51
|
Witting PK, Pettersson K, Letters J, Stocker R. Site-specific antiatherogenic effect of probucol in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20:E26-33. [PMID: 10938028 DOI: 10.1161/01.atv.20.8.e26] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-The lipid-lowering antioxidant probucol can inhibit atherosclerosis in animals and restenosis in humans. However, probucol has been shown to promote atherosclerosis in the aortic root of apolipoprotein E-deficient (apoE-/-) mice. In the current study, we examined the effects of probucol on both lesion formation at 4 sites along the aorta and lipoprotein oxidation in the plasma and aortas of apoE-/- mice receiving a diet containing 21.2% (wt/wt) fat and 0. 15% (wt/wt) cholesterol without or with 1% (wt/wt) probucol. After 6 months, controls had developed lesions at all sites investigated. Lesion development was strongly (P=0.0001) affected by probucol, but this effect was not uniform: lesion size was increased in the aortic root but significantly decreased in the arch, the descending thoracic aorta, and proximal abdominal aorta. Plasma and aortas of probucol-treated mice contained high concentrations of probucol and its metabolites (bisphenol and diphenoquinone); increased vitamin C; markedly decreased very low density lipoprotein (but not low density lipoprotein and high density lipoprotein); and decreased cholesterol, cholesteryl esters, triglycerides, vitamin E, and oxidized lipids compared with controls. Interestingly, probucol treatment did not decrease the proportion of aortic lipids that were oxidized. Plasma vitamin C and bisphenol, but not probucol, protected plasma lipids from ex vivo oxidation by peroxyl radicals. These results show that as in other species, probucol can inhibit lesion formation in most parts of the aorta of apoE-/- mice. This effect may involve lipid oxidation-independent mechanisms localized within the vessel wall as well as lipid lowering.
Collapse
Affiliation(s)
- PK Witting
- Biochemistry Group (K.P., J.L., R.S.), The Heart Research Institute, Camperdown, Australia, and Cardiovascular Pharmacology (P.K.W.), AstraZeneca, Molndal, Sweden. P.K.W. is presently at the Department of Biochemistry and Molecular Biology, Univers
| | | | | | | |
Collapse
|
52
|
Witting PK, Pettersson K, Letters J, Stocker R. Anti-atherogenic effect of coenzyme Q10 in apolipoprotein E gene knockout mice. Free Radic Biol Med 2000; 29:295-305. [PMID: 11035258 DOI: 10.1016/s0891-5849(00)00311-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidation of low-density lipoprotein (LDL) lipid is implicated in atherogenesis and certain antioxidants inhibit atherosclerosis. Ubiquinol-10 (CoQ10H2) inhibits LDL lipid peroxidation in vitro although it is not known whether such activity occurs in vivo, and, if so, whether this is anti-atherogenic. We therefore tested the effect of ubiquinone-10 (CoQ10) supplemented at 1% (w/w) on aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet. Hydroperoxides of cholesteryl esters and triacylglycerols (together referred to as LOOH) and their corresponding alcohols were used as the marker for lipoprotein lipid oxidation. Atherosclerosis was assessed by morphometry at the aortic root, proximal and distal arch, and the descending thoracic and abdominal aorta. Compared to controls, CoQ10-treatment increased plasma coenzyme Q, ascorbate, and the CoQ10H2:CoQ10 + CoQ10H2 ratio, decreased plasma alpha-tocopherol (alpha-TOH), and had no effect on cholesterol and cholesterylester alcohols (CE-OH). Plasma from CoQ10-supplemented mice was more resistant to ex vivo lipid peroxidation. CoQ10 treatment increased aortic coenzyme Q and alpha-TOH and decreased the absolute concentration of LOOH, whereas tissue cholesterol, cholesteryl esters, CE-OH, and LOOH expressed per bisallylic hydrogen-containing lipids were not significantly different. CoQ10-treatment significantly decreased lesion size in the aortic root and the ascending and the descending aorta. Together these data show that CoQ10 decreases the absolute concentration of aortic LOOH and atherosclerosis in apoE-/- mice.
Collapse
Affiliation(s)
- P K Witting
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia
| | | | | | | |
Collapse
|
53
|
Thomas SR, Stocker R. Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis. Free Radic Biol Med 2000; 28:1795-805. [PMID: 10946221 DOI: 10.1016/s0891-5849(00)00236-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oxidation theory of atherosclerosis proposes that the oxidative modification of low-density lipoproteins (LDL) plays a central role in the disease. Although a direct causative role of LDL oxidation for atherogenesis has not been established, oxidized lipoproteins are detected in atherosclerotic lesions, and in vitro oxidized LDL exhibits putative pro-atherogenic activities. alpha-Tocopherol (alpha-TOH; vitamin E), the major lipid-soluble antioxidant present in lipoproteins, is thought to be antiatherogenic. However, results of vitamin E interventions on atherosclerosis in experimental animals and cardiovascular disease in humans have been inconclusive. Also, recent mechanistic studies demonstrate that the role of alpha-TOH during the early stages of lipoprotein lipid peroxidation is complex and that the vitamin does not act as a chain-breaking antioxidant. In the absence of co-antioxidants, compounds capable of reducing the alpha-TOH radical and exporting the radical from the lipoprotein particle, alpha-TOH exhibits anti- or pro-oxidant activity for lipoprotein lipids depending on the degree of radical flux and reactivity of the oxidant. The model of tocopherol-mediated peroxidation (TMP) explains the complex molecular action of alpha-TOH during lipoprotein lipid peroxidation and antioxidation. This article outlines the salient features of TMP, comments on whether TMP is relevant for in vivo lipoprotein lipid oxidation, and discusses how co-antioxidants may be required to attenuate lipoprotein lipid oxidation in vivo and perhaps atherosclerosis.
Collapse
Affiliation(s)
- S R Thomas
- The Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | |
Collapse
|
54
|
Abstract
The literature relating lipid and lipoprotein oxidation to atherosclerosis has expanded enormously in recent years. Papers on the "oxidative modification hypothesis" of atherogenesis have ranged from the most basic studies of the chemistry and enzymology of LDL oxidation, through studies of the biological effects of oxidized LDL on cultured cells, and on to in vivo studies of the effects of antioxidants on atherosclerosis in animals and humans. The data in support of this theory are mounting but many key questions remain unanswered. For example, while it is generally agreed that LDL undergoes oxidation and that oxidized LDL is present in arterial lesions, it is still not known how and where LDL gets oxidized in vivo nor which of its many biological effects demonstrable in vitro are relevant to atherogenesis in vivo. This brief review is not intended to be comprehensive but rather to offer a perspective and a context for this Forum. We discuss the strengths and weaknesses of each line of evidence, try to identify areas in which further research is needed, assess the relevance of the hypothesis to the human disease, and point to some of the potential targets for therapy.
Collapse
Affiliation(s)
- G M Chisolm
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | |
Collapse
|
55
|
Abstract
The oxidation of LDL is thought to be a major contributor to the development of atherosclerosis. Considerable descriptive evidence has been accumulated showing that oxidized LDL promotes pro-atherogenic events. However, direct evidence that oxidized LDL causes atherosclerosis is lacking. This article summarizes the results of recent studies that demonstrate how oxidized LDL affects cellular function, and highlights key issues that should be addressed to link LDL oxidation with atherosclerosis.
Collapse
Affiliation(s)
- M J Thomas
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1016, USA.
| |
Collapse
|
56
|
Noguchi N, Niki E. Phenolic antioxidants: a rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radic Biol Med 2000; 28:1538-46. [PMID: 10927179 DOI: 10.1016/s0891-5849(00)00256-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With increasing evidence that shows the involvement of active oxygen and nitrogen species in a variety of disorders, cancer, and aging, the role of antioxidant against oxidative stress has received renewed attention. In this review article, a rationale for design of lipophilic, radical-scavenging antioxidant is presented and the potency of a novel antioxidant, 2,3-dihydro-5-hydroxy-2,2-dipentyl-4, 6-di-tert-butylbenzofuran (BO-653), as an inhibitor of LDL oxidation was evaluated by considering various factors such as reactivity toward radicals, localization, and mobility in the lipoprotein, and fate of its radical. The anti-atherogenic activity of BO-653 was compared with those of alpha-tocopherol, probucol, and its metabolites. Furthermore, a novel function of phenolic antioxidants such as cell regulation and induction of phase II defense antioxidants are also discussed.
Collapse
Affiliation(s)
- N Noguchi
- University of Tokyo, Research Center for Advanced Science and Technology, Komaba, Meguro, Tokyo, Japan
| | | |
Collapse
|
57
|
Tsimikas S, Witztum JL. The Oxidative Modification Hypothesis of Atherogenesis. DEVELOPMENTS IN CARDIOVASCULAR MEDICINE 2000. [DOI: 10.1007/978-1-4615-4649-8_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
58
|
Abstract
Antioxidants that inhibit LDL oxidation are thought to be potential anti-atherogenic compounds. The results of major human randomized trials with antioxidants have, however, been disappointing, except for probucol, which consistently inhibits restenosis. Similarly, animal intervention studies show that antioxidants do not generally inhibit atherosclerosis, although some compounds provide protection. Direct evidence for the oxidation of LDL causing atherosclerosis is needed. This article summarizes results from antioxidant intervention studies, and highlights some of the key issues that need to be addressed to link biochemical changes in the arterial wall more directly to the oxidation theory of atherosclerosis.
Collapse
Affiliation(s)
- R Stocker
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia.
| |
Collapse
|
59
|
Witting P, Pettersson K, Ostlund-Lindqvist AM, Westerlund C, Wâgberg M, Stocker R. Dissociation of atherogenesis from aortic accumulation of lipid hydro(pero)xides in Watanabe heritable hyperlipidemic rabbits. J Clin Invest 1999; 104:213-20. [PMID: 10411551 PMCID: PMC408476 DOI: 10.1172/jci6391] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1999] [Accepted: 06/18/1999] [Indexed: 11/17/2022] Open
Abstract
Antioxidants can inhibit atherosclerosis, but it is unclear how inhibition of intimal lipid oxidation relates to atherogenesis. Here we tested the effect of probucol and its metabolite bisphenol on aortic lipid (per)oxidation and atherogenesis in Watanabe heritable hyperlipidemic (WHHL) rabbits. LDL and aortas from rabbits fed probucol contained bisphenol at concentrations comparable to those in bisphenol-treated animals. Bisphenol treatment increased plasma cholesterol slightly, and plasma and aortic alpha-tocopherol more substantially; these parameters were unaffected by probucol. Bisphenol and probucol treatment both enhanced the resistance of circulating LDL to peroxyl radical-induced lipid peroxidation; this was due to bisphenol, not probucol. Only probucol enhanced LDL's resistance to Cu(2+)-induced oxidation. Both bisphenol and probucol treatment strongly inhibited aortic accumulation of hydroperoxides and hydroxides of cholesteryl esters and triglycerides [LO(O)H]. Despite this, however, probucol had a modestly significant effect on the extent of lesion formation; bisphenol had no inhibitory effect. In addition, the extent of atherosclerosis did not correlate with amounts of aortic LO(O)H present, but, as expected, it did correlate with aortic alpha-tocopherol and cholesterol. Together, these results suggest that aortic accumulation of LO(O)H is not required for, nor is alpha-tocopherol depleted during, the initiation and progression of atherogenesis in WHHL rabbits.
Collapse
Affiliation(s)
- P Witting
- Biochemistry Group, The Heart Research Institute, Camperdown, New South Wales 2050, Australia Astra Hässle, S-43183 Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
The early events in atherogenesis might be due to the oxidation of low- density lipoprotein. The antioxidant vitamin E, therefore, has received much attention as a potential anti-atherogenic agent. Recent mechanistic studies of the early stage of lipoprotein-lipid oxidation show that the role of vitamin E in this process is not simply that of a classical antioxidant. Unless additional compounds are present, vitamin E can have antioxidant, neutral or pro-oxidant activity. This more complex function is reflected in the results of vitamin-E-intervention studies of atherosclerosis in animals and of controlled prospective trials on the incidence of cardiovascular disease in humans, which, overall, are inconclusive.
Collapse
Affiliation(s)
- R Stocker
- Biochemistry Group, The Heart Research Institute, 145 Missenden Rd, Camperdown, NSW 2050, Australia.
| |
Collapse
|
61
|
Letters JM, Witting PK, Christison JK, Eriksson AW, Pettersson K, Stocker R. Time-dependent changes to lipids and antioxidants in plasma and aortas of apolipoprotein E knockout mice. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33514-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
62
|
Steinberg D. At last, direct evidence that lipoxygenases play a role in atherogenesis. J Clin Invest 1999; 103:1487-8. [PMID: 10359557 PMCID: PMC408379 DOI: 10.1172/jci7298] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- D Steinberg
- Department of Medicine 0682, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| |
Collapse
|
63
|
Upston JM, Terentis AC, Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J 1999; 13:977-94. [PMID: 10336881 DOI: 10.1096/fasebj.13.9.977] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although little direct evidence for a causative role of 'oxidized LDL' in atherogenesis exists, several studies show that, in vitro, oxidized LDL exhibits potentially proatherogenic activities and lipoproteins isolated from atherosclerotic lesions are oxidized. As a consequence, the molecular mechanisms of LDL oxidation and the actions of alpha-tocopherol (alpha-TOH, vitamin E), the major lipid-soluble lipoprotein antioxidant, have been studied in detail. Based on the known antioxidant action of alpha-TOH and epidemiological evidence, vitamin E is generally considered to be beneficial in coronary artery disease. However, intervention studies overall show a null effect of vitamin E on atherosclerosis. This confounding outcome can be rationalized by the recently discovered diverse role for alpha-TOH in lipoprotein oxidation; that is, alpha-TOH displays neutral, anti-, or, indeed, pro-oxidant activity under various conditions. This review describes the latter, novel action of alpha-TOH, termed tocopherol-mediated peroxidation, and discusses the benefits of vitamin E supplementation alone or together with other antioxidants that work in concert with alpha-TOH in ameliorating lipoprotein lipid peroxidation in the artery wall and, hence, atherosclerosis.
Collapse
Affiliation(s)
- J M Upston
- Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | | | |
Collapse
|
64
|
Abstract
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia
| | | | | |
Collapse
|
65
|
Aviram M. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Antioxid Redox Signal 1999; 1:585-94. [PMID: 11233155 DOI: 10.1089/ars.1999.1.4-585] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is a multifactorial disease, where more than one mechanism, along more than one step, contributes to macrophage cholesterol accumulation and foam cell formation, the hallmark of early atherogenesis. Arterial macrophages take up oxidized low-density lipoproteins (Ox-LDL), leading to cellular accumulation of cholesterol and oxysterols. Atherogenic modifications of LDL include, in addition to oxidation, retention and aggregation. Intervention to inhibit LDL oxidation can affect the above additional LDL modifications. Indeed, we have demonstrated in the atherosclerotic apolipoprotein E-deficient mice that consumption of vitamin E or of flavonoids from red wine or licorice decreased LDL oxidation, LDL retention, and LDL aggregation and attenuated macrophage foam cell formation and atherosclerosis. The balance between pro-oxidants and anti-oxidants in the LDL particle (such as cholesteryl ester vs. vitamin E), as well as in arterial wall macrophages (such as NADPH oxidase vs. glutathione), determines the extent of LDL oxidation. Antioxidants can protect LDL from oxidation not only by their binding to the lipoprotein, but also following their accumulation in cells of the arterial wall. Whereas antioxidants can prevent the formation of Ox-LDL, human serum paraoxonase (PON 1), an HDL-associated esterase that hydrolyzes organophosphates, can eliminate oxidized LDL (by hydrolysis of its lipid peroxides), which is formed when antioxidant protection is not sufficient. Ox-LDL, in turn, can inactivate paraoxonase activity. Thus, the combination of antioxidants together with active paraoxonase decreases the formation of Ox-LDL and preserves PON1's ability to hydrolyze this atherogenic lipoprotein and hence, to attenuate atherosclerosis.
Collapse
Affiliation(s)
- M Aviram
- The Lipid Research Laboratory, Rambam Medical Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|