51
|
Li MQ, Luo AL, Zhao PW, Li TT, Geng SS, Liang XW, Xu HY, Lu YQ, Lu SS, Yang XG, Lu KH. Nanos2 is a molecular marker of inchoate buffalo spermatogonia. Anim Reprod Sci 2017; 186:44-51. [PMID: 28982519 DOI: 10.1016/j.anireprosci.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
Abstract
Nanos2 belongs to the Nanos gene-coding family and is an important RNA-binding protein that has been shown to have essential roles in male germline stem cells development and self-renewal in mouse. However, little is known about Nanos2 in inchoate buffalo spermatogonia. Here, rapid-amplification of cDNA ends (RACE) was used to obtain the full-length buffalo Nanos2 sequence and bioinformatic analysis revealed a highly conserved Nanos2 sequence between buffalo and other mammalian species. Although Nanos2 was expressed in various tissues, the highest mRNA expression levels were found in testes tissue. Moreover, Nanos2 mRNA was abundant in fetal and pre-puberal testes but markedly decreased in the testes of adults. At the protein level, immunohistochemistry in pre-puberal testes revealed a pattern of NANOS2 expression similar to that for the undifferentiated type A spermatogonia marker PGP9.5. Furthermore, NANOS2 expression was low in adult testes and restricted to elongating spermatids. Altogether, our data suggest that Nanos2 is a potential preliminary molecular marker of inchoate buffalo spermatogonia, and may play an important role in buffalo spermatogonial stem cells (SSCs) development and self-renewal, as has been observed in other model animals.
Collapse
Affiliation(s)
- Meng-Qi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, Guangxi, China
| | - Ao-Lin Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Peng-Wei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shuang-Shuang Geng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xing-Wei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
52
|
Chen Z, Sun M, Yuan Q, Niu M, Yao C, Hou J, Wang H, Wen L, Liu Y, Li Z, He Z. Generation of functional hepatocytes from human spermatogonial stem cells. Oncotarget 2017; 7:8879-95. [PMID: 26840458 PMCID: PMC4891011 DOI: 10.18632/oncotarget.7092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.
Collapse
Affiliation(s)
- Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Wen
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai 200001, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai 200001, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
53
|
Pieri N, Souza AF, Mançanares A, Roballo K, Casals JB, Ambrosio CE, Martins DS. Immunolocalization of proteins in the spermatogenesis process of canine. Reprod Domest Anim 2016; 52 Suppl 2:170-176. [PMID: 27774720 DOI: 10.1111/rda.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a process in which differentiated cells are produced and the adult stem cell population-known as spermatogonial stem cells (SSCs)-is continuously replenished. However, the molecular mechanisms underlying these processes are not fully understood in the canine species. We addressed this in this study by analysing the expression of specific markers in spermatogonia of seminiferous tubules of canine testes. SSCs at different stages of reproductive development (prepubertal and adult) were examined by immunohistochemistry and flow cytometry. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRA1), deleted in azoospermia-like (DAZL) and promyelocytic leukaemia zinc finger (PLZF) were expressed in SSCs, while stimulated by retinoic acid gene 8 (STRA8) was detected only in undifferentiated spermatogonia in prepubertal testis and differentiated spermatogonia and spermatocytes in adult canine. Octamer-binding transcription factor 4 (OCT4) showed an expression pattern, and the levels did not differ between the groups examined. However, C-kit expression varied as a function of reproductive developmental stage. Our results demonstrate that these proteins play critical roles in the self-renewal and differentiation of SSCs and can serve as markers to identify canine spermatogonia at specific stages of development.
Collapse
Affiliation(s)
- Ncg Pieri
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - A F Souza
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Acf Mançanares
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kcs Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - J B Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - C E Ambrosio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - D S Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
54
|
Li B, Zhuang M, Wu C, Niu B, Zhang Z, Li X, Wei Z, Li G, Hua J. Bovine male germline stem-like cells cultured in serum- and feeder-free medium. Cytotechnology 2016; 68:2145-2157. [PMID: 26883918 PMCID: PMC5023554 DOI: 10.1007/s10616-015-9933-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022] Open
Abstract
Male germline stem cells (mGSCs) presented in male testis are responsible for spermatogenesis during their whole life. However, little information can be found on the culture of bovine mGSCs, and the current culture system needs to be improved. In this study, we compared the effects of several commercial serum-free media and different extra-cellular matrix on the enrichment and cultivation of mGSCs. To find out the best culture condition, the biological characteristics of the cultured cells were evaluated by morphological observation, RT-PCR and immunofluorescent staining. According to the cells' condition in different experiment groups, we found out an efficient cultivation system for bovine mGSCs derived from neonate testis. In this serum- and feeder-free medium, the cultured cells maintained the typical morphology, and expressed specific surface markers of both pluripotent ES cells and mGSCs, including SSEA-1, CD49f, C-MYC, PLZF, GFRα1, LIN28, NANOG, Oct4 and SOX2 in commercial human ESCs medium PeproGrow-hESC + BIO (6-bromoindirubin-3'-oxime). Embryoid bodies, derived from the bovine mGSCs, and were formed by ganging drop culture. The retinoic acid induced bovine mGSCs were positive for Stra8, SCP3, DZAL, EMA1 and VASA, and resembled spermatid cells morphologically. Thus, we found an efficient bovine mGSCs-cultivation system, which is lack in serum and feeder.
Collapse
Affiliation(s)
- Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengru Zhuang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhou Zhang
- Department of Reproduction Centre, Shaanxi Provine Women and Children Hospital, Xi'an, 710000, Shaanxi Province, China
| | - Xin Li
- Department of Clinic Medicine, Bengbu Medicine University, Bengbu, Anhui, China
| | - Zhuying Wei
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
55
|
Zhang T, Oatley J, Bardwell VJ, Zarkower D. DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment. PLoS Genet 2016; 12:e1006293. [PMID: 27583450 PMCID: PMC5008761 DOI: 10.1371/journal.pgen.1006293] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023] Open
Abstract
Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion. The Dmrt1 gene is a deeply conserved gonadal regulator that is expressed in all mitotic germ cells of the mouse, including spermatogonial stem cells (SSCs). We previously showed that Dmrt1 controls the mitosis/meiosis switch in differentiating mouse spermatogonia. Here we have examined the role of Dmrt1 in undifferentiated spermatogonia and found that Dmrt1 plays two crucial roles in sustaining the population of SSCs. First, Dmrt1 is required to maintain the SSC pool during normal conditions: loss of Dmrt1 in SSCs causes loss of the SSC maintenance factor PLZF and differentiation of SSCs. This result suggests that Dmrt1 is necessary for SSC self-renewal. Second, Dmrt1 is required to replenish SSCs after germ line depletion. We found that Ngn3-positive transit amplifying cells normally do not contribute to Id4-positive SSCs, but can do so when germ cells are chemically depleted by busulfan treatment. However, when Dmrt1 is lost in committed progenitor cells the ability to replenish SSCs after cytotoxic stress is completely lost. Our results suggest that Dmrt1 is important for SSC homeostasis and may provide new avenues for SSC manipulation.
Collapse
Affiliation(s)
- Teng Zhang
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jon Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Vivian J. Bardwell
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, United States of America
| | - David Zarkower
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
56
|
Xiong M, Ferder IC, Ohguchi Y, Wang N. Quantitative analysis of male germline stem cell differentiation reveals a role for the p53-mTORC1 pathway in spermatogonial maintenance. Cell Cycle 2016; 14:2905-13. [PMID: 26177380 DOI: 10.1080/15384101.2015.1069928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.
Collapse
Affiliation(s)
- Mulin Xiong
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Ianina C Ferder
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Yasuyo Ohguchi
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Ning Wang
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| |
Collapse
|
57
|
Production of fertile sperm from in vitro propagating enriched spermatogonial stem cells of farmed catfish, Clarias batrachus. ZYGOTE 2016; 24:814-824. [DOI: 10.1017/s0967199416000149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SummarySpermatogenesis is a highly co-ordinated and complex process. In vitro propagation of spermatogonial stem cells (SSCs) could provide an avenue in which to undertake in vivo studies of spermatogenesis. Very little information is known about the SSC biology of teleosts. In this study, collagenase-treated testicular cells of farmed catfish (Clarias batrachus, popularly known as magur) were purified by Ficoll gradient centrifugation followed by magnetic activated cell sorting using Thy1.2 (CD90.2) antibody to enrich for the spermatogonial cell population. The sorted spermatogonial cells were counted and gave ~3 × 106 cells from 6 × 106 pre-sorted cells. The purified cells were cultured in vitro for >2 months in L-15 medium containing fetal bovine serum (10%), carp serum (1%) and other supplements. Microscopic observations depicted typical morphological SSC features, bearing a larger nuclear compartment (with visible perinuclear bodies) within a thin rim of cytoplasm. Cells proliferated in vitro forming clumps/colonies. mRNA expression profiling by qPCR documented that proliferating cells were Plzf + and Pou2+, indicative of stem cells. From 60 days onwards of cultivation, the self-renewing population differentiated to produce spermatids (~6 × 107 on day 75). In vitro-produced sperm (2260 sperm/SSC) were free swimming in medium and hence motile (non-progressive) in nature. Of those, 2% were capable of fertilizing and generated healthy diploid fingerlings. Our documented evidence provides the basis for producing fertile magur sperm in vitro from cultured magur SSCs. Our established techniques of SSC propagation and in vitro sperm production together should trigger future in vivo experiments towards basic and applied biology research.
Collapse
|
58
|
Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice. Sci Rep 2016; 6:28917. [PMID: 27374985 PMCID: PMC4931501 DOI: 10.1038/srep28917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis in adulthood depends on the successful neonatal establishment of the spermatogonial stem cell (SSC) pool and gradual differentiation during puberty. The stage-dependent changes in protein prenylation in the seminiferous epithelium might be important during the first round of spermatogenesis before sexual maturation, but the mechanisms are unclear. We have previous found that altered prenylation in Sertoli cells induced spermatogonial apoptosis in the neonatal testis, resulting in adult infertility. Now we further explored the role of protein prenylation in germ cells, using a conditional deletion of geranylgeranyl diphosphate synthase (Ggpps) in embryonic stage and postmeiotic stage respectively. We observed infertility of Ggpps(-/-) Ddx4-Cre mice that displayed a Sertoli-cell-only syndrome phenotype, which resulted from abnormal spermatogonial differentiation and SSC depletion during the prepubertal stage. Analysis of morphological characteristics and cell-specific markers revealed that spermatogonial differentiation was enhanced from as early as the 7(th) postnatal day in the first round of spermatogenesis. Studies of the molecular mechanisms indicated that Ggpps deletion enhanced Rheb farnesylation, which subsequently activated mTORC1 and facilitated spermatogonial differentiation. In conclusion, the prenylation balance in germ cells is crucial for spermatogonial differentiation fate decision during the prepubertal stage, and the disruption of this process results in primary infertility.
Collapse
|
59
|
Enrichment and in vitro features of the putative gonocytes from cryopreserved testicular tissue of neonatal bulls. Andrology 2016; 4:1150-1158. [DOI: 10.1111/andr.12229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
|
60
|
Lovelace DL, Gao Z, Mutoji K, Song YC, Ruan J, Hermann BP. The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development 2016; 143:1893-906. [PMID: 27068105 DOI: 10.1242/dev.132761] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout adulthood through balanced self-renewal and differentiation, yet the regulatory logic of these fate decisions is poorly understood. The transcription factors Sal-like 4 (SALL4) and promyelocytic leukemia zinc finger (PLZF; also known as ZBTB16) are known to be required for normal SSC function, but their targets are largely unknown. ChIP-seq in mouse THY1(+) spermatogonia identified 4176 PLZF-bound and 2696 SALL4-bound genes, including 1149 and 515 that were unique to each factor, respectively, and 1295 that were bound by both factors. PLZF and SALL4 preferentially bound gene promoters and introns, respectively. Motif analyses identified putative PLZF and SALL4 binding sequences, but rarely both at shared sites, indicating significant non-autonomous binding in any given cell. Indeed, the majority of PLZF/SALL4 shared sites contained only PLZF motifs. SALL4 also bound gene introns at sites containing motifs for the differentiation factor DMRT1. Moreover, mRNA levels for both unique and shared target genes involved in both SSC self-renewal and differentiation were suppressed following SALL4 or PLZF knockdown. Together, these data reveal the full profile of PLZF and SALL4 regulatory targets in undifferentiated spermatogonia, including SSCs, which will help elucidate mechanisms controlling the earliest cell fate decisions in spermatogenesis.
Collapse
Affiliation(s)
- Dawn L Lovelace
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Zhen Gao
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kazadi Mutoji
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yuntao Charlie Song
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
61
|
Azizollahi S, Aflatoonian R, Sadighi Gilani MA, Behnam B, Tajik N, Asghari-Jafarabadi M, Asgari HR, Koruji M. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 2016; 33:771-81. [PMID: 27052833 DOI: 10.1007/s10815-016-0708-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Testicular ischemia is the main consequence of testicular torsion, in both clinical and experimental aspects. Preservation and auto-transplantation of spermatogonial stem cells (SSCs) could be a new treatment for infertility in testicular ischemia following testicular torsion. METHODS To apply the idea in this study, animals were randomly divided into four groups of control, sham, with torsion, and with torsion followed by transplantation (TT). Isolated SSCs from neonatal mice were cultured and identified by flow cytometry (C-KIT(-), INTEGRIN β1 (+)) and RT-PCR (Reverse transcription polymerase chain reaction) for specific spermatogonial cell markers (Oct4, Gfrα-1, Plzf, Vasa, Itgα 6 , and Itgβ 1 ). SSCs were transplanted upon a 2-h testicular torsion in the TT group. Cultured cells were transplanted into ischemia reperfusion testicle 2 weeks post-testicular torsion. Eight weeks after SSCs transplantation, the SSCs-transplanted testes and epididymis were removed for sperm analysis, weight and histopathological evaluation, and pre- and post-meiotic gene expression assessment by qRT-PCR. RESULTS Our findings indicated that all evaluated parameters (epididymal sperm profile, Johnsen score, Plzf, Gfrα-1, Scp-1, Tekt-1 expressions, and histopathological profile) were significantly decreased following testicular torsion (group 3) when compared to the control group (p ≤ 0.05). However, all abovementioned parameters showed a significant increase/improvement in torsion-transplantation group compared to torsion group. However, these parameters in the TT group were significantly lower in the sham and control groups (p ≤ 0.05). CONCLUSION SSCs transplantation could up-regulate the expression of pre- and post-meiotic genes in testicular ischemia, which resulted in improvement of both testicular function and structure after testicular torsion.
Collapse
Affiliation(s)
- Saeid Azizollahi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,NIH Undiagnosed Diseases Program, NIH, Office of the Director, Bethesda, MD, 20892, USA.,National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Hemmat Highway, P. O. Box 14155-5983, Tehran, Iran
| | - Nader Tajik
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Hemmat Highway, P. O. Box 14155-5983, Tehran, Iran.
| |
Collapse
|
62
|
Li L, Wang M, Wang M, Wu X, Geng L, Xue Y, Wei X, Jia Y, Wu X. A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis 2016; 7:e2140. [PMID: 26962690 PMCID: PMC4823932 DOI: 10.1038/cddis.2016.24] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022]
Abstract
Spermatogonial stem cells (SSCs) are unique male germline stem cells that support spermatogenesis and male fertility. Long non-coding RNAs (lncRNA) have been identified as key regulators of stem cell fate; however, their role in SSCs has not been explored. Here, we report that a novel spermatogonia-specific lncRNA (lncRNA033862) is essential for the survival of murine SSCs. LncRNA033862 is expressed in early spermatogonia including SSC and was among 805 lncRNAs identified by global expression profiling as responsive to glial cell-derived neurotrophic factor (GDNF), a growth factor required for SSC self-renewal and survival. LncRNA033862 is an antisense transcript of the GDNF receptor alpha1 (Gfra1) that lacks protein coding potential and regulates Gfra1 expression levels by interacting with Gfra1 chromatin. Importantly, lncRNA033862 knockdown severely impairs SSC survival and their capacity to repopulate recipient testes in a transplantation assay. Collectively, our data provide the first evidence that long non-coding RNAs (lncRNAs) regulate SSC fate.
Collapse
Affiliation(s)
- L Li
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - L Geng
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Xue
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Wei
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Jia
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
63
|
Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc Natl Acad Sci U S A 2016; 113:E1489-97. [PMID: 26929341 DOI: 10.1073/pnas.1601461113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) fuel the production of male germ cells but the mechanisms behind SSC self-renewal, proliferation, and differentiation are still poorly understood. Using the Wnt target gene Axin2 and genetic lineage-tracing experiments, we found that undifferentiated spermatogonia, comprising SSCs and transit amplifying progenitor cells, respond to Wnt/β-catenin signals. Genetic elimination of β-catenin indicates that Wnt/β-catenin signaling promotes the proliferation of these cells. Signaling is likely initiated by Wnt6, which is uniquely expressed by neighboring Sertoli cells, the only somatic cells in the seminiferous tubule that support germ cells and act as a niche for SSCs. Therefore, unlike other stem cell systems where Wnt/β-catenin signaling is implicated in self-renewal, the Wnt pathway in the testis specifically contributes to the proliferation of SSCs and progenitor cells.
Collapse
|
64
|
Abstract
Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
65
|
Lee WY, Do JT, Park C, Kim JH, Chung HJ, Kim KW, Gil CH, Kim NH, Song H. Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing. PLoS One 2016; 11:e0147298. [PMID: 26800048 PMCID: PMC4723225 DOI: 10.1371/journal.pone.0147298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/02/2016] [Indexed: 01/15/2023] Open
Abstract
To identify putative biomarkers of porcine spermatogonial stem cells (pSSCs), total RNA sequencing (RNA-seq) analysis was performed on 5- and 180-day-old porcine testes and on pSSC colonies that were established under low temperature culture conditions as reported previously. In total, 10,184 genes were selected using Cufflink software, followed by a logarithm and quantile normalization of the pairwise scatter plot. The correlation rates of pSSCs compared to 5- and 180-day-old testes were 0.869 and 0.529, respectively and that between 5- and 180-day-old testes was 0.580. Hierarchical clustering data revealed that gene expression patterns of pSSCs were similar to 5-day-old testis. By applying a differential expression filter of four fold or greater, 607 genes were identified between pSSCs and 5-day-old testis, and 2118 genes were identified between the 5- and 180-day-old testes. Among these differentially expressed genes, 293 genes were upregulated and 314 genes were downregulated in the 5-day-old testis compared to pSSCs, and 1106 genes were upregulated and 1012 genes were downregulated in the 180-day-old testis compared to the 5-day-old testis. The following genes upregulated in pSSCs compared to 5-day-old testes were selected for additional analysis: matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 1 (MMP1), glutathione peroxidase 1 (GPX1), chemokine receptor 1 (CCR1), insulin-like growth factor binding protein 3 (IGFBP3), CD14, CD209, and Kruppel-like factor 9 (KLF9). Expression levels of these genes were evaluated in pSSCs and in 5- and 180-day-old porcine testes. In addition, immunohistochemistry analysis confirmed their germ cell-specific expression in 5- and 180-day-old testes. These finding may not only be useful in facilitating the enrichment and sorting of porcine spermatogonia, but may also be useful in the study of the early stages of spermatogenic meiosis.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chung-ju 380–701, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Jin Hoi Kim
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Hak-Jae Chung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun 565–851, Republic of Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun 565–851, Republic of Korea
| | - Chang-Hyun Gil
- School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, College of Agriculture, Chungbuk National University, Choung-ju 361–763, Republic of Korea
| | - Hyuk Song
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
- * E-mail:
| |
Collapse
|
66
|
Lovasco LA, Gustafson EA, Seymour KA, de Rooij DG, Freiman RN. TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 2016; 33:1267-76. [PMID: 25727968 DOI: 10.1002/stem.1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Long-term mammalian spermatogenesis requires proper development of spermatogonial stem cells (SSCs) that replenish the testis with germ cell progenitors during adult life. TAF4b is a gonadal-enriched component of the general transcription factor complex, TFIID, which is required for the maintenance of spermatogenesis in the mouse. Successful germ cell transplantation assays into adult TAF4b-deficient host testes suggested that TAF4b performs an essential germ cell autonomous function in SSC establishment and/or maintenance. To elucidate the SSC function of TAF4b, we characterized the initial gonocyte pool and rounds of spermatogenic differentiation in the context of the Taf4b-deficient mouse testis. Here, we demonstrate a significant reduction in the late embryonic gonocyte pool and a deficient expansion of this pool soon after birth. Resulting from this reduction of germ cell progenitors is a developmental delay in meiosis initiation, as compared to age-matched controls. While GFRα1+ spermatogonia are appropriately present as Asingle and Apaired in wild-type testes, TAF4b-deficient testes display an increased proportion of long and clustered chains of GFRα1+ cells. In the absence of TAF4b, seminiferous tubules in the adult testis either lack germ cells altogether or are found to have missing generations of spermatogenic progenitor cells. Together these data indicate that TAF4b-deficient spermatogenic progenitor cells display a tendency for differentiation at the expense of self-renewal and a renewing pool of SSCs fail to establish during the critical window of SSC development.
Collapse
Affiliation(s)
- Lindsay A Lovasco
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
67
|
Liao HF, Kuo J, Lin HH, Lin SP. Isolation of THY1+ Undifferentiated Spermatogonia from Mouse Postnatal Testes Using Magnetic-activated Cell Sorting (MACS). Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
68
|
Abstract
Mammalian spermatogenesis is a complex and highly ordered process by which male germ cells proceed through a series of differentiation steps to produce haploid flagellated spermatozoa. Underlying this process is a pool of adult stem cells, the spermatogonial stem cells (SSCs), which commence the spermatogenic lineage by undertaking a differentiation fate decision to become progenitor spermatogonia. Subsequently, progenitors acquire a differentiating spermatogonia phenotype and undergo a series of amplifying mitoses while becoming competent to enter meiosis. After spermatocytes complete meiosis, post-meiotic spermatids must then undergo a remarkable transformation from small round spermatids to a flagellated spermatozoa with extremely compacted nuclei. This chapter reviews the current literature pertaining to spermatogonial differentiation with an emphasis on the mechanisms controlling stem cell fate decisions and early differentiation events in the life of a spermatogonium.
Collapse
Affiliation(s)
- Jennifer M Mecklenburg
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
69
|
Niedenberger BA, Busada JT, Geyer CB. Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis. Reproduction 2015; 149:329-38. [PMID: 25737569 DOI: 10.1530/rep-14-0653] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prospermatogonia transition to type A spermatogonia, which provide the source for the spermatogonial stem cell (SSC) pool. A percentage of these type A spermatogonia then differentiate to enter meiosis as spermatocytes by ∼P10. It is currently unclear as to when these distinct populations are initially formed in the neonatal testis, and when the expression of markers both characteristic of and required for the adult undifferentiated and differentiating states is established. In this study, we compared expression of known spermatogonial cell fate markers during normal development and in response to the differentiation signal provided by retinoic acid (RA). We found that some markers for the undifferentiated state (ZBTB16/PLZF and CDH1) were expressed in nearly all spermatogonia from P1 through P7. In contrast, differentiation markers (STRA8 and KIT) appeared in a subset of spermatogonia at P4, coincident with the onset of RA signaling. GFRA1, which was present in nearly all prospermatogonia at P1, was only retained in STRA8/KIT- spermatogonia. From P4 through P10, there was a great deal of heterogeneity in the male germ cell population in terms of expression of markers, as markers characteristic of the undifferentiated (except GFRA1) and differentiating states were co-expressed through this interval. After P10, these fate markers diverged to mark distinct populations of undifferentiated and differentiating spermatogonia, and this pattern was maintained in juvenile (P18) and adult (P>60) testes. Taken together, these results reveal that the spermatogonia population is heterogeneous during the first wave of spermatogenesis, and indicate that neonatal spermatogonia may not serve as an ideal substitute for studying the function of adult spermatogonia.
Collapse
Affiliation(s)
- Bryan A Niedenberger
- Department of Anatomy and Cell Biology Brody School of Medicine and East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, North Carolina 27834, USA
| | - Jonathan T Busada
- Department of Anatomy and Cell Biology Brody School of Medicine and East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, North Carolina 27834, USA
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology Brody School of Medicine and East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, North Carolina 27834, USA Department of Anatomy and Cell Biology Brody School of Medicine and East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, North Carolina 27834, USA
| |
Collapse
|
70
|
|
71
|
Song W, Mu H, Wu J, Liao M, Zhu H, Zheng L, He X, Niu B, Zhai Y, Bai C, Lei A, Li G, Hua J. miR-544 Regulates Dairy Goat Male Germline Stem Cell Self-Renewal via Targeting PLZF. J Cell Biochem 2015; 116:2155-65. [DOI: 10.1002/jcb.25172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Jiang Wu
- College of Agriculture; Guangdong Ocean University; Zhanjiang 524088 China
| | - Mingzhi Liao
- College of Life Science; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Haijing Zhu
- College of Life Science; Yulin College, Yulin University; 719000 China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education; Inner Mongolia University; Hohhot 010021 China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education; Inner Mongolia University; Hohhot 010021 China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
72
|
Nickkholgh B, Korver CM, van Daalen SKM, van Pelt AMM, Repping S. AZFc deletions do not affect the function of human spermatogonia in vitro. Mol Hum Reprod 2015; 21:553-62. [PMID: 25901025 PMCID: PMC5009458 DOI: 10.1093/molehr/gav022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/12/2023] Open
Abstract
Azoospermic factor c (AZFc) deletions are the underlying cause in 10% of azoo- or severe oligozoospermia. Through extensive molecular analysis the precise genetic content of the AZFc region and the origin of its deletion have been determined. However, little is known about the effect of AZFc deletions on the functionality of germ cells at various developmental steps. The presence of normal, fertilization-competent sperm in the ejaculate and/or testis of the majority of men with AZFc deletions suggests that the process of differentiation from spermatogonial stem cells (SSCs) to mature spermatozoa can take place in the absence of the AZFc region. To determine the functionality of AZFc-deleted spermatogonia, we compared in vitro propagated spermatogonia from six men with complete AZFc deletions with spermatogonia from three normozoospermic controls. We found that spermatogonia of AZFc-deleted men behave similar to controls during culture. Short-term (18 days) and long-term (48 days) culture of AZFc-deleted spermatogonia showed the same characteristics as non-deleted spermatogonia. This similarity was revealed by the same number of passages, the same germ cell clusters formation and similar level of genes expression of spermatogonial markers including ubiquitin carboxyl-terminal esterase L1 (UCHL1), zinc finger and BTB domain containing 16 (ZBTB16) and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRA1), as well as germ cell differentiation markers including signal transducer and activator of transcription 3 (STAT3), spermatogenesis and oogenesis specific basic helix-loophelix 2 (SOHLH2), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and synaptonemal complex protein 3 (SYCP3). The only exception was melanoma antigen family A4 (MAGEA4) which showed significantly lower expression in AZFc-deleted samples than controls in short-term culture while in long-term culture it was hardly detected in both AZFc-deleted and control spermatogonia. These data suggest that, at least in vitro, spermatogonia of AZFc-deleted men are functionally similar to spermatogonia from non-deleted men. Potentially, this enables treatment of men with AZFc deletions by propagating their SSCs in vitro and autotransplanting these SSCs back to the testes to increase sperm counts and restore fertility.
Collapse
Affiliation(s)
- B Nickkholgh
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands Present address: Wake Forest Institute for Regenerative Medicine, Wake Forest University school of Medicine, Winston-Salem, 27101 NC, USA
| | - C M Korver
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - S K M van Daalen
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - S Repping
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
73
|
Zhang X, Li L, Bai Y, Shi R, Wei H, Zhang S. Mouse undifferentiated spermatogonial stem cells cultured as aggregates under simulated microgravity. Andrologia 2015; 46:1013-21. [PMID: 25436272 DOI: 10.1111/and.12189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dynamic simulated microgravity (SMG) culture systems provide environments that stimulate stem cell proliferation and differentiation. However, the effect of SMG on spermatogonial stem cells (SSCs) remains unclear. Here, we used a rotating cell culture system (RCCS) to determine its effect on mouse SSC proliferation and differentiation. SSCs were enriched from mouse pub testis and cocultured with Sertoli cell feeders pre-treated with mitomycin C on fibrin scaffolds in a rotary bioreactor for 14 days. Our results show that mouse SSCs cultured in a rotary bioreactor exhibited enhanced proliferation surpassing those cultured in static conditions, although SSC cultures in SMG underwent a growth lag at initial 3 days. After 14 days, mouse SSCs and feeders grew into cell aggregates with average diameters of 242.63 ± 16.53 μm compared with those in conventional static culture (49.51 ± 15.64 μm). Related detection revealed that proliferating SSCs in SMG remained undifferentiated, maintained clone-forming capacity and were capable of differentiation into round spermatids with flagella. The growth characteristics of mouse SSCs in RCCS suggest that the resulting aggregates are similar to native in vivo cells. Rotary bioreactors that create SMG environments may be an alternative to conventional systems for the clinical application of SSCs.
Collapse
Affiliation(s)
- X Zhang
- Guangdong Provincial key lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
74
|
Aponte PM. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 2015; 7:669-680. [PMID: 26029339 PMCID: PMC4444608 DOI: 10.4252/wjsc.v7.i4.669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.
Collapse
|
75
|
Matsubara Y, Kato T, Kashimada K, Tanaka H, Zhi Z, Ichinose S, Mizutani S, Morio T, Chiba T, Ito Y, Saga Y, Takada S, Asahara H. TALEN-Mediated Gene Disruption on Y Chromosome Reveals Critical Role of EIF2S3Y in Mouse Spermatogenesis. Stem Cells Dev 2015; 24:1164-70. [PMID: 25579647 DOI: 10.1089/scd.2014.0466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Y chromosome plays a critical role in spermatogenesis. Formerly, it had been difficult to generate knockout mice with specific Y chromosome mutations using conventional gene-targeting strategies. Recently, a transcription activator-like effector nuclease (TALEN) was successfully used for editing a mouse Y chromosome-linked gene. Here, we report the generation of a mouse model with a mutation in EIF2S3Y, a Y chromosome-linked gene, and analysis of its phenotype. The mouse carrying a targeted mutation of EIF2S3Y was infertile and had hypoplastic testes. Histological and electron microscopic analyses showed that differentiation of spermatogonia was arrested at the stage of spermatogonial stem cells (undifferentiated spermatogonia) and that the progression of spermatogenesis was interrupted, resulting in azoospermia. Using TALEN, we verified that EIF2S3Y performs a key function in differentiation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Yohei Matsubara
- 1 Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, Jijiwa M, Takahashi M, Ogura A, Shinohara T. Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Reports 2015; 4:489-502. [PMID: 25684228 PMCID: PMC4375941 DOI: 10.1016/j.stemcr.2015.01.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which was attributed to SSC depletion. Here we show that SSCs undergo GDNF-independent self-renewal. A small number of spermatogonia formed colonies when testis fragments from a Ret mutant mouse strain were transplanted into heterologous recipients. Moreover, fibroblast growth factor 2 (FGF2) supplementation enabled in vitro SSC expansion without GDNF. Although GDNF-mediated self-renewal signaling required both AKT and MAP2K1/2, the latter was dispensable in FGF2-mediated self-renewal. FGF2-depleted testes exhibited increased levels of GDNF and were enriched for SSCs, suggesting that the balance between FGF2 and GDNF levels influences SSC self-renewal in vivo. Our results show that SSCs exhibit at least two modes of self-renewal and suggest complexity of SSC regulation in vivo. GDNF is dispensable for spermatogonial stem cell (SSC) self-renewal GFRA1 is expressed in most SSCs In vivo depletion of FGF2 in the seminiferous tubules enriches SSCs Self-renewal by GDNF, but not FGF2, requires MAP2K1/2
Collapse
Affiliation(s)
- Seiji Takashima
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, Kyoto 606-8501, Japan
| | - Takashi Tanaka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kimiko Inoue
- The Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba 305-0074, Japan
| | - Narumi Ogonuki
- The Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba 305-0074, Japan
| | - Mayumi Jijiwa
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Atsuo Ogura
- The Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
77
|
Chakraborty P, Buaas FW, Sharma M, Snyder E, de Rooij DG, Braun RE. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 2015; 32:860-73. [PMID: 24715688 DOI: 10.1002/stem.1584] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
One of the hallmarks of highly proliferative adult tissues is the presence of a stem cell population that produces progenitor cells bound for differentiation. Progenitor cells undergo multiple transit amplifying (TA) divisions before initiating terminal differentiation. In the adult male germline, daughter cells arising from the spermatogonial stem cells undergo multiple rounds of TA divisions to produce undifferentiated clones of interconnected 2, 4, 8, and 16 cells, collectively termed A(undifferentiated) (A(undiff)) spermatogonia, before entering a stereotypic differentiation cascade. Although the number of TA divisions markedly affects the tissue output both at steady state and during regeneration, mechanisms regulating the expansion of the TA cell population are poorly understood in mammals. Here, we show that mice with a conditional deletion of Lin28a in the adult male germline, display impaired clonal expansion of the progenitor TA A(undiff) spermatogonia. The in vivo proliferative activity of Au(ndiff) spermatogonial cells as indicated by BrdU incorporation during S-phase was reduced in the absence of LIN28A. Thus, contrary to the role of LIN28A as a key determinant of cell fate signals in multiple stem cell lineages, in the adult male germline it functions as an intrinsic regulator of proliferation in the population of A(undiff) TA spermatogonia. In addition, neither precocious differentiation nor diminished capacity for self-renewal potential as assessed by transplantation was observed, suggesting that neither LIN28A itself nor the pool of Aal progenitor cells substantially contribute to the functional stem cell compartment.
Collapse
|
78
|
Xie W, Sun J, Wu J. Construction and analysis of a protein-protein interaction network related to self-renewal of mouse spermatogonial stem cells. MOLECULAR BIOSYSTEMS 2015; 11:835-43. [PMID: 25566695 DOI: 10.1039/c4mb00579a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogonial stem cells (SSCs) are responsible for sustained spermatogenesis throughout the reproductive life of the male. Extensive studies of SSCs have identified dozens of genes that play important roles in sustaining or controlling the pool of SSCs in the mammalian testis. However, there is still limited knowledge of whether or how these key genes interact with each other during SSC self-renewal. Here, we constructed a protein-protein interaction (PPI) network for SSC self-renewal based on interactions between 23 genes essential for SSC self-renewal, which were obtained from a text mining system, and the interacting partners of the 23 key genes, which were differentially expressed in SSCs. The SSC self-renewal PPI network consisted of 246 nodes connected by 844 edges. Topological analyses of the PPI network were conducted to identify genes essential for maintenance of SSC self-renewal. The subnetwork of the SSC self-renewal network suggested that the 23 key genes involved in SSC self-renewal were connected together through other 94 genes. Clustering of the whole network and subnetwork of SSC self-renewal revealed several densely connected regions, implying significant molecular interaction modules essential for SSC self-renewal. Notably, we found the 23 genes to be responsible for SSC self-renewal by forming a continuous PPI network centered on Pou5f1. Our study indicates that it is feasible to explore important proteins and regulatory pathways in biological activities by combining a PPI database with the high-throughput data of gene expression profiles.
Collapse
Affiliation(s)
- Wenhai Xie
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
79
|
Chen LY, Brown PR, Willis WB, Eddy EM. Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology 2014; 155:4964-74. [PMID: 25181385 PMCID: PMC4239431 DOI: 10.1210/en.2014-1406] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peritubular myoid (PM) cells surround the seminiferous tubule and together with Sertoli cells form the cellular boundary of the spermatogonial stem cell (SSC) niche. However, it remains unclear what role PM cells have in determining the microenvironment in the niche required for maintenance of the ability of SSCs to undergo self-renewal and differentiation into spermatogonia. Mice with a targeted disruption of the androgen receptor gene (Ar) in PM cells experienced a progressive loss of spermatogonia, suggesting that PM cells require testosterone (T) action to produce factors influencing SSC maintenance in the niche. Other studies showed that glial cell line-derived neurotrophic factor (GDNF) is required for SSC self-renewal and differentiation of SSCs in vitro and in vivo. This led us to hypothesize that T-regulated GDNF expression by PM cells contributes to the maintenance of SSCs. This hypothesis was tested using an adult mouse PM cell primary culture system and germ cell transplantation. We found that T induced GDNF expression at the mRNA and protein levels in PM cells. Furthermore, when thymus cell antigen 1-positive spermatogonia isolated from neonatal mice were cocultured with PM cells with or without T and transplanted to the testes of germ cell-depleted mice, the number and length of transplant-derived colonies was increased considerably by in vitro T treatment. These results support the novel hypothesis that T-dependent regulation of GDNF expression in PM cells has a significant influence on the microenvironment of the niche and SSC maintenance.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Gamete Biology Group (L.-Y.C., W.B.W., E.M.E.) and Reproductive Developmental Biology Group (P.R.B.), Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | | | | |
Collapse
|
80
|
Zhang T, Murphy MW, Gearhart MD, Bardwell VJ, Zarkower D. The mammalian Doublesex homolog DMRT6 coordinates the transition between mitotic and meiotic developmental programs during spermatogenesis. Development 2014; 141:3662-71. [PMID: 25249458 DOI: 10.1242/dev.113936] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here, we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) in mice and find that Dmrt6 plays a crucial role in directing germ cells through the mitotic-to-meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain, a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing inappropriate expression of spermatogonial differentiation factors, including SOHLH1, SOHLH2 and DMRT1 as well as the meiotic initiation factor STRA8, and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant germ cells can complete spermatogonial differentiation and enter meiosis, but they show defects in meiotic chromosome pairing, establishment of the XY body and processing of recombination foci, and they mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 chromatin immunoprecipitation sequencing suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis.
Collapse
Affiliation(s)
- Teng Zhang
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark W Murphy
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vivian J Bardwell
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - David Zarkower
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
81
|
Lee WY, Lee KH, Heo YT, Kim NH, Kim JH, Kim JH, Moon SH, Chung HJ, Yoon MJ, Song H. Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed in spermatogonial stem cells: A putative marker of boar spermatogonia. Anim Reprod Sci 2014; 150:115-24. [DOI: 10.1016/j.anireprosci.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
|
82
|
Spermatogonial stem cell enrichment using simple grafting of testis and in vitro cultivation. Sci Rep 2014; 4:5923. [PMID: 25080919 PMCID: PMC4118148 DOI: 10.1038/srep05923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/15/2014] [Indexed: 01/15/2023] Open
Abstract
Enrichment of spermatogonial stem cells (SSCs) from the mammalian adult testis faces several limitations owing to their relatively low numbers among many types of advanced germ cells and somatic cells. The aim of the present study was to improve the isolation efficiency of SSCs using a simple tissue grafting method to eliminate the existing advanced germ cells. Sliced testis parenchyma obtained from adult ICR or EGFP-expressing transgenic mice were grafted heterotropically under the dorsal skin of nude mice. The most advanced germ cells disappeared in the grafted tissues after 2–4 weeks. Grafted tissues were dissociated enzymatically and plated in culture dishes. During in vitro culture, significantly more SSCs were obtained from the grafted testes than from non-grafted controls, and the isolated SSCs had proliferative potential and were successfully maintained. Additionally, EGFP-expressing SSCs derived from graft parenchyma were transplanted into bulsufan-treated recipient mice testes. Finally, we obtained EGFP-expressing pups after in vitro fertilization using spermatozoa derived from transplanted SSCs. These results suggest that subcutaneous grafting of testis parenchyma and the subsequent culture methods provide a simple and efficient isolation method to enrich for SSCs in adult testis without specific cell sorting methods and may be useful tools for clinical applications.
Collapse
|
83
|
In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J Assist Reprod Genet 2014; 31:993-1001. [PMID: 24958548 DOI: 10.1007/s10815-014-0277-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/08/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop an efficient protocol for isolation, purification and long-term culture of spermatogonial stem cell (SSC) in goat. METHODS The isolation of SSC was performed by testicular disaggregation by enzymatic digestion using collagenase IV, trypsin and DNase I. Further SSCs were enriched using Percoll density gradient centrifugation. The purity of SSCs was assessed by immunocytochemistry (ICC) using α6 integrin. The SSCs were co-cultured on Sertoli cell feeder layer. The SSC colonies were characterized by studying the expression of SSC specific markers (viz., α6 integrin and PLZF) using ICC. The abundance of mRNAs encoding the markers of SSC (viz., β1 integrin and Oct-4) and Sertoli cells (viz., vimentin) was also assayed using quantitative real-time PCR (qPCR). RESULTS The viability of isolated testicular cells was > 90 % and the Percoll density gradient method resulted in 3.65 folds enrichment with a purity of 82.5 %. Co-culturing of SSCs with Sertoli cell feeder layer allowed the maintenance of stable SSC colonies even after one and half months of culture. The results of ICC analysis showed the expression of α6 integrin and PLZF in almost all the SSC colonies. qPCR analysis revealed a differential expression of mRNAs encoding β1 integrin, Oct-4 and vimentin markers. CONCLUSION Results of this study demonstrate a simple enzymatic digestion and Percoll density gradient method for isolation and enrichment of SSCs, and suitability of Sertoli cell feeder layer for long term in vitro culture of SSC in goats. Results also suggest the possible application of non-caprine antibodies against SSC specific markers for the identification and subsequent assessment of SSCs in goats.
Collapse
|
84
|
Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102:566-580.e7. [PMID: 24890267 DOI: 10.1016/j.fertnstert.2014.04.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Karen A Peters
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Julia Donohue
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
85
|
Hayashi M, Sato M, Nagasaka Y, Sadaie S, Kobayashi S, Yoshizaki G. Enrichment of spermatogonial stem cells using side population in teleost. Biol Reprod 2014; 91:23. [PMID: 24876408 DOI: 10.1095/biolreprod.113.114140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis originates from a small population of spermatogonial stem cells; this population can maintain continuous sperm production throughout the life of fish via self-renewal and differentiation. Despite their biological importance, spermatogonial stem cells are not thoroughly characterized because they are difficult to distinguish from their progeny cells that become committed to differentiation. We previously established a novel technique for germ cell transplantation to identify spermatogonial stem cells based on their colonizing activity and their ability to initiate donor-derived gametogenesis in the rainbow trout (Oncorhynchus mykiss). Although spermatogonial stem cells can be retrospectively identified after transplantation, there is currently no technique to prospectively enrich for or purify spermatogonial stem cells. Here, we describe a method for spermatogonial stem cell enrichment using a side population. With optimized Hoechst 33342 staining conditions, we successfully identified side-population cells among type A spermatogonia. Side-population cells were transcriptomically and morphologically distinct from non-side-population cells. To functionally determine whether the transplantable spermatogonial stem cells were enriched in the side-population fraction, we compared the colonization activity of side-population cells with that of non-side-population cells. Colonization efficiency was significantly higher with side-population cells than with non-side-population cells or with total type A spermatogonia. In addition, side-population cells could produce billions of sperm in recipients. These results indicated that transplantable spermatogonial stem cells were enriched in the side-population fraction. This method will provide biological information that may advance our understanding of spermatogonial stem cells in teleosts. Additionally, this technique will increase the efficiency of germ cell transplantation used in surrogate broodstock technology.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masanao Sato
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | | | - Sakiko Sadaie
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Satoru Kobayashi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
86
|
Regulation of spermatogenesis: An evolutionary biologist's perspective. Semin Cell Dev Biol 2014; 29:2-16. [DOI: 10.1016/j.semcdb.2014.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/03/2023]
|
87
|
Harman JG, Richburg JH. Cisplatin-induced alterations in the functional spermatogonial stem cell pool and niche in C57/BL/6J mice following a clinically relevant multi-cycle exposure. Toxicol Lett 2014; 227:99-112. [PMID: 24704392 DOI: 10.1016/j.toxlet.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 01/15/2023]
Abstract
A typical clinical cis-diamminedichloroplatinum(II) (cisplatin) dosing regimen consists of repeated treatment cycles followed by a recovery period. While effective, this dosing structure results in a prolonged, often permanent, infertility in men. Spermatogonial stem cells (SSCs) are theoretically capable of repopulating the seminiferous tubules after exposure has ceased. We propose that an altered spermatogonial environment during recovery from the initial treatment cycle drives an increase in SSC mitotic cell activity, rendering the SSC pool increasingly susceptible to cisplatin-induced injury from subsequent cycles. To test this hypothesis, the undifferentiated spermatogonia population and niche of the adult mouse (C57/BL/6J) were examined during the recovery periods of a clinically-relevant cisplatin exposure paradigm. Histological examination revealed a disorganization of spermatogenesis correlating with the number of exposure cycles. Quantification of terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick end labeling (TUNEL) staining indicated an increase in apoptotic frequency following exposure. Immunohistochemical examination of Foxo1 and incorporated BrdU showed an increase in the undifferentiated spermatogonial population and mitotic activity in the recovery period in mice exposed to one cycle, but not two cycles of cisplatin. Immunohistochemical investigation of glial cell line-derived neurotrophic factor (GDNF) revealed an increase in production along the basal Sertoli cell membrane throughout the recovery period in all treatment groups. Taken together, these data establish that the impact of cisplatin exposure on the functional stem cell pool and niche correlates with: (1) the number of dosing cycles; (2) mitotic activity of early germ cells; and (3) alterations in the basal Sertoli cell GDNF expression levels after cisplatin-induced testicular injury.
Collapse
Affiliation(s)
- James G Harman
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, United States
| | - John H Richburg
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, United States.
| |
Collapse
|
88
|
Hänsch M, Simon P, Schön J, Kaese M, Braun BC, Jewgenow K, Göritz F, Küpper J, Ahmadvand N, Geyer R, Middendorff R, Müller K, Galuska SP. Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer. Glycobiology 2014; 24:488-93. [PMID: 24663385 DOI: 10.1093/glycob/cwu023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Roe deer (Capreolus capreolus) are seasonal breeders and cyclic structural changes of roe bucks' testis come along with a totally arrested (winter) and a highly activated spermatogenesis (summer). For this reason, roe buck represents an interesting model to study general mechanisms of initiation and termination of spermatogenesis. We investigated if polysialic acid (polySia)-a linear homopolymer of α2,8-linked sialic acids, which could act as a negative regulator of cell-cell adhesion-might be involved in the activation and/or inactivation of spermatogenesis. To address this point, testis samples of adult male roe deer were collected at different time point of the year. Intriguingly, we observed that polySia attached to the neural cell adhesion molecule was enhanced during the onset of spermatogenesis in April. In addition, polySia was highly expressed in December. Predominantly, polySia was detectable between Sertoli cells and spermatogonia in the basal regions of testicular tubules and in the adluminal part of Sertoli cells. Interestingly, similar polySia distributions were observed during early testis development of other mammalians when gonocytes (pre-spermatogonia) and Sertoli cells represent the only cell populations in tubuli seminiferi. Thus, polySia is expressed during key steps of the "on/off mechanisms" of spermatogenesis and might represent one mediator of the interaction and communication between Sertoli cells and germ cell precursors.
Collapse
Affiliation(s)
- Manka Hänsch
- Institute of Biochemistry, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 2014; 147:R65-74. [PMID: 24357661 DOI: 10.1530/rep-13-0466] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
Spermatogenesis originates from spermatogonial stem cells (SSCs). Development of the spermatogonial transplantation technique in 1994 provided the first functional assay to characterize SSCs. In 2000, glial cell line-derived neurotrophic factor was identified as a SSC self-renewal factor. This discovery not only provided a clue to understand SSC self-renewing mechanisms but also made it possible to derive germline stem (GS) cell cultures in 2003. In vitro culture of GS cells demonstrated their potential pluripotency and their utility in germline modification. However, in vivo SSC analyses have challenged the traditional concept of SSC self-renewal and have revealed their relationship with the microenvironment. An improved understanding of SSC self-renewal through functional assays promises to uncover fundamental principles of stem cell biology and will enable us to use these cells for applications in animal transgenesis and medicine.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; ,
| | | |
Collapse
|
91
|
Mucksová J, Kalina J, Bakst M, Yan H, J.P.Brillard, Benešová B, Fafílek B, Hejnar J, Trefil P. Expression of the chicken GDNF family receptor α-1 as a marker of spermatogonial stem cells. Anim Reprod Sci 2013; 142:75-83. [DOI: 10.1016/j.anireprosci.2013.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 07/26/2013] [Accepted: 08/08/2013] [Indexed: 01/15/2023]
|
92
|
Santos Nassif Lacerda SM, Costa GMJ, da Silva MDA, Campos-Junior PHA, Segatelli TM, Peixoto MTD, Resende RR, de França LR. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen Comp Endocrinol 2013; 192:95-106. [PMID: 23792279 DOI: 10.1016/j.ygcen.2013.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022]
Abstract
In association with in vitro culture and transplantation, isolation of spermatogonial stem cells (SSCs) is an excellent approach for investigating spermatogonial physiology in vertebrates. However, in fish, the lack of SSC molecular markers represents a great limitation to identify/purify these cells, rendering it difficult to apply several valuable biotechnologies in fish-farming. Herein, we describe potential molecular markers, which served to phenotypically characterize, cultivate and transplant Nile tilapia SSCs. Immunolocalization revealed that Gfra1 is expressed exclusively in single type A undifferentiated spermatogonia (Aund, presumptive SSCs). Likewise, the expression of Nanos2 protein was observed in Aund cells. However, Nanos2-positive spermatogonia have also been identified in cysts with two to eight germ cells that encompass type A differentiated spermatogonia (Adiff). Moreover, we also established effective primary culture conditions that allowed the Nile tilapia spermatogonia to expand their population for at least one month while conserving their original undifferentiated (stemness) characteristics. The maintenance of Aund spermatogonial phenotype was demonstrated by the expression of early germ cell specific markers and, more convincingly, by their ability to colonize and develop in the busulfan-treated adult Nile tilapia recipient testes after germ cell transplantation. In addition to advancing our knowledge on the identity and physiology of fish SSCs, these findings provide the first step in establishing a system that will allow fish SSCs expansion in vitro, representing an important progress towards the development of new biotechnologies in aquaculture, including the possibility of producing transgenic fish.
Collapse
Affiliation(s)
- Samyra Maria Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Zhang Z, Gong Y, Guo Y, Hai Y, Yang H, Yang S, Liu Y, Ma M, Liu L, Li Z, Gao WQ, He Z. Direct transdifferentiation of spermatogonial stem cells to morphological, phenotypic and functional hepatocyte-like cells via the ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. Cell Commun Signal 2013; 11:67. [PMID: 24047406 PMCID: PMC3848919 DOI: 10.1186/1478-811x-11-67] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/03/2013] [Indexed: 01/04/2023] Open
Abstract
Background Severe shortage of liver donors and hepatocytes highlights urgent requirement of extra-liver and stem cell source of hepatocytes for treating liver-related diseases. Here we hypothesized that spermatogonial stem cells (SSCs) can directly transdifferentiate to hepatic stem-like cells capable of differentiating into mature hepatocyte-like cells in vitro without an intervening pluripotent state. Results SSCs first changed into hepatic stem-like cells since they resembled hepatic oval cells in morphology and expressed Ck8, Ck18, Ck7, Ck19, OV6, and albumin. Importantly, they co-expressed CK8 and CK19 but not ES cell markers. Hepatic stem-like cells derived from SSCs could differentiate into small hepatocytes based upon their morphological features and expression of numerous hepatic cell markers but lacking of bile epithelial cell hallmarks. Small hepatocytes were further coaxed to differentiate into mature hepatocyte-like cells, as identified by their morphological traits and strong expression of Ck8, Ck18, Cyp7a1, Hnf3b, Alb, Tat, Ttr, albumin, and CYP1A2 but not Ck7 or CK19. Notably, these differentiated cells acquired functional attributes of hepatocyte-like cells because they secreted albumin, synthesized urea, and uptake and released indocyanine green. Moreover, phosphorylation of ERK1/2 and Smad2/3 rather than Akt was activated in hepatic stem cells and mature hepatocytes. Additionally, cyclin A, cyclin B and cyclin E transcripts and proteins but not cyclin D1 or CDK1 and CDK2 transcripts or proteins were reduced in mature hepatocyte-like cells or hepatic stem-like cells derived from SSCs compared to SSCs. Conclusions SSCs can transdifferentiate to hepatic stem-like cells capable of differentiating into cells with morphological, phenotypic and functional characteristics of mature hepatocytes via the activation of ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. This study thus provides an invaluable source of mature hepatocytes for treating liver-related diseases and drug toxicity screening and offers novel insights into mechanisms of liver development and cell reprogramming.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Renji Hospital, Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Shirakawa T, Yaman-Deveci R, Tomizawa SI, Kamizato Y, Nakajima K, Sone H, Sato Y, Sharif J, Yamashita A, Takada-Horisawa Y, Yoshida S, Ura K, Muto M, Koseki H, Suda T, Ohbo K. An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development 2013; 140:3565-76. [PMID: 23903187 DOI: 10.1242/dev.094045] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis. We have exploited a property of incomplete cytokinesis, which causes male germ cells to form aligned chains of characteristic lengths, as they divide and differentiate. These chains revealed the stage of spermatogenesis, so the epigenetic differences of various stages could be characterized. Single, paired and medium chain-length spermatogonia not expressing Kit (a marker of differentiating spermatogonia) showed no expression of Dnmt3a2 and Dnmt3b (two de novo DNA methyltransferases); they also lacked the transcriptionally repressive histone modification H3K9me2. By contrast, spermatogonia consisting of ~8-16 chained cells with Kit expression dramatically upregulated Dnmt3a2/3b expression and also displayed increased H3K9me2 modification. To explore the function of these epigenetic changes in spermatogonia in vivo, the DNA methylation machinery was destabilized by ectopic Dnmt3b expression or Np95 ablation. Forced Dnmt3b expression induced expression of Kit; whereas ablation of Np95, which is essential for maintaining DNA methylation, interfered with differentiation and viability only after spermatogonia become Kit positive. These data suggest that the epigenetic status of spermatogonia shifts dramatically during the Kit-negative to Kit-positive transition. This shift might serve as a switch that determines whether spermatogonia self-renew or differentiate.
Collapse
Affiliation(s)
- Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Tumor suppressor gene Rb is required for self-renewal of spermatogonial stem cells in mice. Proc Natl Acad Sci U S A 2013; 110:12685-90. [PMID: 23858447 DOI: 10.1073/pnas.1311548110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The retinoblastoma tumor suppressor gene Rb is essential for maintaining the quiescence and for regulating the differentiation of somatic stem cells. Inactivation of Rb in somatic stem cells typically leads to their overexpansion, often followed by increased apoptosis, defective terminal differentiation, and tumor formation. However, Rb's roles in germ-line stem cells have not been explored. We conditionally disrupted the Rb gene in mouse germ cells in vivo and discovered unanticipated consequences for GFRa1-protein-expressing A(single) (GFRa1(+) A(s)) spermatogonia, the major source of male germ-line stem cells. Rb-deficient GFRa1(+) A(s) spermatogonia were present at normal density in testes 5 d after birth, but they lacked the capacity for self-renewal, resulting in germ cell depletion by 2 mo of age. Rb deficiency did not affect the proliferative activity of GFRa1(+) A(s) spermatogonia, but their progeny were exclusively transit-amplifying progenitor spermatogonia and did not include GFRa1(+) A(s) spermatogonia. In addition, Rb deficiency caused prolonged proliferation of progenitor spermatogonia, transiently enlarging this population. Despite these defects, Rb deficiency did not block terminal differentiation into functional sperm; offspring were readily obtained from young males whose germ cell pool was not yet depleted. We conclude that Rb is required for self-renewal of germ-line stem cells, but contrary to its critical roles in somatic stem cells, it is dispensable for their proliferative activity and terminal differentiation. Thus, this study identifies an unexpected function for Rb in maintaining the stem cell pool in the male germ line.
Collapse
|
96
|
Kofman AE, Huszar JM, Payne CJ. Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells. Stem Cell Rev Rep 2013; 9:59-64. [PMID: 22729928 DOI: 10.1007/s12015-012-9392-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The differentiation of adult stem cells involves extensive chromatin remodeling, mediated in part by the gene products of histone deacetylase (HDAC) family members. While the transcriptional downregulation of HDACs can impede stem cell self-renewal in certain contexts, it may also promote stem cell maintenance under other circumstances. In self-renewing, differentiating, and aging spermatogonial stem cells (SSCs), the gene expression dynamics of HDACs have not yet been characterized. To gain further insight with these studies, we analyzed the transcriptional profiles of six HDAC family members, previously identified to be the most highly expressed in self-renewing SSCs, during stem cell differentiation and aging. Here we discovered that in both differentiating and aging SSCs the expression of Sirt4 increases, while the expression of Hdac2, Hdac6, and Sirt1 decreases. When SSCs are exposed to the lifespan-enhancing drug rapamycin in vivo, the resultant HDAC gene expression patterns are opposite of those seen in the differentiating and aging SSCs, with increased Hdac2, Hdac6, and Sirt1 and decreased Hdac8, Hdac9, and Sirt4. Our findings suggest that HDACs important for stem cell maintenance and oxidative capacity are downregulated as adult stem cells differentiate or age. These results provide important insights into the epigenetic regulation of stem cell differentiation and aging in mammals.
Collapse
Affiliation(s)
- Amber E Kofman
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | | | |
Collapse
|
97
|
Gassei K, Orwig KE. SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One 2013; 8:e53976. [PMID: 23326552 PMCID: PMC3543410 DOI: 10.1371/journal.pone.0053976] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/07/2012] [Indexed: 01/15/2023] Open
Abstract
The spermatogenic lineage is established after birth when gonocytes migrate to the basement membrane of seminiferous tubules and give rise to spermatogonial stem cells (SSC). In adults, SSCs reside within the population of undifferentiated spermatogonia (Aundiff) that expands clonally from single cells (Asingle) to form pairs (Apaired) and chains of 4, 8 and 16 Aaligned spermatogonia. Although stem cell activity is thought to reside in the population of Asingle spermatogonia, new research suggests that clone size alone does not define the stem cell pool. The mechanisms that regulate self-renewal and differentiation fate decisions are poorly understood due to limited availability of experimental tools that distinguish the products of those fate decisions. The pluripotency factor SALL4 (sal-like protein 4) is implicated in stem cell maintenance and patterning in many organs during embryonic development, but expression becomes restricted to the gonads after birth. We analyzed the expression of SALL4 in the mouse testis during the first weeks after birth and in adult seminiferous tubules. In newborn mice, the isoform SALL4B is expressed in quiescent gonocytes at postnatal day 0 (PND0) and SALL4A is upregulated at PND7 when gonocytes have colonized the basement membrane and given rise to spermatogonia. During steady-state spermatogenesis in adult testes, SALL4 expression overlapped substantially with PLZF and LIN28 in Asingle, Apaired and Aaligned spermatogonia and therefore appears to be a marker of undifferentiated spermatogonia in mice. In contrast, co-expression of SALL4 with GFRα1 and cKIT identified distinct subpopulations of Aundiff in all clone sizes that might provide clues about SSC regulation. Collectively, these results indicate that 1) SALL4 isoforms are differentially expressed at the initiation of spermatogenesis, 2) SALL4 is expressed in undifferentiated spermatogonia in adult testes and 3) SALL4 co-staining with GFRα1 and cKIT reveals distinct subpopulations of Aundiff spermatogonia that merit further investigation.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology & Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology & Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
98
|
Chuykin I, Stauske M, Guan K. Spermatogonial Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
99
|
Propagation of adult SSCs: from mouse to human. BIOMED RESEARCH INTERNATIONAL 2013; 2013:384734. [PMID: 23484114 PMCID: PMC3581147 DOI: 10.1155/2013/384734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/06/2012] [Indexed: 12/24/2022]
Abstract
Adult spermatogonial stem cells (SSCs) represent a distinctive source of stem cells in
mammals for several reasons. First, by giving rise to spermatogenesis, SSCs are
responsible for the propagation of a father's genetic material. As such, autologous SSCs
have been considered for treatment of infertility and other purposes, including correction
of inherited disorders. Second, adult spermatogonia can spontaneously produce
embryonic-like stem cells in vitro, which could be used as an alternative for therapeutic,
diagnostic, or drug discovery strategies for humans. Therefore, an increasing urgency is
driving efforts to understand the biology of SSCs and improve techniques to manipulate
them in vitro as a prerequisite to achieve the aforementioned goals. The characterization
of adult SSCs also requires reproducible methods to isolate and maintain them in long-term
culture. Herein, we describe recent major advances and challenges in propagation of
adult SSCs from mice and humans during the past few years, including the use of unique
cell surface markers and defined cultured conditions.
Collapse
|
100
|
Griswold MD, Oatley JM. Concise review: Defining characteristics of mammalian spermatogenic stem cells. Stem Cells 2013; 31:8-11. [PMID: 23074087 PMCID: PMC5312674 DOI: 10.1002/stem.1253] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/25/2012] [Indexed: 01/15/2023]
Abstract
The enormous number of sperms produced daily and over the lifetime of mammals requires a stable source of stem cells that give rise to progenitor cells that proceed through spermatogenesis. Spermatogenic stem cells develop from primitive germ cells that occupy the developing gonad. A transplantation assay was developed for the spermatogenic stem cells, and it remains the only functional measure of authentic stem cells in the testis. Somatic cells comprise a "niche" environment that is essential for the maintenance of stem cell activity. Dividing progenitor cells have intercellular bridges and form syncytia with 2, 4, 8, or 16 cells. Fragmentation of these syncytia may allow some progenitor cells to occupy "niches" and function as stem cells, but this notion requires further investigation. Spermatogenic stem cells can be maintained in culture and are influenced by a number of growth factors. Thus far, the ultimate differentiation of cultured stem cells into functional gametes has not been demonstrated with any efficiency and reproducibility. The ability to maintain spermatogenic stem cells in culture and to induce differentiation into haploid cells and sperm could have many important implications for human medicine.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520, USA.
| | | |
Collapse
|