51
|
Pomini Pinto RF, Fontes PK, Loureiro B, Sousa Castilho AC, Sousa Ticianelli J, Montanari Razza E, Satrapa RA, Buratini J, Moraes Barros C. Effects of FGF10 on Bovine Oocyte Meiosis Progression, Apoptosis, Embryo Development and Relative Abundance of Developmentally Important GenesIn Vitro. Reprod Domest Anim 2014; 50:84-90. [DOI: 10.1111/rda.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
Affiliation(s)
- RF Pomini Pinto
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - PK Fontes
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - B Loureiro
- Laboratory of Animal Reproductive Physiology; University of Vila Velha (UVV); Vila Velha ES Brazil
| | - AC Sousa Castilho
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - J Sousa Ticianelli
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - E Montanari Razza
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - RA Satrapa
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - J Buratini
- Department of Phisiology; Institute of Biosciences; São Paulo State University; Botucatu SP Brazil
| | - C Moraes Barros
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| |
Collapse
|
52
|
Ponsuksili S, Tesfaye D, Schellander K, Hoelker M, Hadlich F, Schwerin M, Wimmers K. Differential Expression of miRNAs and Their Target mRNAs in Endometria Prior to Maternal Recognition of Pregnancy Associates with Endometrial Receptivity for In Vivo- and In Vitro-Produced Bovine Embryos1. Biol Reprod 2014; 91:135. [DOI: 10.1095/biolreprod.114.121392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
53
|
Effects of differentn-6:n-3 fatty acid ratios and of enterolactone on gene expression and PG secretion in bovine endometrial cells. Br J Nutr 2014; 113:56-71. [DOI: 10.1017/s0007114514003304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Feeding flaxseed to dairy cows can modulate gene expression and PG synthesis in the uterus at the time of peri-implantation. The objectives of the present study were to determine which flaxseed components are responsible for these effects and how different endometrial cell types are affected. We evaluated the effects of six different linoleic acid (n-6):α-linolenic acid (n-3) ratios and three concentrations of the lignan enterolactone (ENL) on endometrial stromal cells (SC) and epithelial cells (EC). The mRNA abundance of genes with known or suspected roles in embryo survival or PG synthesis was evaluated, along with PGE2and PGF2αconcentrations in culture media. The mRNA abundance of several genes was modulated by different fatty acid (FA) ratios and/or ENL, and this modulation differed between cell types. The FA4 (FA at ann-6:n-3 ratio of 4) treatment (rich inn-3 FA) increased the mRNA abundance of genes that have positive effects on uterine receptivity and implantation when compared with the FA25 (FA at ann-6:n-3 ratio of 25) treatment (rich inn-6 FA). ENL decreased PGE2and PGF2αconcentrations in both cell types, and this reduction was associated with lower mRNA abundance of the PG synthase genesAKR1B1andPTGESin SC. The combination of ENL with FA (FA4 treatment) resulted in the greatest reduction in PGF2αconcentrations when compared with the addition of FA (FA4) or ENL alone. Because of the known luteolytic properties of PGF2α, a reduction in endometrial PGF2αsecretion would favour the establishment and maintenance of pregnancy.
Collapse
|
54
|
Schmaltz-Panneau B, Cordova A, Dhorne-Pollet S, Hennequet-Antier C, Uzbekova S, Martinot E, Doret S, Martin P, Mermillod P, Locatelli Y. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim Reprod Sci 2014; 149:103-16. [DOI: 10.1016/j.anireprosci.2014.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/26/2014] [Accepted: 06/19/2014] [Indexed: 01/12/2023]
|
55
|
Bridges GA, Day ML, Geary TW, Cruppe LH. Triennial Reproduction Symposium: deficiencies in the uterine environment and failure to support embryonic development. J Anim Sci 2014; 91:3002-13. [PMID: 23798511 DOI: 10.2527/jas.2013-5882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. The focus of this review is on cattle and factors affecting and mechanisms related to uterine insufficiency for pregnancy. A variety of factors contribute to embryonic loss and it may be exacerbated in certain animals, such as high-producing lactating dairy cows, and in some cattle in which estrous synchronization and timed AI was performed, due to reduced concentrations of reproductive steroids. Recent research in beef cattle induced to ovulate immature follicles and in lactating dairy cows indicates that deficient uterine function is a major factor responsible for infertility in these animals. Failure to provide adequate concentrations of estradiol before ovulation results in prolonged effects on expression and localization of uterine genes and proteins that participate in regulating uterine functions during early gestation. Furthermore, progesterone concentrations during early gestation affect embryonic growth, interferon-tau production, and uterine function. Therefore, an inadequate uterine environment induced by insufficient steroid concentrations before and after ovulation could cause early embryonic death either by failing to provide an adequate uterine environment for recognition of embryo signaling, adhesion, and implantation or by failing to support appropriate embryonic growth, which could lead to decreased conceptus size and failed maternal recognition of pregnancy.
Collapse
Affiliation(s)
- G A Bridges
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN 55744, USA.
| | | | | | | |
Collapse
|
56
|
Hansen TR, Pru JK. ISGylation: a conserved pathway in mammalian pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:13-31. [PMID: 25030758 DOI: 10.1007/978-1-4939-0817-2_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Successful pregnancy includes remodeling and differentiation of the endometrium in response to sex steroid hormones, development of maternal immunotolerance to the implanting embryo, and modification of the local uterine environment by the embryo to suit its own needs. The major signal released by the ruminant conceptus during establishment of pregnancy is interferon-tau (IFNT) that stimulates the expression of many genes in the endometrium and ovary. One of these genes is called interferon stimulated gene 15 (ISG15), which encodes a ubiquitin homolog with a C-terminal Gly that becomes covalently attached to Lys residues on targeted proteins through an ATP-dependent multi-step enzymatic reaction called ISGylation. The conceptus-derived induction of endometrial ISGs also occurs in mouse and human deciduas and placenta, in response to pregnancy presumably through action of cytokines such as interleukins and type I IFN. Described herein is evidence to support the concept that ISGylation is a maternal response to the developing conceptus, implantation and placentation that is conserved across mammalian pregnancy. Although the precise role for ISG15 remains elusive during pregnancy, it is clear that up-regulation in response to pregnancy may impart a pre-emptive defense to infection or other environmental insults, and protection of the conceptus against inflammatory insults across species.
Collapse
Affiliation(s)
- Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3197 Rampart Road, Fort Collins, CO, 80521, USA,
| | | |
Collapse
|
57
|
Samborski A, Graf A, Krebs S, Kessler B, Reichenbach M, Reichenbach HD, Ulbrich SE, Bauersachs S. Transcriptome changes in the porcine endometrium during the preattachment phase. Biol Reprod 2013; 89:134. [PMID: 24174570 DOI: 10.1095/biolreprod.113.112177] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The porcine conceptus undergoes rapid differentiation and expansion of its trophoblastic membranes between Days 11 and 12 of gestation. Concomitant with trophoblast elongation, production of conceptus estrogen, the porcine embryonic pregnancy recognition signal, increases. Conceptus attachment to the uterine surface epithelium starts after Day 13, initiating epitheliochorial placentation. To analyze the transcriptome changes in the endometrium in the course of maternal recognition of pregnancy, deep sequencing of endometrial RNA samples of Day 12 pregnant animals (n = 4) and corresponding nonpregnant controls (n = 4) was performed using RNA sequencing (RNA-Seq). Between 30 000 000 and 35 000 000 sequence reads per sample were produced and mapped to the porcine genome (Sscrofa10.2). Analysis of read counts revealed 2593 differentially expressed genes (DEGs). Expression of selected genes was validated by the use of quantitative real-time RT-PCR. Bioinformatics analysis identified several functional terms specifically overrepresented for up-regulated or down-regulated genes. Comparison of the RNA-Seq data from Days 12 and 14 of pregnancy was performed at the level of all expressed genes, the level of the DEG, and the level of functional categories. This revealed specific gene expression patterns reflecting the different functions of the endometrium during these stages (i.e., recognition of pregnancy and preparation for conceptus attachment). Genes related to mitosis, immune response, epithelial cell differentiation and development, proteolysis, and prostaglandin signaling and metabolism are discussed in detail. This study identified comprehensive transcriptome changes in porcine endometrium associated with establishment of pregnancy and could be a resource for targeted studies of genes and pathways potentially involved in regulation of this process.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Pistek VL, Fürst RW, Kliem H, Bauersachs S, Meyer HHD, Ulbrich SE. HOXA10 mRNA expression and promoter DNA methylation in female pig offspring after in utero estradiol-17β exposure. J Steroid Biochem Mol Biol 2013; 138:435-44. [PMID: 24056088 DOI: 10.1016/j.jsbmb.2013.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 01/09/2023]
Abstract
Early exposure to environmental estrogens may exert lasting impacts on health. In rodents, homeobox A10 (HOXA10) was demonstrated to be a target of early endocrine disruption, as indicated by persistent changes in uterine HOXA10 expression and promoter DNA methylation in the offspring. This study aimed at analyzing long-term effects of estradiol-17β on porcine uterine HOXA10. Therefore, offspring were exposed in utero to low (0.05 and 10μg/kg body weight/day) and high (1000μg/kg body weight/day) doses, respectively. We, furthermore, investigated whether promoter DNA methylation was generally involved in regulating HOXA10 expression. Unexpectedly, the maternal estrogen exposure did not distinctly impact HOXA10 expression and promoter DNA methylation in either pre- or postpubertal offspring. Although differential HOXA10 expression was observed in endometrial tissue during the estrous cycle and the pre-implantation period, no concurrent substantial changes occurred regarding promoter DNA methylation. However, by comparing several tissues displaying larger differences in transcriptional abundance, HOXA10 expression correlated with promoter DNA methylation in prepubertal, but not postpubertal, gilts. Thus, promoter DNA methylation could affect gene expression in pigs, depending on their stage of development. Clearly, early estrogen exposure exerted other effects in pigs as known from studies in rodents. This may be due to endocrine differences as well as to species-specific peculiarities of tissue sensitivity to estradiol-17β during critical windows of development.
Collapse
Affiliation(s)
- Veronika L Pistek
- Physiology Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; Z I E L PhD Graduate School 'Nutritional Adaptation and Epigenetic Mechanisms', Technische Universität München, Freising, Germany.
| | | | | | | | | | | |
Collapse
|
59
|
Oliveira LJ, Mansourri-Attia N, Fahey AG, Browne J, Forde N, Roche JF, Lonergan P, Fair T. Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS One 2013; 8:e75571. [PMID: 24204576 PMCID: PMC3808391 DOI: 10.1371/journal.pone.0075571] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Despite extensive research in the area of cow fertility, the extent to which the maternal immune system is modulated during pregnancy in cattle remains unclear. Therefore, the objective of the current study was to characterize the presence and response profile of B, T-helper (LTh), T- cytotoxic (LTc), gamma delta-T (γδT) and natural killer (NK) lymphocytes in terms of cell number, distribution and cytokine expression in bovine endometrial tissue to pregnancy. Endometrial tissue samples were collected from beef heifers on Days 5, 7, 13 and 16 of the estrous cycle or pregnancy. Samples were analysed by immunofluorescence to identify the presence and abundance of B-B7 (B-cells), CD4 (LTh), CD8 (LTc), γδT cell receptor (TCR) and CD335/NKp46 (NK cells) -positive immune cells. Quantitative real time PCR (QPCR) was carried out to analyse mRNA relative abundance of FOXP3 (a marker of regulatory T (Treg) cells) and a panel of immune factors, including MHC-I, LIF, Interleukins 1, 2, 6, 8, 10, 11,12A, IFNa and IFNG. Results indicate that B-B7+ cells are quite populous in bovine endometrial tissue, CD4+ and CD8+ -cells are present in moderate numbers and γδTCR+ and CD335+ cells are present in low numbers. Pregnancy affected the total number and distribution pattern of the NK cell population, with the most significant variation observed on Day 16 of pregnancy. Neither B lymphocytes nor T lymphocyte subsets were regulated temporally during the oestrous cycle or by pregnancy prior to implantation. mRNA transcript abundance of the immune factors LIF, IL1b, IL8 and IL12A, IFNa and IFNG, expression was regulated temporally during the estrous cycle and LIF, IL1b, IL-10, IL11, IL12A were also temporally regulated during pregnancy. In conclusion, the endometrial immune profile of the oestrous cycle favours a Th2 environment in anticipation of pregnancy and the presence of an embryo acts to fine tune this environment.
Collapse
Affiliation(s)
- Lilian J. Oliveira
- Faculty of Food Engineering and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Alan G. Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John Browne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James F. Roche
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
60
|
Wang Y, Wang C, Hou Z, Miao K, Zhao H, Wang R, Guo M, Wu Z, Tian J, An L. Comparative analysis of proteomic profiles between endometrial caruncular and intercaruncular areas in ewes during the peri-implantation period. J Anim Sci Biotechnol 2013; 4:39. [PMID: 24093944 PMCID: PMC3892124 DOI: 10.1186/2049-1891-4-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
The endometrium of sheep consists of plenty of raised aglandular areas called caruncular (C), and intensely glandular intercaruncular areas (IC). In order to better understand the endometrium involved mechanisms of implantation, we used LC-MS/MS technique to profile the proteome of ovine endometrial C areas and IC areas separately during the peri-implantation period, and then compared the proteomic profiles between these two areas. We successfully detected 1740 and 1813 proteins in C areas and IC areas respectively. By comparing the proteome of these two areas, we found 170 differentially expressed proteins (DEPs) (P < 0.05), functional bioinformatics analysis showed these DEPs were mainly involved in growth and remodeling of endometrial tissue, cell adhesion and protein transport, and so on. Our study, for the first time, provided a proteomic reference for elucidating the differences between C and IC areas, as an integrated function unit respectively, during the peri-implantation period. The results could help us to better understand the implantation in the ewes. In addition, we established a relatively detailed protein database of ovine endometrium, which provide a unique reference for further studies.
Collapse
Affiliation(s)
- Yang Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Haichao Zhao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Rui Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Min Guo
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| |
Collapse
|
61
|
Bauersachs S, Wolf E. Immune aspects of embryo-maternal cross-talk in the bovine uterus. J Reprod Immunol 2013; 97:20-6. [PMID: 23432868 DOI: 10.1016/j.jri.2012.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 12/13/2022]
Abstract
This mini-review summarizes the results of recent transcriptome studies of bovine endometrium during the estrous cycle and during the pre-implantation phase, with a focus on immune response genes. Gene expression changes in the bovine endometrium during the estrous cycle were compared to a similar study in equine endometrium. The results indicate species-specific expression patterns, particularly for genes with immune functions. These are presumably the consequence of adaptations to differences in the physiology of reproduction in each species, including development of the conceptus, hormone profiles during the estrous cycle, and insemination. The results from a number of transcriptome studies during the pre-implantation phase, as well as comparison to the effects of human interferon alpha on bovine endometrial gene expression, suggest that during pregnancy there is no general suppression of the maternal immune system, but rather a fine-tuned regulation of immune cells. This presumably facilitates tolerance to the immunologically 'foreign' conceptus and at the same time activation of the immune system to defend against microbial and viral infections. Furthermore, comparison of differentially expressed genes in bovine endometrium to similar studies in human endometrial samples reveals a number of similar changes, indicating the existence of shared mechanisms in preparation for embryo implantation.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | |
Collapse
|
62
|
Walker CG, Littlejohn MD, Meier S, Roche JR, Mitchell MD. DNA methylation is correlated with gene expression during early pregnancy in Bos taurus. Physiol Genomics 2013; 45:276-86. [DOI: 10.1152/physiolgenomics.00145.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coordinated regulation of endometrial gene expression is essential for successful pregnancy establishment. A nonreceptive uterine environment may be a key contributor to pregnancy loss, as the majority of pregnancy losses occur prior to embryo implantation. DNA methylation has been highlighted as a potential contributor in regulating early pregnancy events in the uterus. It was hypothesized that DNA methylation regulates expression of key genes in the uterus during pregnancy. The correlation between DNA methylation and gene expression was tested. Endometrial samples from fertile and subfertile dairy cow strains were obtained at day 17 of pregnancy or the reproductive cycle. Microarrays were used to characterize genome-wide DNA methylation profiles and data compared with previously published transcription profiles. 39% of DNA methylation probes assayed mapped to RefSeq genes with transcription measurements. Correlations among gene expression and DNA methylation were assessed, and the 1,000 most significant correlations used for subsequent analysis. Of these, 52% percent were negatively correlated with gene expression. When this gene list was compared with previously reported gene expression studies on the same tissues, 42% were differentially expressed when pregnant and cycling animals were compared, and 11% were differentially expressed when pregnant fertile and subfertile animals were compared. DNA methylation status was correlated with gene expression in several pathways implicated in early pregnancy events. Although these data do not provide direct evidence of a causative association between DNA methylation and gene expression, this study provides critical support for an effect of DNA methylation in early pregnancy events and highlights candidate genes for future studies.
Collapse
Affiliation(s)
- Caroline G. Walker
- DairyNZ Limited, Hamilton, New Zealand
- Liggins Institute, The University of Auckland, Grafton, New Zealand; and
| | | | | | | | - Murray D. Mitchell
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
63
|
Kizaki K, Shichijo-Kizaki A, Furusawa T, Takahashi T, Hosoe M, Hashizume K. Differential neutrophil gene expression in early bovine pregnancy. Reprod Biol Endocrinol 2013; 11:6. [PMID: 23384108 PMCID: PMC3570308 DOI: 10.1186/1477-7827-11-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT)-stimulated gene expression in peripheral blood leukocytes (PBL), was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. METHODS PBL were collected on days 0 (just before artificial insemination), 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q) PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15), myxovirus-resistance (MX) 1 and 2, and 2'-5'-oligoadenylate synthetase (OAS1), were then analyzed in each fraction through day 28 of gestation using qPCR. RESULTS Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte fractions obtained with flow cytometry and with density gradient separation. CONCLUSIONS The expression profiles of ISG15, MX1, MX2, and OAS1 could be a useful diagnostic biomarker of bovine gestation. Assessing the expression levels of these genes in a granulocyte fraction obtained with density gradient separation is a practical way of detecting gestation in cows within three weeks of insemination.
Collapse
Affiliation(s)
- Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Ayumi Shichijo-Kizaki
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Tadashi Furusawa
- Reproductive Biology Unit, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Unit, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Unit, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, 305-8602, Japan
| | - Kazuyoshi Hashizume
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
64
|
Caballero I, Al Ghareeb S, Basatvat S, Sánchez-López JA, Montazeri M, Maslehat N, Elliott S, Chapman NR, Fazeli A. Human trophoblast cells modulate endometrial cells nuclear factor κB response to flagellin in vitro. PLoS One 2013; 8:e39441. [PMID: 23320062 PMCID: PMC3540055 DOI: 10.1371/journal.pone.0039441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 10/05/2012] [Indexed: 01/06/2023] Open
Abstract
Background Implantation is a complex process that requires a delicate cooperation between the immune and reproductive system. Any interference in the fine balance could result in embryo loss and infertility. We have recently shown that Toll-like receptor 5 activation results in a decrease of trophoblast cells binding to endometrial cells in an in vitro model of human implantation. However, little is known about the downstream signalling leading to the observed failure in implantation and the factors that modulate this immune response. Methods and Principal Findings An in vitro model of embryo implantation was used to evaluate the effect of trophoblasts and flagellin on the activation of NF-κB in endometrial cells and whether TLR5-related in vitro implantation failure is signalled through NF-κB. We generated two different NF-κB reporting cell lines by transfecting either an immortalized endometrial epithelial cell line (hTERT-EECs) or a human endometrial carcinoma cell line (Ishikawa 3-H-12) with a plasmid containing the secreted alkaline phosphatase (SEAP) under the control of five NF-κB sites. The presence of trophoblast cells as well as flagellin increased NF-κB activity when compared to controls. The NF-κB activation induced by flagellin was further increased by the addition of trophoblast cells. Moreover, blocking NF-κB signalling with a specific inhibitor (BAY11-7082) was able to restore the binding ability of our trophoblast cell line to the endometrial monolayer. Conclusions These are the first results showing a local effect of the trophoblasts on the innate immune response of the endometrial epithelium. Moreover, we show that implantation failure caused by intrauterine infections could be associated with abnormal levels of NF-κB activation. Further studies are needed to evaluate the target genes through which NF-κB activation after TLR5 stimulation lead to failure in implantation and the effect of the embryo on those genes. Understanding these pathways could help in the diagnosis and treatment of implantation failure cases.
Collapse
Affiliation(s)
- Ignacio Caballero
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sumiah Al Ghareeb
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Shaghayegh Basatvat
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Javier A. Sánchez-López
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mehrnaz Montazeri
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Nasim Maslehat
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Elliott
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Neil R. Chapman
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Ulbrich SE, Wolf E, Bauersachs S. Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo - endometrium interactions in cattle. Reprod Fertil Dev 2013; 25:62-70. [DOI: 10.1071/rd12279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ongoing detailed investigations into embryo–maternal communication before implantation reveal that during early embryonic development a plethora of events are taking place. During the sexual cycle, remodelling and differentiation processes in the endometrium are controlled by ovarian hormones, mainly progesterone, to provide a suitable environment for establishment of pregnancy. In addition, embryonic signalling molecules initiate further sequences of events; of these molecules, prostaglandins are discussed herein as specifically important. Inadequate receptivity may impede preimplantation development and implantation, leading to embryonic losses. Because there are multiple factors affecting fertility, receptivity is difficult to comprehend. This review addresses different models and methods that are currently used and discusses their respective potentials and limitations in distinguishing key messages out of molecular twitter. Transcriptome, proteome and metabolome analyses generate comprehensive information and provide starting points for hypotheses, which need to be substantiated using further confirmatory methods. Appropriate in vivo and in vitro models are needed to disentangle the effects of participating factors in the embryo–maternal dialogue and to help distinguish associations from causalities. One interesting model is the study of somatic cell nuclear transfer embryos in normal recipient heifers. A multidisciplinary approach is needed to properly assess the importance of the uterine milieu for embryonic development and to use the large number of new findings to solve long-standing issues regarding fertility.
Collapse
|
66
|
Gebhardt S, Merkl M, Herbach N, Wanke R, Handler J, Bauersachs S. Exploration of global gene expression changes during the estrous cycle in equine endometrium. Biol Reprod 2012; 87:136. [PMID: 23077167 DOI: 10.1095/biolreprod.112.103226] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The equine endometrium exhibits characteristic morphological and functional changes during the estrous cycle controlled by the interplay of progesterone and estradiol. A microarray analysis of endometrial tissue samples derived from five time points of the estrous cycle (Day [D] 0, D3, D8, D12, and D16) was performed to study the dynamics of equine endometrial gene expression. Statistical analysis revealed 4996 genes differentially expressed during the estrous cycle. Clustering of similar expression profiles was performed to find groups of coregulated genes. This revealed eight major profiles: highest mRNA concentrations on D0, from D0 to D3, on D3, from D3 to D8, on D8, from D8 to D12, from D12 to D16, and on D16. Bioinformatics analysis revealed distinct molecular functions and biological processes for the individual expression profiles characterizing the different phases of the estrous cycle (e.g., extracellular matrix and inflammatory response during the estrus phase, cell division and cell cycle during early luteal phase, and endoplasmic reticulum, protein transport, and lipid metabolism in the luteal phase). A comparison to dynamic gene expression changes in bovine endometrium identified common and species-specific gene regulations in cyclic endometrium. Analysis of expression changes during the estrous cycle for genes previously found to be differentially expressed on D12 of pregnancy provided new evidence for possible regulation of these genes. This study provides new insights regarding global changes of equine endometrial gene expression as molecular reflections of physiological changes in the cyclic equine endometrium with regard to the crucial role of this tissue for successful reproduction.
Collapse
Affiliation(s)
- Simone Gebhardt
- Laboratory for Functional Genome Analysis (LAFUGA) and Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Ulbrich SE, Groebner AE, Bauersachs S. Transcriptional profiling to address molecular determinants of endometrial receptivity--lessons from studies in livestock species. Methods 2012. [PMID: 23178633 DOI: 10.1016/j.ymeth.2012.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of a fertilized oocyte into a differentiated multi-cellular organism is a major challenge with regard to the orchestration of the expression of the mammalian genome. Highly complex networks of genes are temporally and spatially regulated during cellular differentiation to generate specific cell types. Embryonic development is critically influenced by external impacts in the female reproductive tract. A most critical phase of pregnancy in mammals is the pre- and peri-implantation period, during which the uterine environment plays a crucial role in supporting the development of the conceptus. The analytical description of the transcriptome, proteome and metabolome of the embryo-maternal interface is a prerequisite for the understanding of the complex regulatory processes taking place during this time. This review lines out potentials and limitations of different approaches to unravel the determinants of endometrial receptivity in cattle, the pig and the horse. Suitable in vivo and in vitro models, which have been used to elucidate factors participating in the embryo-maternal dialog are discussed. Taken together, transcriptome analyses and specified selective candidate gene driven approaches contribute to the understanding of endometrial function. The endometrium as sensor and driver of fertility may indicate the qualitative and quantitative nature of signaling molecules sent by the early embryo and in turn, accordingly impact on embryonic development.
Collapse
Affiliation(s)
- Susanne E Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany.
| | | | | |
Collapse
|
68
|
Mansouri-Attia N, Oliveira LJ, Forde N, Fahey AG, Browne JA, Roche JF, Sandra O, Reinaud P, Lonergan P, Fair T. Pivotal Role for Monocytes/Macrophages and Dendritic Cells in Maternal Immune Response to the Developing Embryo in Cattle1. Biol Reprod 2012; 87:123. [DOI: 10.1095/biolreprod.112.101121] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
69
|
Forde N, Lonergan P. Transcriptomic analysis of the bovine endometrium: What is required to establish uterine receptivity to implantation in cattle? J Reprod Dev 2012; 58:189-95. [PMID: 22738902 DOI: 10.1262/jrd.2011-021] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cattle, the majority of pregnancy loss can be attributed to early embryonic loss which occurs prior maternal recognition of pregnancy on Day 16 (Day 0 = ovulation). During this time, carefully orchestrated spatio-temporal alterations in the transcriptomic profile of the endometrium are required to drive conceptus elongation, via secretions from the endometrium (termed histotroph) and establish uterine receptivity to implantation. The two main modulators of these processed are progesterone (P4) and the pregnancy recognition signal interferon tau (IFNT). Altered concentrations of P4 in circulation mediate its effects via the endometrium and have been associated with different rates of conceptus elongation in cattle. Transcriptomic analysis of the endometrium has shown that modulation of circulating P4 alters endometrial expression of genes that can contribute to histotroph composition, which is beneficial (when P4 is supplemented) or detrimental (when P4 is reduced) to the developing conceptus. In addition, down-regulation of the progesterone receptor, required to establish uterine receptivity, is altered in the endometrium of heifers with altered P4 concentrations. IFNT, a type 1 interferon, also significantly impacts on the endometrial transcriptome. It induces the expression of a large number of classical interferon stimulated genes as early as Day 15 of pregnancy. In summary, the successful establishment of pregnancy in cattle requires a sequence of key events to ensure appropriate maternally derived secretions, establish uterine receptivity to implantation as well as an adequate endometrial response to IFNT production.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | | |
Collapse
|
70
|
Novel differential transcript expression identified by LongSAGE in the mouse endometrium during the implantation window. Mol Biol Rep 2012; 40:651-63. [DOI: 10.1007/s11033-012-2104-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/03/2012] [Indexed: 12/31/2022]
|
71
|
Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities. Animal 2012; 2:1158-67. [PMID: 22443728 DOI: 10.1017/s1751731108002371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Subfertility has negative effects for dairy farm profitability, animal welfare and sustainability of animal production. Increasing herd sizes and economic pressures restrict the amount of time that farmers can spend on counteractive management. Genetic improvement will become increasingly important to restore reproductive performance. Complementary to traditional breeding value estimation procedures, genomic selection based on genome-wide information will become more widely applied. Functional genomics, including transcriptomics (gene expression profiling), produces the information to understand the consequences of selection as it helps to unravel physiological mechanisms underlying female fertility traits. Insight into the latter is needed to develop new effective management strategies to combat subfertility. Here, the importance of functional genomics for dairy cow reproduction so far and in the near future is evaluated. Recent gene profiling studies in the field of dairy cow fertility are reviewed and new data are presented on genes that are expressed in the brains of dairy cows and that are involved in dairy cow oestrus (behaviour). Fast-developing new research areas in the field of functional genomics, such as epigenetics, RNA interference, variable copy numbers and nutrigenomics, are discussed including their promising future value for dairy cow fertility.
Collapse
|
72
|
Foley C, Chapwanya A, Creevey CJ, Narciandi F, Morris D, Kenny EM, Cormican P, Callanan JJ, O'Farrelly C, Meade KG. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics 2012; 13:489. [PMID: 22985206 PMCID: PMC3544567 DOI: 10.1186/1471-2164-13-489] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). RESULTS mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. CONCLUSIONS The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.
Collapse
Affiliation(s)
- Cathriona Foley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Machaty Z, Peippo J, Peter A. Production and manipulation of bovine embryos: Techniques and terminology. Theriogenology 2012; 78:937-50. [DOI: 10.1016/j.theriogenology.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
74
|
Forde N, Duffy GB, McGettigan PA, Browne JA, Mehta JP, Kelly AK, Mansouri-Attia N, Sandra O, Loftus BJ, Crowe MA, Fair T, Roche JF, Lonergan P, Evans ACO. Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol Genomics 2012; 44:799-810. [DOI: 10.1152/physiolgenomics.00067.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aims of this study were to 1) identify the earliest transcriptional response of the bovine endometrium to the presence of the conceptus (using RNAseq), 2) investigate if these genes are regulated by interferon tau (IFNT) in vivo, and 3) determine if they are predictive of the pregnancy status of postpartum dairy cows. RNAseq identified 459 differentially expressed genes (DEGs) between pregnant and cyclic endometria on day 16. Quantitative real-time PCR analysis of selected genes revealed PARP12, ZNFX1, HERC6, IFI16, RNF213, and DDX58 expression increased in pregnant compared with cyclic endometria on day 16 and were directly upregulated by intrauterine infusion of IFNT in vivo for 2 h ( P < 0.05). On day 13 following estrous endometrial expression of nine genes increased [ ARHGAP1, MGC127874, LIMS2, TBC1D1, FBXL7, C25H16orf71, LOC507810, ZSWIM4, and one novel gene (ENSBTAT00000050193)] and seven genes decreased ( SERBP1, SRGAP2, AL7A1, TBK1, F2RL2, MGC128929, and WBSCR17; P < 0.05) in pregnant compared with cyclic heifers. Of these DEGs, significant differences in expression between pregnant and cyclic endometria were maintained on day 16 for F2RL2, LIMS2, LOC507810, MGC127874, TBC1D1, WBSCR17, and ZSWIM4 ( P < 0.05) both their expression was not directly regulated by IFNT in vivo. Analysis of the expression of selected interferon-stimulated genes in blood samples from postpartum dairy cows revealed a significant increase ( P < 0.05) in expression of ZXFX1, PARP12, SAMD9, and HERC6 on day 18 following artificial insemination in cows subsequently confirmed pregnant compared with cyclic controls. In conclusion, RNAseq identified a number of novel pregnancy-associated genes in the endometrium of cattle during early pregnancy that are not regulated by IFNT in vivo. In addition, a number of genes that are directly regulated by short term exposure to IFNT in vivo are differentially expressed on day 18 following estrus detection in the blood of postpartum dairy cows depending on their pregnancy status.
Collapse
Affiliation(s)
- N. Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - G. B. Duffy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - P. A. McGettigan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. A. Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. P. Mehta
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - A. K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - N. Mansouri-Attia
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - O. Sandra
- Institut National de la Recherche Agronomique, Unite Mixté de Recherche, 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - B. J. Loftus
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - M. A. Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - T. Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. F. Roche
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - P. Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - A. C. O. Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
75
|
Sandra O, Mansouri-Attia N, Lea RG. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod Fertil Dev 2012; 24:68-79. [PMID: 22394719 DOI: 10.1071/rd11908] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.
| | | | | |
Collapse
|
76
|
Bauersachs S, Wolf E. Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim Reprod Sci 2012; 134:84-94. [PMID: 22917876 DOI: 10.1016/j.anireprosci.2012.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Different reproductive strategies evolved in various mammalian groups to achieve recognition, establishment and maintenance of pregnancy. The complexity of these processes is reflected by a high incidence of embryonic loss during this critical period in many mammalian species. Besides studies in mice and humans a number of transcriptome studies of endometrial tissue samples and also of early embryos have been performed during the pre-implantation phase in cattle, swine and horse to identify genes associated with embryo-maternal interaction. Results of these studies are reviewed and compared between species. The comparison of data sets from different species indicated a general role of interferons for the establishment of pregnancy. In addition to many species-specific changes in gene expression, which may reflect different pregnancy recognition signals and mechanisms of embryo implantation, a number of transcriptome changes were found to be similar across species. These genes may have conserved roles during the establishment of pregnancy in mammals and reflect basic principles of mammalian reproduction. The relevance and strategies, but also the challenges of cross-species comparisons of gene expression data are discussed.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Molecular Animal Breeding & Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| | | |
Collapse
|
77
|
Bridges G, Mussard M, Pate J, Ott T, Hansen T, Day M. Impact of preovulatory estradiol concentrations on conceptus development and uterine gene expression. Anim Reprod Sci 2012; 133:16-26. [DOI: 10.1016/j.anireprosci.2012.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 12/01/2022]
|
78
|
Early developing pig embryos mediate their own environment in the maternal tract. PLoS One 2012; 7:e33625. [PMID: 22470458 PMCID: PMC3314662 DOI: 10.1371/journal.pone.0033625] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/14/2012] [Indexed: 01/19/2023] Open
Abstract
The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development.
Collapse
|
79
|
Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M, Meyer HH, Spencer TE, Minten M, Sax G, Winter G, Wolf E. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biol Reprod 2012; 86:46. [DOI: 10.1095/biolreprod.111.094771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
80
|
Abdoon AS, Ghanem N, Kandil OM, Gad A, Schellander K, Tesfaye D. cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology 2012; 77:1240-51. [PMID: 22289221 DOI: 10.1016/j.theriogenology.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 10/14/2022]
Abstract
The retarded development of parthenote embryo could be due to aberrant epigenetic imprinting, which may disrupt many aspects and lead to conceptus demise. The present work was conducted to: 1) compare the development of in vitro produced (IVP) and parthenogenetically developed (P) buffalo embryos from the 2-cell to blastocyst stage; 2) investigate the global gene expression profile and search for new candidate transcripts differing between IVP and P buffalo blastocyst using cDNA microarray analysis (validated by Real Time PCR); 3) follow the particular expression patterns of PLAC8 and OCT4 genes at five different stages of preimplantation development by Real Time PCR; and 4) study the expression of CDX2 at the blastcocyst stage. Cleavage rate was higher (P < 0.05) in P than IVP buffalo embryos, while, progression to blastocyst and number of cells per blastocyst were lower (P < 0.05) in P than IVP blastocysts. Microarray analysis indicate that 56 differentially expressed genes between the two groups, of which 51 genes (91.07%) were up-regulated, and five genes were downregulated in IVP blastocyst, using 1.4 fold-changes as a cutoff. Differentially expressed genes are related to translation, nucleic acid synthesis, cell adhesion and placentation. Validation of candidate genes revealed that the transcript abundance of PTGS2, RPS27A, TM2D3, PPA1, AlOX15, RPLO and PLAC8 were downregulated (7/8) in parthenote blastocyst compared to the IVP blastocyst. PLAC8 gene expression was higher (P < 0.05) at 2-cell, morula and blastocyst stages in IVP embryos compared with parthenote embryos. The OCT4 gene expression was higher (P < 0.05) in 2-cell, 4-cell, 8-cell and blastocysts produced in vitro. In conclusion, the retarded development of parthenogenetic buffalo embryos could be due to downregulation of genes related to translation, nucleic acid synthesis, cell adhesion, and placental development. The low expression of PLAC8 and OCT4 during the different stages of development may be responsible, in part, to the failure of development of parthenote buffalo embryos.
Collapse
Affiliation(s)
- A S Abdoon
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
81
|
Almiñana C, Fazeli A. Exploring the application of high-throughput genomics technologies in the field of maternal-embryo communication. Theriogenology 2012; 77:717-37. [PMID: 22217573 DOI: 10.1016/j.theriogenology.2011.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 01/23/2023]
Abstract
Deciphering the complex molecular dialogue between the maternal tract and embryo is crucial to increasing our understanding of pregnancy failure, infertility problems and in the modulation of embryo development, which has consequences through adulthood. High-throughput genomic technologies have been applied to look for a holistic view of the molecular interactions occurring during this dialogue. Among these technologies, microarrays have been widely used, being one of the most popular tools in maternal-embryo communication. Today, next generation sequencing technologies are dwarfing the capabilities of microarrays. The application of these new technologies has broadened to almost all areas of genomics research, because of their massive sequencing capacity. We review the current status of high-throughput genomic technologies and their application to maternal-embryo communication research. We also survey next generation technologies and their huge potential in many research areas. Given the diversity of unanswered questions in the field of maternal-embryo communication and the wide range of possibilities that these technologies offer, here we discuss future perspectives on the use of these technologies to enhance maternal-embryo research.
Collapse
Affiliation(s)
- Carmen Almiñana
- Academic Unit of Reproductive and Development Medicine, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
82
|
Walker CG, Littlejohn MD, Mitchell MD, Roche JR, Meier S. Endometrial gene expression during early pregnancy differs between fertile and subfertile dairy cow strains. Physiol Genomics 2011; 44:47-58. [PMID: 22045914 DOI: 10.1152/physiolgenomics.00254.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A receptive uterine environment is a key component in determining a successful reproductive outcome. We tested the hypothesis that endometrial gene expression patterns differ in fertile and subfertile dairy cow strains. Twelve lactating dairy cattle of strains characterized as having fertile (n = 6) and subfertile (n = 6) phenotypes underwent embryo transfer on day 7 of the reproductive cycle. Caruncular and intercaruncular endometrial tissue was obtained at day 17 of pregnancy, and microarrays used to characterize transcriptional profiles. Statistical analysis of microarray data at day 17 of pregnancy revealed 482 and 1,021 differentially expressed transcripts (P value < 0.05) between fertile and subfertile dairy cow strains in intercaruncular and caruncular tissue, respectively. Functional analysis revealed enrichment for several pathways involved in key reproductive processes, including the immune response to pregnancy, luteolysis, and support of embryo growth and development, and in particular, regulation of histotroph composition. Genes implicated in the process of immune tolerance to the embryo were downregulated in subfertile cows, as were genes involved in preventing luteolysis and genes that promote embryo growth and development. This study provides strong evidence that the endometrial gene expression profile may contribute to the inferior reproductive performance of the subfertile dairy cow strain.
Collapse
|
83
|
Ghanem N, Salilew-Wondim D, Gad A, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K, Hoelker M. Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction 2011; 142:551-64. [PMID: 21799070 DOI: 10.1530/rep-10-0476] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was conducted to investigate the gene expression profile of in vivo-derived bovine embryo biopsies based on pregnancy outcomes after transferring to recipients. For this, biopsies of 30-40% embryos were taken from grade I blastocysts (International Embryo Transfer Society Manual) and the remaining 60-70% of the intact embryos were transferred to recipients. Frozen biopsies were pooled into three distinct groups based on the pregnancy outcome after transferring the corresponding parts, namely those resulting in no pregnancy (NP), pregnancy loss (PL), and calf delivery (CD). Array analysis revealed a total of 41 and 43 genes to be differentially expressed between biopsies derived from blastocysts resulting in NP versus CD and PL versus CD respectively. Genes regulating placental development and embryo maternal interaction (PLAC8) were found to be upregulated in embryo biopsies that ended up with CD. Embryo biopsies that failed to induce pregnancy were enriched with mitochondrial transcripts (Fl405) and stress-related genes (HSPD1). Overall, gene expression profiles of blastocysts resulting in NP and CD shared similar expression profiles with respect to genes playing significant roles in preimplantation development of embryo. Finally, comparing the transcript signatures of in vivo- and in vitro-derived embryos with developmental competence to term revealed a similarity in the relative abundance of 18 genes. Therefore, we were able to present a genetic signature associated with term developmental competence independent of the environmental origin of the transferred blastocysts.
Collapse
Affiliation(s)
- N Ghanem
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Groebner AE, Zakhartchenko V, Bauersachs S, Rubio-Aliaga I, Daniel H, Büttner M, Reichenbach HD, Meyer HHD, Wolf E, Ulbrich SE. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell Reprogram 2011; 13:403-10. [PMID: 21774685 DOI: 10.1089/cell.2011.0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fetal overgrowth and placental abnormalities frequently occur in pregnancies following somatic cell nuclear transfer (SCNT). An optimal intrauterine supply of amino acids (AA) is of specific importance for the development of the bovine preimplantation embryo, and a defective regulation of AA supply might contribute to pregnancy failures. Thus, we analyzed 41 AA and derivatives by liquid chromatography-tandem mass spectrometry in uterine flushings of day 18 pregnant heifers carrying in vitro fertilized (IVF) or SCNT embryos, which were cultured under identical conditions until transfer to recipients. The concentrations of several AA were reduced in samples from SCNT pregnancies: L-leucine (1.8-fold), L-valine (1.6-fold), L-isoleucine (1.9-fold), L-phenylalanine (1.5-fold), L-glutamic acid (3.9-fold), L-aspartic acid (4.0-fold), L-proline (2.6-fold), L-alanine (2.0-fold), L-arginine (2.5-fold), and L-lysine (1.9-fold). The endometrial transcript abundance for the AA transporter solute carrier family 7 (amino acid transporter, L-type), member 8 (SLC7A8) was also 2.4-fold lower in SCNT pregnancies. O-phosphoethanolamine (PetN) was 11-fold (p=0.0001) reduced in the uterine fluid of animals carrying an SCNT conceptus, pointing toward changes of the phospholipid metabolism. We provide evidence for disturbed embryo-maternal interactions in the preimplantation period after transfer of SCNT embryos, which may contribute to developmental abnormalities. These are unlikely related to the major embryonic pregnancy recognition signal interferon-tau, because similar activities were detected in uterine flushings of the SCNT and IVF groups.
Collapse
Affiliation(s)
- Anna E Groebner
- Physiology Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Forde N, Carter F, Spencer T, Bazer F, Sandra O, Mansouri-Attia N, Okumu L, McGettigan P, Mehta J, McBride R, O'Gaora P, Roche J, Lonergan P. Conceptus-Induced Changes in the Endometrial Transcriptome: How Soon Does the Cow Know She Is Pregnant?1. Biol Reprod 2011; 85:144-56. [DOI: 10.1095/biolreprod.110.090019] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
86
|
Pretheeban T, Gordon MB, Singh R, Rajamahendran R. Comparison of expression levels of candidate genes in endometrium of dairy heifers and lactating dairy cows. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas2010-012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pretheeban, T., Gordon, M. B., Singh, R. and Rajamahendran, R. 2011. Comparison of expression levels of candidate genes in endometrium of dairy heifers and lactating dairy cows. Can. J. Anim. Sci. 91: 255–264. Pregnancy rates (PR) in high-producing lactating dairy cows have declined drastically over the past several decades, but those of heifers have remained constant. Reduced PR could be due to multiple causes, and the underlying pathophysiological mechanisms are still unclear. A compromised maternal uterine environment could be one of factors that could affect the PR. This study was performed to compare the nature of the uterine environment in dairy heifers and lactating dairy cows (2nd/3rd parity) by analyzing the expression levels of selected endometrial genes. Estrus was synchronized in heifers (n=5) and lactating dairy cows (n=5) and endometrial biopsies were performed during the mid luteal phase (day 11) of the estrous cycle. Real-time polymerase chain reaction (Q-RT PCR) and immunohistochemistry were performed to analyse the mRNA and protein levels of genes respectively. Relative abundance of BCL2, HSPA1A, IL1A, TNF, IGF1, FGF2 and SERPINA14 transcripts and the protein expression of IL1A, TNF and FGF2 were significantly higher in heifers in comparison with lactating dairy cows. Our findings suggest an altered endometrial environment in lactating dairy cows compared with heifers. However, whether these differences play a role in pregnancy outcomes should be further investigated.
Collapse
Affiliation(s)
- T. Pretheeban
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - M. B. Gordon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - R. Singh
- Translational Research Labs, Tom Baker Cancer Centre, Calgary, Alberta, Canada T2N4N2
| | - R. Rajamahendran
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
87
|
Wollenhaupt K, Reinke K, Brüssow KP, Spitschak M, Kanitz W, Tomek W. Truncation of the mRNA Cap-Binding Protein eIF4E is Specific for the Non-Invasive Implantation in Pigs. Reprod Domest Anim 2011; 46:917-9. [DOI: 10.1111/j.1439-0531.2011.01779.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, Meyer HHD, Ulbrich SE. Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction 2011; 141:685-95. [PMID: 21383026 DOI: 10.1530/rep-10-0533] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amino acids (AAs) are crucial for the developing conceptus prior to implantation. To provide insights into the requirements of the bovine embryo, we determined the AA composition of the uterine fluid. At days 12, 15, and 18 post-estrus, the uteri of synchronized pregnant and non-pregnant Simmental heifers were flushed for the analysis of 41 AAs and their derivatives by liquid chromatography-tandem mass spectrometry. The ipsilateral endometrium was sampled for quantitative PCR. In addition to a pregnancy-dependent increase of the essential AAs (P<0.01), we detected elevated concentrations for most non-essential proteinogenic AAs. Histidine (His) and the expression of the His/peptide transporter solute carrier 15A3 (SLC15A3) were significantly increased at day 18 of pregnancy in vivo. In addition, SLC15A3 was predominantly stimulated by trophoblast-derived interferon-τ in stroma cells of an in vitro co-culture model of endometrial cells. Our results show an increased concentration of AAs most likely to optimally provide the elongating pre-attachment conceptus with nutrients.
Collapse
Affiliation(s)
- Anna E Groebner
- Physiology Weihenstephan, Z I E L Research Center for Nutrition and Food Sciences, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Ulbrich SE, Meyer SU, Zitta K, Hiendleder S, Sinowatz F, Bauersachs S, Büttner M, Fröhlich T, Arnold GJ, Reichenbach HD, Wolf E, Meyer HHD. Bovine endometrial metallopeptidases MMP14 and MMP2 and the metallopeptidase inhibitor TIMP2 participate in maternal preparation of pregnancy. Mol Cell Endocrinol 2011; 332:48-57. [PMID: 20887771 DOI: 10.1016/j.mce.2010.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 09/18/2010] [Accepted: 09/21/2010] [Indexed: 01/08/2023]
Abstract
Early embryonic development is critically dependent on both maternal preparation and embryonic signalling of pregnancy. Matrix metallopeptidases (MMP) contribute to spatial and temporal matrix remodeling in the bovine endometrium. In this study we observed distinct changes in expression of MMP2, MMP14, and the metallopeptidase inhibitor TIMP2 between different phases of the estrous cycle indicating an endocrine regulation. An increase of TIMP2 protein abundance was ascertained in the uterine lumen during the time of embryo elongation. The expression pattern and cellular localization correlate well with the assumed effects of MMPs on release and activation of cytokines and growth factors directing cell migration, differentiation, and vascularization during this pivotal period of development. Specifically, active MMP2 in the endometrium may determine the allocation of growth factors supporting conceptus development. The presence of a day 18 conceptus in vivo and day 8 blastoysts in vitro induced endometrial TIMP2 mRNA expression. The results imply that TIMP2 is involved in very early local maternal recognition of pregnancy. Matrix metallopeptidases are likely to participate in remodeling processes preparing a receptive endometrium for a timely and precise regulation of embryo development.
Collapse
Affiliation(s)
- Susanne E Ulbrich
- Physiology Weihenstephan, Technical University Munich, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Klein C, Scoggin KE, Troedsson MHT. The expression of interferon-stimulated gene 15 in equine endometrium. Reprod Domest Anim 2011; 46:692-8. [PMID: 21241378 DOI: 10.1111/j.1439-0531.2010.01731.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishment of pregnancy is critically dependent upon a precisely orchestrated embryo-maternal interaction leading to a receptive uterine environment. The up-regulation of the interferon-stimulated protein 15 kDa (ISG15) during pregnancy has been described in various species and has been hypothesized to be part of the molecular repertoire that makes the uterus receptive to conceptus development. In the current study, the expression of ISG15 and enzymes involved in ISG15ylation was examined at the mRNA and protein level in equine endometrium at Day 14 of the luteal phase and at Day 14 and 50 of pregnancy. ISG15 mRNA showed a 2.63-fold higher expression at Day 14 of pregnancy when compared to Day 14 of the cycle, while mRNA abundance at Day 50 of pregnancy was unchanged compared to Day 14 of the cycle. Upon Western blot analysis using anti-ISG15 antibody, several higher molecular weight bands could be observed, representing proteins conjugated to ISG15. No free ISG15 could be detected. The pattern of ISG15 reactive proteins differed from those observed in non-uterine samples. Upon immunohistochemistry, ISG15 reactive proteins located primarily to luminal and glandular epithelial cells, while stromal cells showed weaker staining. In conclusion, the expression of ISG15-conjugated proteins in equine endometrium did not differ between cyclic and pregnant 14 days after ovulation and Day 50 of pregnancy. It is hypothesized that the unique subset of ISG15ylated proteins expressed in endometrial tissue contributes to normal cellular function and that, unlike other species, the modification of ISG15-conjugated proteins is not an active contributor to conceptus-maternal interaction in the mare.
Collapse
Affiliation(s)
- C Klein
- Department of Veterinary Science, 108 Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
91
|
Klein C, Troedsson MHT. Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biol Reprod 2011; 84:872-85. [PMID: 21209420 DOI: 10.1095/biolreprod.110.088732] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Establishment and maintenance of pregnancy are critically dependent on embryo-maternal communication during the preimplantation period. The horse is one of the few domestic species in which the conceptus-derived pregnancy recognition signal has not been identified. To gain new insights into the factors released by the equine conceptus, transcriptional profiling analyses of conceptuses retrieved 8, 10, 12, and 14 days after ovulation were performed using a whole-genome microarray. Selected array data were confirmed using quantitative PCR, and the expression of proteins of interest was confirmed using immunohistochemistry and Western blotting. Gene ontology classification of differentially regulated transcripts underlines the ongoing embryo-maternal dialogue. Transcript showing higher expression levels as conceptus' development proceeds mainly localizes to the extracellular environment, thereby having the potential to act upon the uterine environment. Genes involved in the positive regulation of the immune system are enriched among transcripts displaying decreased expression, reflecting the need of the semiallograft conceptus to be protected from the immune system. A subset of differentially expressed genes, such as BRCA1 and FGF2, has previously been described to be expressed by early stages of embryonic development, whereas other transcripts are apparently unique to equine conceptuses, as their expression has not been reported in other species. These transcripts include fibrinogen subunits, the expressions of which were confirmed at the mRNA and protein level. Furthermore, results indicate the counteraction of trophoblast invasion, and that the conceptus appears to regulate changes in sialic acid content of its capsule, an event suggested to be essential for successful establishment of pregnancy.
Collapse
Affiliation(s)
- Claudia Klein
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | | |
Collapse
|
92
|
Arnold GJ, Frohlich T. Dynamic proteome signatures in gametes, embryos and their maternal environment. Reprod Fertil Dev 2011; 23:81-93. [DOI: 10.1071/rd10223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Comprehensive molecular analysis at the level of proteins represents a technically demanding, but indispensable, task since several post-transcriptional regulation mechanisms disable a valid prediction of quantitative protein expression profiles from transcriptome analysis. In crucial steps of gamete and early embryo development, de novo transcription is silenced, meaning that almost all macromolecular events take place at the level of proteins. In this review, we describe selected examples of dynamic proteome signatures addressing capacitation of spermatozoa, in vitro maturation of oocytes, effect of oestrous cycle on oviduct epithelial cells and embryo-induced alterations to the maternal environment. We also present details of the experimental strategies applied and the experiments performed to verify quantitative proteomic data. Far from being comprehensive, examples were selected to cover several mammalian species as well as the most powerful proteomic techniques currently applied. To enable non-experts in the field of proteomics to appraise published proteomic data, our examples are preceded by a customised description of quantitative proteomic methods, covering 2D difference gel electrophoresis (2D-DIGE), nano-liquid chromatography combined with tandem mass spectrometry, and label-free as well as stable-isotope labelling strategies for mass spectrometry-based quantifications.
Collapse
|
93
|
Groebner AE, Schulke K, Schefold JC, Fusch G, Sinowatz F, Reichenbach HD, Wolf E, Meyer HHD, Ulbrich SE. Immunological mechanisms to establish embryo tolerance in early bovine pregnancy. Reprod Fertil Dev 2011; 23:619-32. [DOI: 10.1071/rd10230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/21/2010] [Indexed: 12/16/2022] Open
Abstract
A well-balanced immunological interaction between mother and the semi-allogenic embryo is of particular importance. The objective of the present study was to analyse mechanisms of immune tolerance in bovine pregnancy during peri-implantation. Simmental heifers inseminated with either cryopreserved spermatozoa or seminal plasma were killed 12, 15 or 18 days after oestrus. Uteri were flushed for the recovery of conceptuses and the ipsilateral intercaruncular endometrium was sampled for gene expression analysis. Indoleamine 2,3-dioxygenase (IDO) mRNA, coding for the initial enzyme of the kynurenine pathway, was 18-fold (P < 0.001) more abundant in the endometrium of Day 18 pregnant v. non-pregnant animals. Tandem mass spectrometry revealed a decrease of endometrial l-tryptophan (P = 0.0008), but an increase of l-kynurenine concentration (P = 0.005) from Day 12 to Day 18, suggesting increasing IDO activity (P < 0.03). An in vitro coculture model of endometrial cells showed an induction of IDO expression following interferon-τ exposure primarily in stroma cells, which was confirmed by in situ hybridisation localising IDO mRNA mainly in deep stroma cells. Immunohistochemical analysis revealed fewer CD45-positive leucocytes in the zona basalis of pregnant animals. Elevated IDO activity may reduce the presence of leucocytes in the pregnant endometrium, providing a possible mechanism for protecting the semi-allogenic conceptus from maternal rejection.
Collapse
|
94
|
Pimentel ECG, Bauersachs S, Tietze M, Simianer H, Tetens J, Thaller G, Reinhardt F, Wolf E, König S. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim Genet 2010; 42:251-62. [DOI: 10.1111/j.1365-2052.2010.02148.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
95
|
de Montera B, El Zeihery D, Müller S, Jammes H, Brem G, Reichenbach HD, Scheipl F, Chavatte-Palmer P, Zakhartchenko V, Schmitz OJ, Wolf E, Renard JP, Hiendleder S. Quantification of leukocyte genomic 5-methylcytosine levels reveals epigenetic plasticity in healthy adult cloned cattle. Cell Reprogram 2010; 12:175-81. [PMID: 20677931 DOI: 10.1089/cell.2009.0062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Successful somatic cell nuclear transfer (SCNT) requires epigenetic reprogramming of a differentiated donor cell nucleus. Incorrect reprogramming of epigenetic markings such as DNA methylation is associated with compromised prenatal development and postnatal abnormalities. Clones that survive into adulthood, in contrast, are assumed to possess a normalized epigenome corresponding to their normal phenotype. To address this point, we used capillary electrophoresis to measure 5-methylcytosine (5mC) levels in leukocyte DNA of 38 healthy female bovine clones that represented five genotypes from the Simmental breed and four genotypes from the Holstein breed. The estimated variance in 5mC level within clone genotypes of both breeds [0.104, 95% confidence interval (CI): 0.070-0.168] was higher than between clone genotypes (0, CI: 0-0.047). We quantified the contribution of SCNT to this unexpected variability by comparing the 19 Simmental clones with 12 female Simmental monozygotic twin pairs of similar age. In Simmental clones, the estimated variability within genotype (0.0636, CI: 0.0358-0.127) was clearly higher than in twin pairs (0.0091, CI: 0.0047-0.0229). In clones, variability within genotype (0.0636) was again higher than between genotypes (0, CI: 0-0.077). Twins, in contrast, showed lower variability within genotypes (0.0091) than between genotypes (0.0136, CI: 0.00250-0.0428). Importantly, the absolute deviations of 5mC values of individual SCNT clones from their genotype means were fivefold increased in comparison to twins. Further comparisons with noncloned controls revealed DNA hypermethylation in most of the clones. The clone-specific variability in DNA methylation and DNA hypermethylation clearly show that healthy adult SCNT clones must be considered as epigenome variants.
Collapse
Affiliation(s)
- Béatrice de Montera
- INRA , UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kandasamy S, Jain A, Kumar R, Agarwal SK, Joshi P, Mitra A. Molecular characterization and expression profile of uterine serpin (SERPINA14) during different reproductive phases in water buffalo (Bubalus bubalis). Anim Reprod Sci 2010; 122:133-41. [DOI: 10.1016/j.anireprosci.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 07/22/2010] [Accepted: 08/06/2010] [Indexed: 11/29/2022]
|
97
|
Shimizu T, Krebs S, Bauersachs S, Blum H, Wolf E, Miyamoto A. Actions and interactions of progesterone and estrogen on transcriptome profiles of the bovine endometrium. Physiol Genomics 2010; 42A:290-300. [PMID: 20876846 DOI: 10.1152/physiolgenomics.00107.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of our study was to analyze endometrial gene expression profiles in ovariectomized cows treated with estradiol and/or progesterone by using microarray analysis. Clustering of differentially expressed genes allowed separation into distinct hormone response patterns. These patterns could be classified into independent and interdependent actions of the steroid hormones estrogen and progesterone. The use of ovariectomized cows and external administration of hormones identified a set of genes whose regulation depends on a progesterone priming effect. The progesterone-primed estrogen response comprises gene functions such as migration, cell differentiation, and cell adhesion and therefore may play a crucial role in tissue remodeling, as one of its key regulators in the endometrium, TGFB2, is among this group of progesterone-primed genes. Functional annotation analysis of the estrogen-responsive gene clusters shows a clear dominance of functions such as cell cycle, morphogenesis, and differentiation. The functional profile of the progesterone-responsive clusters is less clear but nevertheless shows some important fertility-related terms like luteinization, oocyte maturation, and catecholamine metabolism. We looked for putative regulators of the steroid hormone response in endometrium by searching for enriched transcription factor binding sites in the promoter regions of the genes with similar hormone response profile. This analysis identified transcription factors such as SP1, NFYA, FOXA2, IRF2, ESR1, and NOBOX as candidate regulators of gene expression in bovine endometrium treated with steroid hormones. Taken together, our data provide novel insights into the regulation of bovine endometrial physiology by steroid hormones.
Collapse
Affiliation(s)
- Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Adams HA, Southey BR, Everts RE, Marjani SL, Tian CX, Lewin HA, Rodriguez-Zas SL. Transferase activity function and system development process are critical in cattle embryo development. Funct Integr Genomics 2010; 11:139-50. [PMID: 20844914 DOI: 10.1007/s10142-010-0189-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023]
Abstract
Microarray gene expression experiments often consider specific developmental stages, tissue sources, or reproductive technologies. This focus hinders the understanding of the cattle embryo transcriptome. To address this, four microarray experiments encompassing three developmental stages (7, 25, 280 days), two tissue sources (embryonic or extra-embryonic), and two reproductive technologies (artificial insemination or AI and somatic cell nuclear transfer or NT) were combined using two sets of meta-analyses. The first set of meta-analyses uncovered 434 genes differentially expressed between AI and NT (regardless of stage or source) that were not detected by the individual-experiment analyses. The molecular function of transferase activity was enriched among these genes that included ECE2, SLC22A1, and a gene similar to CAMK2D. Gene POLG2 was over-expressed in AI versus NT 7-day embryos and was under-expressed in AI versus NT 25-day embryos. Gene HAND2 was over-expressed in AI versus NT extra-embryonic samples at 280 days yet under-expressed in AI versus NT embryonic samples at 7 days. The second set of meta-analyses uncovered enrichment of system, organ, and anatomical structure development among the genes differentially expressed between 7- and 25-day embryos from either reproductive technology. Genes PRDX1and SLC16A1 were over-expressed in 7- versus 25-day AI embryos and under-expressed in 7- versus 25-day NT embryos. Changes in stage were associated with high number of differentially expressed genes, followed by technology and source. Genes with transferase activity may hold a clue to the differences in efficiency between reproductive technologies.
Collapse
Affiliation(s)
- Heather A Adams
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 2010; 11:474. [PMID: 20707927 PMCID: PMC3091670 DOI: 10.1186/1471-2164-11-474] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/13/2010] [Indexed: 11/21/2022] Open
Abstract
Background A large proportion of pregnancy losses occur during the pre-implantation period, when the developing embryo is elongating rapidly and signalling its presence to the maternal system. The molecular mechanisms that prevent luteolysis and support embryo survival within the maternal environment are not well understood. To gain a more complete picture of these molecular events, genome-wide transcriptional profiles of reproductive day 17 endometrial tissue were determined in pregnant and cyclic Holstein-Friesian dairy cattle. Results Microarray analyses revealed 1,839 and 1,189 differentially expressed transcripts between pregnant and cyclic animals (with ≥ 1.5 fold change in expression; P-value < 0.05, MTC Benjamini-Hochberg) in caruncular and intercaruncular endometrium respectively. Gene ontology and biological pathway analysis of differentially expressed genes revealed enrichment for genes involved in interferon signalling and modulation of the immune response in pregnant animals. Conclusion The maternal immune system actively surveys the uterine environment during early pregnancy. The embryo modulates this response inducing the expression of endometrial molecules that suppress the immune response and promote maternal tolerance to the embryo. During this period of local immune suppression, genes of the innate immune response (in particular, antimicrobial genes) may function to protect the uterus against infection.
Collapse
|
100
|
Merkl M, Ulbrich SE, Otzdorff C, Herbach N, Wanke R, Wolf E, Handler J, Bauersachs S. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol Reprod 2010; 83:874-86. [PMID: 20631402 DOI: 10.1095/biolreprod.110.085233] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Establishment and maintenance of pregnancy in equids is only partially understood. To provide new insights into early events of this process, we performed a systematic analysis of transcriptome changes in the endometrium at Days 8 and 12 of pregnancy. Endometrial biopsy samples from pregnant and nonpregnant stages were taken from the same mares. Composition of the collected biopsy samples was analyzed using quantitative stereological techniques to determine proportions of surface and glandular epithelium and blood vessels. Microarray analysis did not reveal detectable changes in gene expression at Day 8, whereas at Day 12 of pregnancy 374 differentially expressed genes were identified, 332 with higher and 42 with lower transcript levels in pregnant endometrium. Expression of selected genes was validated by quantitative real-time RT-PCR. Gene set enrichment analysis, functional annotation clustering, and cocitation analysis were performed to characterize the genes differentially expressed in Day 12 pregnant endometrium. Many known estrogen-induced genes and genes involved in regulation of estrogen signaling were found, but also genes known to be regulated by progesterone and prostaglandin E2. Additionally, differential expression of a number of genes related to angiogenesis and vascular remodeling suggests an important role of this process. Furthermore, genes that probably have conserved functions across species, such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and TNFSF10, were identified. This study revealed the potential target genes and pathways of conceptus-derived estrogens, progesterone, and prostaglandin E2 in the equine endometrium probably involved in the early events of establishment and maintenance of pregnancy in the mare.
Collapse
Affiliation(s)
- M Merkl
- Clinic for Horses, Center for Clinical Veterinary Medicine, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|