51
|
Gou LT, Dai P, Liu MF. Small noncoding RNAs and male infertility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:733-45. [PMID: 25044449 DOI: 10.1002/wrna.1252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/07/2022]
Abstract
Small noncoding RNAs (ncRNAs) are a novel class of gene regulators that modulate gene expression at transcriptional, post-transcriptional, and epigenetic levels, and they play crucial roles in almost all cellular processes in eukaryotes. Recent studies have indicated that several types of small noncoding RNAs, including microRNAs (miRNAs), endo-small interference RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs), are expressed in the male germline and are required for spermatogenesis in animals. In this review, we summarize the recent knowledge of these small noncoding RNAs in male germ cells and their biological functions and mechanisms of action in animal spermatogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
52
|
He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells 2014; 31:2205-17. [PMID: 23836497 DOI: 10.1002/stem.1474] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022]
Abstract
Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, USA; Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Nishio H, Hayashi Y, Moritoki Y, Kamisawa H, Mizuno K, Kojima Y, Kohri K. Distinctive changes in histone H3K4 modification mediated via Kdm5a expression in spermatogonial stem cells of cryptorchid testes. J Urol 2014; 191:1564-72. [PMID: 24679876 DOI: 10.1016/j.juro.2013.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE Gonocytes differentiate into spermatogonial stem cells, which make it possible to maintain spermatogenesis continuously throughout life. We previously reported attenuated spermatogonial stem cell activity in cryptorchid testes, which resulted in altered spermatogenesis and affected fertility. However, few groups have examined the differentiation process from gonocytes to spermatogonial stem cells. To clarify the underlying mechanisms comprehensively we performed microarray analysis to assess differential expression of transcripts between normal and undescended testes in juvenile rats. MATERIALS AND METHODS Using microarray analysis we compared whole mRNA expression of normal and cryptorchid testes in a rat model. We subsequently validated differential expression of candidate genes by real-time reverse transcriptase-polymerase chain reaction and performed immunohistochemistry. We also investigated the methylation status of histone H3K4 in cryptorchid testes and the GC-1 spermatogonial cell line. RESULTS We detected 24 up-regulated and 39 down-regulated genes. Of these genes Kdm5a expression was significantly higher in undescended testes. Immunohistochemistry showed that Kdm5a was localized in the nuclei of gonocytes, spermatogonia and spermatocytes. H3K4me2/me3 expression levels were decreased in undescended testes at 9 days postpartum. Furthermore, Kdm5a over expression in GC-1 cells led to increased expression of Esr2, Neurog3, Pou5f1, Ret and Thy1. CONCLUSIONS Recent investigations revealed that not only genetic but also epigenetic regulation has a role in spermatogenesis. Kdm5a is likely involved in the transformation of gonocytes into spermatogonial stem cells by transcriptional regulation of specific genes via H3K4 histone modification. To our knowledge this is the first report of epigenetic analysis of germ cell differentiation during early spermatogenesis.
Collapse
Affiliation(s)
- Hidenori Nishio
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan
| | - Yutaro Hayashi
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan.
| | - Yoshinobu Moritoki
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan
| | - Hideyuki Kamisawa
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan
| | - Kentaro Mizuno
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan
| | - Yoshiyuki Kojima
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan
| | - Kenjiro Kohri
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya and Department of Urology, Fukushima Medical University School of Medicine (YK), Fukushima, Japan
| |
Collapse
|
54
|
Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 2014; 30:14-26. [PMID: 24560784 DOI: 10.1016/j.semcdb.2014.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
55
|
Guo Y, Hai Y, Gong Y, Li Z, He Z. Characterization, Isolation, and Culture of Mouse and Human Spermatogonial Stem Cells. J Cell Physiol 2013; 229:407-13. [PMID: 24114612 DOI: 10.1002/jcp.24471] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Guo
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanan Hai
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuehua Gong
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zheng Li
- Department of Urology; Shanghai Human Sperm Bank; Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zuping He
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
- Shanghai Key Laboratory of Reproductive Medicine; Shanghai China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai China
| |
Collapse
|
56
|
Harkey MA, Asano A, Zoulas ME, Torok-Storb B, Nagashima J, Travis A. Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line. Reproduction 2013; 146:75-90. [PMID: 23690628 DOI: 10.1530/rep-13-0086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dog is recognized as a highly predictive model for preclinical research. Its size, life span, physiology, and genetics more closely match human parameters than do those of the mouse model. Investigations of the genetic basis of disease and of new regenerative treatments have frequently taken advantage of canine models. However, full utility of this model has not been realized because of the lack of easy transgenesis. Blastocyst-mediated transgenic technology developed in mice has been very slow to translate to larger animals, and somatic cell nuclear transfer remains technically challenging, expensive, and low yield. Spermatogonial stem cell (SSC) transplantation, which does not involve manipulation of ova or blastocysts, has proven to be an effective alternative approach for generating transgenic offspring in rodents and in some large animals. Our recent demonstration that canine testis cells can engraft in a host testis, and generate donor-derived sperm, suggests that SSC transplantation may offer a similar avenue to transgenesis in the canine model. Here, we explore the potential of SSC transplantation in dogs as a means of generating canine transgenic models for preclinical models of genetic diseases. Specifically, we i) established markers for identification and tracking canine spermatogonial cells; ii) established methods for enrichment and genetic manipulation of these cells; iii) described their behavior in culture; and iv) demonstrated engraftment of genetically manipulated SSC and production of transgenic sperm. These findings help to set the stage for generation of transgenic canine models via SSC transplantation.
Collapse
Affiliation(s)
- Michael A Harkey
- Clinical Research, Division, Fred Hutchinson Cancer Research Center, Mail Stop D1-100, 1100 Fairview Avenue North, PO Box 19024, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Yoon SR, Choi SK, Eboreime J, Gelb B, Calabrese P, Arnheim N. Age-dependent germline mosaicism of the most common noonan syndrome mutation shows the signature of germline selection. Am J Hum Genet 2013; 92:917-26. [PMID: 23726368 DOI: 10.1016/j.ajhg.2013.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/19/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022] Open
Abstract
Noonan syndrome (NS) is among the most common Mendelian genetic diseases (∼1/2,000 live births). Most cases (50%-84%) are sporadic, and new mutations are virtually always paternally derived. More than 47 different sites of NS de novo missense mutations are known in the PTPN11 gene that codes for the protein tyrosine phosphatase SHP-2. Surprisingly, many of these mutations are recurrent with nucleotide substitution rates substantially greater than the genome average; the most common mutation, c.922A>G, is at least 2,400 times greater. We examined the spatial distribution of the c.922A>G mutation in testes from 15 unaffected men and found that the mutations were not uniformly distributed across each testis as would be expected for a mutation hot spot but were highly clustered and showed an age-dependent germline mosaicism. Computational modeling that used different stem cell division schemes confirmed that the data were inconsistent with hypermutation, but consistent with germline selection: mutated spermatogonial stem cells gained an advantage that allowed them to increase in frequency. SHP-2 interacts with the transcriptional activator STAT3. Given STAT3's function in mouse spermatogonial stem cells, we suggest that this interaction might explain the mutant's selective advantage by means of repression of stem cell differentiation signals. Repression of STAT3 activity by cyclin D1 might also play a previously unrecognized role in providing a germline-selective advantage to spermatogonia for the recurrent mutations in the receptor tyrosine kinases that cause Apert syndrome and MEN2B. Looking at recurrent mutations driven by germline selection in different gene families can help highlight common causal signaling pathways.
Collapse
|
58
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
59
|
Nagano MC, Yeh JR. The Identity and Fate Decision Control of Spermatogonial Stem Cells. Curr Top Dev Biol 2013; 102:61-95. [DOI: 10.1016/b978-0-12-416024-8.00003-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 2012; 140:280-90. [PMID: 23221369 DOI: 10.1242/dev.087403] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT(-) to a KIT(+) state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT(+) state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.
Collapse
Affiliation(s)
- Qi-En Yang
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
61
|
Zhang Y, Zhong L, Xu B, Yang Y, Ban R, Zhu J, Cooke HJ, Hao Q, Shi Q. SpermatogenesisOnline 1.0: a resource for spermatogenesis based on manual literature curation and genome-wide data mining. Nucleic Acids Res 2012. [PMID: 23193286 PMCID: PMC3531227 DOI: 10.1093/nar/gks1186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human infertility affects 10-15% of couples, half of which is attributed to the male partner. Abnormal spermatogenesis is a major cause of male infertility. Characterizing the genes involved in spermatogenesis is fundamental to understand the mechanisms underlying this biological process and in developing treatments for male infertility. Although many genes have been implicated in spermatogenesis, no dedicated bioinformatic resource for spermatogenesis is available. We have developed such a database, SpermatogenesisOnline 1.0 (http://mcg.ustc.edu.cn/sdap1/spermgenes/), using manual curation from 30 233 articles published before 1 May 2012. It provides detailed information for 1666 genes reported to participate in spermatogenesis in 37 organisms. Based on the analysis of these genes, we developed an algorithm, Greed AUC Stepwise (GAS) model, which predicted 762 genes to participate in spermatogenesis (GAS probability >0.5) based on genome-wide transcriptional data in Mus musculus testis from the ArrayExpress database. These predicted and experimentally verified genes were annotated, with several identical spermatogenesis-related GO terms being enriched for both classes. Furthermore, protein-protein interaction analysis indicates direct interactions of predicted genes with the experimentally verified ones, which supports the reliability of GAS. The strategy (manual curation and data mining) used to develop SpermatogenesisOnline 1.0 can be easily extended to other biological processes.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Debnath B, Xu S, Neamati N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 2012; 55:6645-68. [PMID: 22650325 DOI: 10.1021/jm300207s] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bikash Debnath
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | | | | |
Collapse
|
63
|
Kaucher AV, Oatley MJ, Oatley JM. NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 2012; 86:164, 1-11. [PMID: 22378757 DOI: 10.1095/biolreprod.111.097386] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogenesis relies on coordinated differentiation of stem and progenitor spermatogonia, and the transcription factor STAT3 is essential for this process in mammals. Here we studied the THY1+ spermatogonial population in mouse testes, which contains spermatogonial stem cells (SSC) and non-stem cell progenitor spermatogonia, to further define the downstream mechanism regulating differentiation. Transcript abundance for the bHLH transcription factor Neurog3 was found to be significantly reduced upon transient inhibition of STAT3 signaling in these cells and exposure to GDNF, a key growth factor regulating self-renewal of SSCs, suppressed activation of STAT3 and in accordance Neurog3 gene expression. Moreover, STAT3 was found to bind the distal Neurog3 promoter/enhancer region in THY1+ spermatogonia and regulate transcription. Transient inhibition of Neurog3 expression in cultures of proliferating THY1+ spermatogonia increased stem cell content after several self-renewal cycles without effecting overall proliferation of the cells, indicating impaired differentiation of SSCs to produce progenitor spermatogonia. Furthermore, cultured THY1+ spermatogonia with induced deficiency of Neurog3 were found to be incapable of differentiation in vivo following transplantation into testes of recipient mice. Collectively, these results establish a mechanism by which activation of STAT3 regulates the expression of NEUROG3 to subsequently drive differentiation of SSC and progenitor spermatogonia in the mammalian germline.
Collapse
Affiliation(s)
- Amy V Kaucher
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
64
|
Chen JX, Xu LL, Mei JH, Yu XB, Kuang HB, Liu HY, Wu YJ, Wang JL. Involvement of neuropathy target esterase in tri-ortho-cresyl phosphate-induced testicular spermatogenesis failure and growth inhibition of spermatogonial stem cells in mice. Toxicol Lett 2012; 211:54-61. [DOI: 10.1016/j.toxlet.2012.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
65
|
Tong MH, Mitchell DA, McGowan SD, Evanoff R, Griswold MD. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 2012; 86:72. [PMID: 22116806 DOI: 10.1095/biolreprod.111.096313] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs) may be critical players in spermatogenesis. The miRNA expression profiles of THY1(+)-enriched undifferentiated spermatogonia were characterized, and members of Mir-17-92 (Mirc1) and its paralog Mir-106b-25 (Mirc3) clusters are significantly downregulated during retinoic acid-induced spermatogonial differentiation, both in vitro and in vivo. The repression of microRNA clusters Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3) by retinoic acid in turn potentially upregulates the expression of Bim, Kit, Socs3, and Stat3. The male germ cell-specific Mir-17-92 (Mirc1) knockout mice exhibit small testes, a lower number of epididymal sperm, and mild defect in spermatogenesis. Absence of Mir-17-92 (Mirc1) in male germ cells dramatically increases expression of Mir-106b-25 (Mirc3) cluster miRNAs in the germ cells. These results suggest that Mir-17-92 (Mirc1) cluster and Mir-106b-25 (Mirc3) cluster miRNAs possibly functionally cooperate in regulating spermatogonial development.
Collapse
Affiliation(s)
- Ming-Han Tong
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
66
|
Losick VP, Morris LX, Fox DT, Spradling A. Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 2011; 21:159-71. [PMID: 21763616 PMCID: PMC6894370 DOI: 10.1016/j.devcel.2011.06.018] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 12/28/2022]
Abstract
The past decade of research on Drosophila stem cells and niches has provided key insights. Fly stem cells do not occupy a special "state" based on novel "stem cell genes" but resemble transiently arrested tissue progenitors. Moreover, individual stem cells and downstream progenitors are highly dynamic and dispensable, not tissue bulwarks. Niches, rather than fixed cell lineages, ensure tissue health by holding stem cells and repressing cell differentiation inside, but not outside. We review the five best-understood adult Drosophila stem cells and argue that the fundamental biology of stem cells and niches is conserved between Drosophila and mice.
Collapse
Affiliation(s)
- Vicki P Losick
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
67
|
Kim S, Izpisua Belmonte JC. Pluripotency of male germline stem cells. Mol Cells 2011; 32:113-21. [PMID: 21448589 PMCID: PMC3887674 DOI: 10.1007/s10059-011-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/22/2022] Open
Abstract
The ethical issues and public concerns regarding the use of embryonic stem (ES) cells in human therapy have motivated considerable research into the generation of pluripotent stem cell lines from non-embryonic sources. Numerous reports have shown that pluripotent cells can be generated and derived from germline stem cells (GSCs) in mouse and human testes during in vitro cultivation. The gene expression patterns of these cells are similar to those of ES cells and show the typical self-renewal and differentiation patterns of pluripotent cells in vivo and in vitro. However, the mechanisms underlying the spontaneous dedifferentiation of GSCs remain to be elucidated. Studies to identify master regulators in this reprogramming process are of critical importance for understanding the gene regulatory networks that sustain the cellular status of these cells. The results of such studies would provide a theoretical background for the practical use of these cells in regenerative medicine. Such studies would also help elucidate the molecular mechanisms underlying certain diseases, such as testicular germ cell tumors.
Collapse
Affiliation(s)
- Sungtae Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, Barcelona, Spain
| |
Collapse
|
68
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
69
|
MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2011; 108:12740-5. [PMID: 21768389 DOI: 10.1073/pnas.1109987108] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) play a key role in the control of gene expression in a wide array of tissue systems, where their functions include the regulation of self-renewal, cellular differentiation, proliferation, and apoptosis. However, the functional importance of individual miRs in controlling spermatogonial stem cell (SSC) homeostasis has not been investigated. Using high-throughput sequencing, we profiled the expression of miRs in the Thy1(+) testis cell population, which is highly enriched for SSCs, and the Thy1(-) cell population, composed primarily of testis somatic cells. In addition, we profiled the global expression of miRs in cultured germ cells, also enriched for SSCs. Our results demonstrate that miR-21, along with miR-34c, -182, -183, and -146a, are preferentially expressed in the Thy1(+) SSC-enriched population, compared with Thy1(-) somatic cells. Importantly, we demonstrate that transient inhibition of miR-21 in SSC-enriched germ cell cultures increased the number of germ cells undergoing apoptosis and significantly reduced the number of donor-derived colonies of spermatogenesis formed from transplanted treated cells in recipient mouse testes, indicating that miR-21 is important in maintaining the SSC population. Moreover, we show that in SSC-enriched germ cell cultures, miR-21 is regulated by the transcription factor ETV5, known to be critical for SSC self-renewal.
Collapse
|
70
|
Chen JX, Xu LL, Wang XC, Qin HY, Wang JL. Involvement of c-Src/STAT3 signal in EGF-induced proliferation of rat spermatogonial stem cells. Mol Cell Biochem 2011; 358:67-73. [DOI: 10.1007/s11010-011-0922-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/07/2011] [Indexed: 01/05/2023]
|
71
|
Oatley MJ, Kaucher AV, Racicot KE, Oatley JM. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 2011; 85:347-56. [PMID: 21543770 DOI: 10.1095/biolreprod.111.091330] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Continual spermatogenesis at a quantitatively normal level is required to sustain male fertility. The foundation of this process relies on maintenance of an undifferentiated spermatogonial population consisting of spermatogonial stem cells (SSCs) that self-renew as well as transient amplifying progenitors produced by differentiation. In mammals, type A(single) spermatogonia form the SSC population, but molecular markers distinguishing these from differentiating progenitors are undefined and knowledge of mechanisms regulating their functions is limited. We show that in the mouse male germline the transcriptional repressor ID4 is expressed by a subpopulation of undifferentiated spermatogonia and selectively marks A(single) spermatogonia. In addition, we found that ID4 expression is up-regulated in isolated SSC-enriched fractions by stimulation from GDNF, a key growth factor driving self-renewal. In mice lacking ID4 expression, quantitatively normal spermatogenesis was found to be impaired due to progressive loss of the undifferentiated spermatogonial population during adulthood. Moreover, reduction of ID4 expression by small interfering RNA treatment abolished the ability of wild-type SSCs to expand in vitro during long-term culture without affecting their survival. Collectively, these results indicate that ID4 is a distinguishing marker of SSCs in the mammalian germline and plays an important role in the regulation of self-renewal.
Collapse
Affiliation(s)
- Melissa J Oatley
- Center for Reproductive Biology and Health, Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|