family of adhesion molecules to F-actin. In vertebrates, there are two talin genes. Talin 1 is essential for integrin-mediated cell adhesion; the role of talin 2 is unclear. Here we report a detailed analysis of mammalian talin 2. This reveals the existence of a previously unrecognized promoter associated with a CpG island, and separated from the first coding exon by numerous alternatively spliced noncoding exons spanning > 200 kb. Analysis of a mouse gene trap line shows that this promoter accounts for most of the talin 2 expression in adult tissues. We also demonstrate that testis and kidney express truncated talin 2 isoforms that lack the N-terminal half of the protein, and provide evidence for the developmentally regulated expression of the short testis-specific talin 2 isoform in elongating spermatids. Finally, we identify four tissue-specific alternative splicing events within the coding region of talin 2.
Collapse
Affiliation(s)
- Emmanuel Debrand
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Stenzinger A, Schreiner D, Koch P, Hofer HW, Wimmer M. Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:183-246. [PMID: 19491056 DOI: 10.1016/s1937-6448(09)75006-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter examines the current state of knowledge about the expression profile, as well as biochemical properties and biological functions of the evolutionarily conserved protein PTPIP51. PTPIP51 is apparently expressed in splice variants and shows a particularly high expression in epithelia, skeletal muscle, placenta, and germ cells, as well as during mammalian development and in cancer. PTPIP51 is an in vitro substrate of Src- and protein kinase A, the PTP1B/TCPTP protein tyrosine phosphatases and interacts with 14-3-3 proteins, the Nuf2 kinetochore protein, the ninein-interacting CGI-99 protein, diacylglycerol kinase alpha, and also with itself forming dimers and trimers. Although the precise cellular function remains to be elucidated, the current data implicate PTPIP51 in signaling cascades mediating proliferation, differentiation, apoptosis, and motility.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|
62
|
Siu MKY, Cheng CY. Extracellular matrix and its role in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:74-91. [PMID: 19856163 DOI: 10.1007/978-0-387-09597-4_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In adult mammalian testes, such as rats, Sertoli and germ cells at different stages of their development in the seminiferous epithelium are in close contact with the basement membrane, a modified form of extracellular matrix (ECM). In essence, Sertoli and germ cells in particular spermatogonia are "resting" on the basement membrane at different stages of the seminiferous epithelial cycle, relying on its structural and hormonal supports. Thus, it is not entirely unexpected that ECM plays a significant role in regulating spermatogenesis, particularly spermatogonia and Sertoli cells, and the blood-testis barrier (BTB) constituted by Sertoli cells since these cells are in physical contact with the basement membrane. Additionally, the basement membrane is also in close contact with the underlying collagen network and the myoid cell layers, which together with the lymphatic network, constitute the tunica propria. The seminiferous epithelium and the tunica propria, in turn, constitute the seminiferous tubule, which is the functional unit that produces spermatozoa via its interaction with Leydig cells in the interstitium. In short, the basement membrane and the underlying collagen network that create the acellular zone of the tunica propria may even facilitate cross-talk between the seminiferous epithelium, the myoid cells and cells in the interstitium. Recent studies in the field have illustrated the crucial role of ECM in supporting Sertoli and germ cell function in the seminiferous epithelium, including the BTB dynamics. In this chapter, we summarize some of the latest findings in the field regarding the functional role of ECM in spermatogenesis using the adult rat testis as a model. We also high light specific areas of research that deserve attention for investigators in the field.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Department of Pathology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
63
|
Nejad DM, Rad JS, Roshankar L, Karimipor M, Ghanbari AA, Aazami A, Valilou MR. A study on the effect of thiotepa on mice spermatogenesis using light and electronic microscope. Pak J Biol Sci 2008; 11:1929-34. [PMID: 18983035 DOI: 10.3923/pjbs.2008.1929.1934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study was designed to explore the spermatogenic effect of intraperitoneal administration of thiotepa in mice. It is known the chemotherapy could affect testicular function and result in infertility. There are few reports on the side effect of thiotepa on spermatogenesis when are used as anticancer drug. Therefore, in the present study the effect of thiotepa on spermatogenesis was evaluated by electron microscopy. A total of 20 balb/c mice were used in this study. They were divided into control and thiotepa treated groups. Thiotepa was administrated as 2.5 mg kg(-1) for 5 days. The mice were sacrificed after 5 weeks and testicular specimens were removed, fixed in boueins fixative and 2.5% Glutaraldehide then prepared for light and electron microscopic study. Light microscopy showed that the thickness of germinal epithelium was decreased in thiotepa treated group and many seminiferous tubules have lost germinal cells. Electron microscopy revealed that in experimental group several intercellular spaces appeared between spermatogonial and sertoli cells. The basement membrane became irregular and intercellular vacuoles were present in sertoli and spermatogonial cells. Nuclear chromatin was condensed and there were several vacuolated mitochondria. It was indicated that thiotepa affected testicular germinal epithelium by both cytotoxic effect and induction of apoptosis.
Collapse
Affiliation(s)
- D M Nejad
- EM Lab Drug Applied Research Center and Development Complex, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
64
|
Hiratsuka K, Yin SA, Ohtomo T, Fujita M, Ohtsuki K, Isaka H, Suga T, Kurosawa T, Yamada J. Intratesticular localization of the organic solute carrier protein, OSCP1, in spermatogenic cells in mice. Mol Reprod Dev 2008; 75:1495-504. [PMID: 18324622 DOI: 10.1002/mrd.20893] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Organic solute carrier protein 1 (OSCP1) is a recently described human gene that facilitates the transport of various organic solutes into the cell, when expressed in frog eggs. In this study, we cloned a mouse ortholog of OSCP1 encoding 379 amino acid protein, with 94% homology to the human counterpart. The mouse OSCP1 mRNA was predominantly expressed in the testis, in which it was attributed to the spermatogenic cells, except the spermatogonia. Immunohistochemistry confirmed that OSCP1 protein is continuously expressed during spermatogenesis in a stage- and cell type-specific manner, in the leptotene spermatocytes at stage IX through step 15 spermatids. Subcellular fractionation of mouse testis homogenates indicated that OSCP1 is a 45-kDa cytosolic protein. Moreover, when green fluorescent protein-OSCP1 fusion constructs were transfected into cultured cells, the fluorescence localized evenly in the cytoplasm. These results suggest that mouse testis OSCP1 may indirectly mediate substrate uptake into meiotic and spermiogenic germ cells, within the cytosol.
Collapse
Affiliation(s)
- Kazuyuki Hiratsuka
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Role of l-carnitine in the prevention of seminiferous tubules damage induced by gamma radiation: a light and electron microscopic study. Arch Toxicol 2008; 83:735-46. [DOI: 10.1007/s00204-008-0382-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
66
|
Altay B, Turna B, Oktem G, Aktuğ H, Semerci B, Bilir A. Immunohistochemical expression of connexin 43 and occludin in the rat testis after epididymal and vasal ligation. Fertil Steril 2008; 90:141-7. [PMID: 17825302 DOI: 10.1016/j.fertnstert.2007.05.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To describe the effects of epididymal and vasal ligation, in an experimental rat model, by using connexin 43 and occludin immunohistochemistry as well as transmission electron microscopy. DESIGN Comparative and controlled experimental research study. SETTING University animal research and histology laboratories in Turkey. ANIMAL(S) Wistar male rats in experimental and control groups. INTERVENTION(S) The control group underwent sham operation (n = 7). The first experimental group (n = 7) underwent unilateral epididymal ligation, whereas the second experimental group (n = 7) underwent unilateral vasal ligation to induce experimental epididymal and vasal obstruction models, respectively. All animals were then killed at 90 days. MAIN OUTCOME MEASURE(S) Immunohistochemical expression of connexin 43 and occludin for testicular tissues was determined after epididymal and vasal obstruction models. Ultrastructural morphological changes were examined by electron microscopy. RESULT(S) Results of the semiquantitative analysis revealed that expressions of both occludin and connexin 43 in the rat testis were decreased in the experimental groups compared with in the sham-operated group. However, changes after vasal ligation were more prominent. Ultrastructural examination confirmed decreased intercellular communication as well as increased cellular degeneration among the ipsilateral and contralateral testicular tissues. CONCLUSION(S) Immunohistochemical expression of occludin and connexin 43 were decreased in the testis after vasal and epididymal ligation when compared with the sham-operated group. Ultrastructural changes indicating cell degeneration were more prominent after vasal ligation.
Collapse
Affiliation(s)
- Bariş Altay
- Department of Urology, Ege University Medical Faculty, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Actin can be found in all kinds of eukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and, at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.
Collapse
|
68
|
Zhang J, Li X, Yao B, Shen W, Sun H, Xu C, Wu J, Shi Y. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides. Biochem Biophys Res Commun 2007; 357:931-7. [PMID: 17467669 DOI: 10.1016/j.bbrc.2007.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Solution structure of the first Src homology (SH) 3 domain of human vinexin (V_SH3_1) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical beta-beta-beta-beta-alpha-beta fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V_SH3_1. The interaction between P868 and V_SH3_1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V_SH3_1 had a low binding affinity. The structure and ligand-binding interface of V_SH3_1 provide a structural basis for the further functional study of this important molecule.
Collapse
Affiliation(s)
- Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Mizuno M, Harris CL, Morgan BP. Spermatogenic cells distal to the blood-testis barrier in rats lack C3 convertase regulators and may be at risk of complement-mediated injury. J Reprod Immunol 2005; 69:23-34. [PMID: 16380167 DOI: 10.1016/j.jri.2005.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
On most tissues, multiple membrane complement regulators (CReg) protect self-cells from damage by complement. An exception is the brain, where the blood-brain barrier provides a protected environment within which cells survive with little or no protection from complement. The testis has a functionally similar structure, the blood-testis barrier (BTB). Here, we have investigated the expression of C3/C5 convertase CReg and C3 in the normal rat testis at different ages and different spermatogenetic stages, as well as in rats in which spermatogenesis and the BTB were impaired due to a developmental deficit. Immature testis, prior to BTB formation at puberty, displayed broad expression of the ubiquitous rodent CReg Crry on all elements and no expression of CD46 or CD55. Within days of BTB formation, CReg expression was dramatically altered; Crry was expressed only in the spermatogenetic cells external to the BTB in basal layers of adult seminal epithelium. Spermatogenic cells immediately distal to the BTB at first expressed no C3/C5 convertase regulators but later acquired expression of CD46 and CD55. Staining for C3 was widespread pre-puberty, but absent distal to the BTB in mature rats. In rats with defects in spermatogenesis and BTB integrity, expression patterns of CReg and C3 resembled those in pre-pubertal normals. The relative paucity of CReg and absence of C3 synthesis distal to the BTB suggest the presence of a complement-protected environment analogous to that described in the brain, and suggest also that cells enclosed by the BTB may be susceptible to complement damage when the barrier is breached.
Collapse
Affiliation(s)
- Masashi Mizuno
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| | | | | |
Collapse
|
70
|
Xia W, Wong CH, Lee NPY, Lee WM, Cheng CY. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol 2005; 205:141-57. [PMID: 15880438 DOI: 10.1002/jcp.20377] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
71
|
Lee JH, Choi KW, Lee SJ, Gye MC. Expression of beta-catenin in human testes with spermatogenic defects. ACTA ACUST UNITED AC 2005; 51:271-6. [PMID: 16036634 DOI: 10.1080/014850190923387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
beta-catenin is a multifunctional molecule that functions in intercellular adhesion and signal transduction during assembly of AJs between Sertoli cells as well as between Sertoli cells and germ cells. To assess changes in the testicular beta-catenin in male infertility conditions, testicular tissues from obstructive azoospermia with normal spermatogenesis, spermatogenic arrest (SA) and Sertoli cell-only syndrome (SCO) patients were examined for immunohistochemical localization of beta-catenin. In normal spermatogenic tissue, expression of beta-catenin was largely found in the Sertoli cell-germ cell (primarily spermatocytes) contact areas. Interestingly, perinuclear localization of beta-catenin was found in spermatocytes and spermatids. In spermatogenic arrest, beta-catenin in cell contact areas between Sertoli cells and germ cells was greatly decreased, but perinuclear beta-catenin in spermatocytes was not. In SCO, weak or negligible immunoreactivity of beta-catenin was found in cell contacts between Sertoli cells. Nuclear localization of beta-catenin was found in myotubular cells in all samples. Taken together, altered expression of beta-catenin in cell contacts within the seminiferous epithelia in spermatogenic arrest and SCO suggests that interactions between Sertoli cells and germ cell are crucial for expression of beta-catenin, and thus functional development of AJs in seminiferous epithelia in human testis. It should be also emphasized that perinuclear beta-catenin in germ cells may play a specific role in spermatogenesis.
Collapse
Affiliation(s)
- J H Lee
- Laboratory of IVF, MDplus LSI, Seoul, Korea
| | | | | | | |
Collapse
|
72
|
Zhang J, Mruk DD, Cheng CY. Myotubularin phosphoinositide phosphatases, protein phosphatases, and kinases: their roles in junction dynamics and spermatogenesis. J Cell Physiol 2005; 204:470-83. [PMID: 15690393 DOI: 10.1002/jcp.20303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis in the seminiferous epithelium of the mammalian testis is a dynamic cellular event. It involves extensive restructuring at the Sertoli-germ cell interface, permitting germ cells to traverse the epithelium from basal to adluminal compartment. As such, Sertoli-germ cell actin-based adherens junctions (AJ), such as ectoplasmic specializations (ES), must disassemble and reassemble to facilitate this event. Recent studies have shown that AJ dynamics are regulated by intricate interactions between AJ integral membrane proteins (e.g., cadherins, alpha6beta1 integrins and nectins), phosphatases, kinases, adaptors, and the underlying cytoskeleton network. For instance, the myotubularin (MTM) phosphoinositide (PI) phosphatases, such as MTM related protein 2 (MTMR2), can form a functional complex with c-Src (a non-receptor protein tyrosine kinase). In turn, this phosphatase/kinase complex associates with beta-catenin, a constituent of the N-cadherin/beta-catenin functional unit at the AJ site. This MTMR2-c-Src-beta-catenin complex apparently regulates the phosphorylation status of beta-catenin, which determines cell adhesive function conferred by the cadherin-catenin protein complex in the seminiferous epithelium. In this review, we discuss the current status of research on selected phosphatases and kinases, and how these proteins potentially interact with adaptors at AJ in the seminiferous epithelium to regulate cell adhesion in the testis. Specific research areas that are open for further investigation are also highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Population Council, Center for Biomedical Research, New York, New York, USA
| | | | | |
Collapse
|
73
|
Xia W, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring during spermatogenesis—a lesson to learn from the testis. Cytokine Growth Factor Rev 2005; 16:469-93. [PMID: 16023885 DOI: 10.1016/j.cytogfr.2005.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the mammalian testis, preleptotene and leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) at late stage VIII through early stage IX of the epithelial cycle during spermatogenesis, entering the adluminal compartment for further development. However, until recently the regulatory mechanisms that regulate BTB dynamics remained largely unknown. We provide a critical review regarding the significance of cytokines in regulating the 'opening' and 'closing' of the BTB. We also discuss how cytokines may be working in concert with adaptors that selectively govern the downstream signaling pathways. This process, in turn, regulates the dynamics of either Sertoli-Sertoli tight junction (TJ), Sertoli-germ cell adherens junction (AJ), or both junction types in the epithelium, thereby permitting TJ opening without compromising AJs, and vice versa. We also discuss how adaptors alter their protein-protein association with the integral membrane proteins at the cell-cell interface via changes in their phosphorylation status, thereby altering adhesion function at AJ. These findings illustrate that the testis is a novel in vivo model to study the biology of junction restructuring. Furthermore, a molecular model is presented regarding how cytokines selectively regulate TJ/AJ restructuring in the epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Weiliang Xia
- Population Council, Center for Biomedical Research, New York, NY 10021, USA
| | | | | | | |
Collapse
|
74
|
Siu MKY, Wong CH, Lee WM, Cheng CY. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 2005; 280:25029-47. [PMID: 15870075 DOI: 10.1074/jbc.m501049200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When Sertoli and germ cells were co-cultured in vitro in serum-free chemically defined medium, functional anchoring junctions such as cell-cell intermediate filament-based desmosome-like junctions and cell-cell actin-based adherens junctions (e.g. ectoplasmic specialization (ES)) were formed within 1-2 days. This event was marked by the induction of several protein kinases such as phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (PKB; also known as Akt), p21-activated kinase-2 (PAK-2), and their downstream effector (ERK) as well as an increase in PKB intrinsic activity. PI3K, phospho (p)-PKB, and PAK were co-localized to the site of apical ES in the seminiferous epithelium of the rat testis in immunohistochemistry studies. Furthermore, PI3K also co-localized with p-PKB to the same site in the epithelium as determined by fluorescence microscopy, consistent with their localization at the ES. These kinases were shown to associate with ES-associated proteins such as beta1-integrin, phosphorylated focal adhesion kinase, and c-Src by co-immunoprecipitation, suggesting that the integrin.laminin protein complex at the apical ES likely utilizes these protein kinases as regulatory proteins to modulate Sertoli-germ cell adherens junction dynamics via the ERK signaling pathway. To validate this hypothesis further, an in vivo model using AF-2364 (1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide) to perturb Sertoli-germ cell anchoring junction function, inducing germ cell loss from the epithelium in adult rats, was used in conjunction with specific inhibitors. Interestingly, the event of germ cell loss induced by AF-2364 in vivo was also associated with induction of PI3K, p-PKB, PAK-2, and p-ERK as well as a surge in intrinsic PKB activity. Perhaps the most important of all, pretreatment of rats with wortmannin (a PI3K inhibitor) or anti-beta1-integrin antibody via intratesticular injection indeed delayed AF-2364-induced spermatid loss from the epithelium. In summary, these results illustrate that Sertoli-germ cell anchoring junction dynamics in the testis are regulated, at least in part, via the beta1-integrin/PI3K/PKB/ERK signaling pathway.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Center for Biomedical Research, Population Council, New York, New York 10021, USA
| | | | | | | |
Collapse
|
75
|
Wong CH, Cheng CY. The Blood‐Testis Barrier: Its Biology, Regulation, and Physiological Role in Spermatogenesis. Curr Top Dev Biol 2005; 71:263-96. [PMID: 16344108 DOI: 10.1016/s0070-2153(05)71008-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The blood-testis barrier (BTB) in mammals, such as rats, is composed of the tight junction (TJ), the basal ectoplasmic specialization (basal ES), the basal tubulobulbar complex (basal TBC) (both are testis-specific actin-based adherens junction [AJ] types), and the desmosome-like junction that are present side-by-side in the seminiferous epithelium. The BTB physically divides the seminiferous epithelium into basal and apical (or adluminal) compartments, and is pivotal to spermatogenesis. Besides its function as an immunological barrier to segregate the postmeiotic germ-cell antigens from the systemic circulation, it creates a unique microenvironment for germ-cell development and confers cell polarity. During spermatogenesis, the BTB in rodents must physically disassemble to permit the passage of preleptotene and leptotene spermatocytes. This occurs at late stage VII through early stage VIII of the epithelial cycle. Studies have shown that this dynamic BTB restructuring to facilitate germ-cell migration is regulated by two cytokines, namely transforming growth factor-beta3 (TGF-beta3) and tumor necrosis factor-alpha (TNFalpha), via downstream mitogen-activated protein kinases. These cytokines determine the homeostasis of TJ- and basal ES-structural proteins, proteases, protease inhibitors, and other extracellular matrix (ECM) proteins (e.g., collagen) in the seminiferous epithelium. Some of these molecules are known regulators of focal contacts between the ECM and other actively migrating cells, such as macrophages, fibroblasts, or malignant cells. These findings also illustrate that cell-cell junction restructuring at the BTB is regulated by mechanisms involved in the junction turnover at the cell-matrix interface. This review critically discusses these latest findings in the field in light of their significance in the biology and regulation of the BTB pertinent to spermatogenesis.
Collapse
|