51
|
Jung AN, Park JH, Kim J, Kim SH, Jee BC, Cha BH, Sull JW, Jun JH. Detrimental Effects of Higher Body Mass Index and Smoking Habits on Menstrual Cycles in Korean Women. J Womens Health (Larchmt) 2016; 26:83-90. [PMID: 27603944 DOI: 10.1089/jwh.2015.5634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Alteration of menstrual cycle by individual lifestyles and unfavorable habits may cause menstrual irregularity. We aimed to investigate the relationship between lifestyle factors and menstrual irregularity in Korean women using data from the Fifth Korea National Health and Nutrition Examination Survey (KNHANES) 2010-2012. MATERIALS AND METHODS This cross-sectional study included 3779 nondiabetic Korean women aged 19-49 years who did not take any oral contraceptives or sex hormonal compounds. We examined the association of menstrual irregularity with age, body mass index (BMI), drinking experience, and smoking habits. RESULTS Age, Asian BMI, marriage status, age at menarche, and smoking habits were significantly associated with menstrual cycle irregularity (p < 0.01). The prevalence of menstrual irregularity was significantly increased at younger ages: 18.4%, 10.3%, and 10.5% at 19-29, 30-39, and 40-49 years, respectively. Moreover, obesity groups, defined as per Asian BMI using modified WHO criteria, were strongly associated with menstrual irregularity. BMI 25.0-29.9 [obesity class I] (adjusted odds ratios [OR], 1.94; 95% confidence intervals [CI], 1.37-2.74) and ≥30.0 [obesity class II] (adjusted OR, 2.18; 95% CI, 1.22-3.91) presented significantly higher risk of menstrual irregularity compared with BMI 18.5-22.9 [normal weight]. Multivariable analysis revealed that high BMI in younger women aged 19-29 years (p < 0.001) and smoking habits in middle-aged women aged 30-39 years (p < 0.005) significantly predicted menstrual irregularity. CONCLUSION This study substantiated that menstrual irregularity was closely associated with higher BMI and smoking habits in nondiabetic Korean women. Weight loss and smoking cessation should be recommended to promote women's reproductive health.
Collapse
Affiliation(s)
- An Na Jung
- 1 Department of Biomedical Laboratory Science, Graduate School, Eulji University , Seongnam-si, Gyeonggi-do, Korea.,2 Samkwang Medical Laboratories , Seoul, Korea
| | - Ju Hwan Park
- 1 Department of Biomedical Laboratory Science, Graduate School, Eulji University , Seongnam-si, Gyeonggi-do, Korea.,3 Hankook Institute of Life Science , Seoul, Korea
| | - Jihyun Kim
- 4 Department of Senior Healthcare, BK21 Plus Program, Graduated School, Eulji University , Daejeon, Korea
| | - Seok Hyun Kim
- 5 Department of Obstetrics and Gynecology, Seoul National University College of Medicine , Seoul, Korea
| | - Byung Chul Jee
- 6 Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital , Seongnam-si, Gyeonggi-do, Korea
| | - Byung Heun Cha
- 1 Department of Biomedical Laboratory Science, Graduate School, Eulji University , Seongnam-si, Gyeonggi-do, Korea
| | - Jae Woong Sull
- 1 Department of Biomedical Laboratory Science, Graduate School, Eulji University , Seongnam-si, Gyeonggi-do, Korea.,4 Department of Senior Healthcare, BK21 Plus Program, Graduated School, Eulji University , Daejeon, Korea
| | - Jin Hyun Jun
- 1 Department of Biomedical Laboratory Science, Graduate School, Eulji University , Seongnam-si, Gyeonggi-do, Korea.,4 Department of Senior Healthcare, BK21 Plus Program, Graduated School, Eulji University , Daejeon, Korea.,7 Eulji Medi-Bio Research Institute (EMBRI), Eulji University , Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
52
|
Ruebel M, Shankar K, Gaddy D, Lindsey F, Badger T, Andres A. Maternal obesity is associated with ovarian inflammation and upregulation of early growth response factor 1. Am J Physiol Endocrinol Metab 2016; 311:E269-77. [PMID: 27279249 DOI: 10.1152/ajpendo.00524.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a proinflammatory gene signature and upregulation of Egr-1 protein in ovaries from obese (OB; n = 7) compared with lean (LN; n = 10) female Sprague-Dawley rats during the peri-implantation period at 4.5 days postcoitus (dpc). Obesity was induced by overfeeding (40% excess calories for 28 days) via total enteral nutrition prior to mating. OB dams had higher body weight (P < 0.001), greater fat mass (P < 0.001), and reduced lean mass (P < 0.05) and developed metabolic dysfunction with elevated serum lipids, insulin, leptin, and CCL2 (P < 0.05) compared with LN dams. Microarray analyses identified 284 differentially expressed genes between ovaries from LN vs. OB dams (±1.3 fold, P < 0.05). RT-qPCR confirmed a decrease in expression of glucose transporters GLUT4 and GLUT9 and elevation of proinflammatory genes, including CCL2, CXCL10, CXCL11, CCR2, CXCR1, and TNFα in ovaries from OB compared with LN (P < 0.05). Protein levels of PI3K and phosphorylated Akt were significantly decreased (P < 0.05), whereas nuclear levels of Egr-1 (P < 0.05) were increased in OB compared with LN ovaries. Moreover, Egr-1 was localized to granulosa cells, with the highest expression in cumulus cells of preovulatory follicles. mRNA expression of VCAN, AURKB, and PLAT (P < 0.05) correlated with %visceral fat weight (r = 0.51, -0.77, and -0.57, respectively, P ≤ 0.05), suggesting alterations in ovarian function with obesity. In summary, maternal obesity led to an upregulation of inflammatory genes and Egr-1 expression in peri-implantation ovarian tissue and a concurrent downregulation of GLUTs and Akt and PI3K protein levels.
Collapse
Affiliation(s)
- Meghan Ruebel
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas
| | | | - Thomas Badger
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Aline Andres
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| |
Collapse
|
53
|
Affiliation(s)
- John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center and Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68198-3255
| |
Collapse
|
54
|
Xie F, Anderson CL, Timme KR, Kurz SG, Fernando SC, Wood JR. Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice. Endocrinology 2016; 157:1630-43. [PMID: 26881311 PMCID: PMC4816731 DOI: 10.1210/en.2015-1851] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNAs stored in the metaphase II-arrested oocyte play important roles in successful embryonic development. Their abundance is defined by transcriptional activity during oocyte growth and selective degradation of transcripts during LH-induced oocyte maturation. Our previous studies demonstrated that mRNA abundance is increased in mature ovulated oocytes collected from obese humans and mice and therefore may contribute to reduced oocyte developmental competence associated with metabolic dysfunction. In the current study mouse models of diet-induced obesity were used to determine whether obesity-dependent increases in proinflammatory signaling regulate ovarian abundance of oocyte-specific mRNAs. The abundance of oocyte-specific Bnc1, Dppa3, and Pou5f1 mRNAs as well as markers of proinflammatory signaling were significantly increased in ovaries of obese compared with lean mice which were depleted of fully grown preovulatory follicles. Chromatin-immunoprecipitation analyses also demonstrated increased association of phosphorylated signal transducer and activator of transcription 3 with the Pou5f1 promoter in ovaries of obese mice suggesting that proinflammatory signaling regulates transcription of this gene in the oocyte. The cecum microbial content of lean and obese female mice was subsequently examined to identify potential relationships between microbial composition and proinflammatory signaling in the ovary. Multivariate Association with Linear Models identified significant positive correlations between cecum abundance of the bacterial family Lachnospiraceae and ovarian abundance of Tnfa as well as Dppa3, Bnc1, and Pou5f1 mRNAs. Together, these data suggest that diet-induced changes in gut microbial composition may be contributing to ovarian inflammation which in turn alters ovarian gene expression and ultimately contributes to obesity-dependent reduction in oocyte quality and development of infertility in obese patients.
Collapse
Affiliation(s)
- Fang Xie
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Christopher L Anderson
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Kelsey R Timme
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Scott G Kurz
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Samodha C Fernando
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Jennifer R Wood
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| |
Collapse
|
55
|
Aiken CE, Tarry-Adkins JL, Penfold NC, Dearden L, Ozanne SE. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J 2016; 30:1548-56. [PMID: 26700734 PMCID: PMC4799509 DOI: 10.1096/fj.15-280800] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022]
Abstract
Maternal diet during pregnancy influences the later life reproductive potential of female offspring. We investigate the molecular mechanisms underlying the depletion of ovarian follicular reserve in young adult females following exposure to obesogenic diet in early life. Furthermore, we explore the interaction between adverse maternal diet and postweaning diet in generating reduced ovarian reserve. Female mice were exposed to either maternal obesogenic (high fat/high sugar) or maternal control dietin uteroand during lactation, then weaned onto either obesogenic or control diet. At 12 wk of age, the offspring ovarian reserve was depleted following exposure to maternal obesogenic diet (P< 0.05), but not postweaning obesogenic diet. Maternal obesogenic diet was associated with increased mitochondrial DNA biogenesis (copy numberP< 0.05; transcription factor A, mitochondrial expressionP< 0.05), increased mitochondrial antioxidant defenses [manganese superoxide dismutase (MnSOD)P< 0.05; copper/zinc superoxide dismutaseP< 0.05; glutathione peroxidase 4P< 0.01] and increased lipoxygenase expression (arachidonate 12-lipoxygenaseP< 0.05; arachidonate 15-lipoxygenaseP< 0.05) in the ovary. There was also significantly increased expression of the transcriptional regulator NF-κB (P< 0.05). There was no effect of postweaning diet on any measured ovarian parameters. Maternal diet thus plays a central role in determining follicular reserve in adult female offspring. Our observations suggest that lipid peroxidation and mitochondrial biogenesis are the key intracellular pathways involved in programming of ovarian reserve.-Aiken, C. E., Tarry-Adkins, J. L., Penfold, N. C., Dearden, L., Ozanne, S. E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet.
Collapse
Affiliation(s)
- Catherine E Aiken
- *University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| | - Jane L Tarry-Adkins
- *University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| | - Naomi C Penfold
- *University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| | - Laura Dearden
- *University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| | - Susan E Ozanne
- *University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
56
|
Schubert C. Mom's Maxed-Out Mitochondria. Biol Reprod 2015. [DOI: 10.1095/biolreprod.115.129429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
57
|
Schubert C. Cholesterol Overload Damages Eggs. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
58
|
Ganesan S, Nteeba J, Keating AF. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice. Toxicol Appl Pharmacol 2015; 282:1-8. [PMID: 25447408 PMCID: PMC4641708 DOI: 10.1016/j.taap.2014.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/20/2014] [Accepted: 10/31/2014] [Indexed: 12/24/2022]
Abstract
The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14days and ovaries collected 3days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P<0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P<0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P<0.05) by obesity while total CX37 protein was reduced (P<0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P<0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P<0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P<0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Jackson Nteeba
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|