51
|
Risbridger GP, Davis ID, Birrell SN, Tilley WD. Breast and prostate cancer: more similar than different. Nat Rev Cancer 2010; 10:205-12. [PMID: 20147902 DOI: 10.1038/nrc2795] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer and prostate cancer are the two most common invasive cancers in women and men, respectively. Although these cancers arise in organs that are different in terms of anatomy and physiological function both organs require gonadal steroids for their development, and tumours that arise from them are typically hormone-dependent and have remarkable underlying biological similarities. Many of the recent advances in understanding the pathophysiology of breast and prostate cancers have paved the way for new treatment strategies. In this Opinion article we discuss some key issues common to breast and prostate cancer and how new insights into these cancers could improve patient outcomes.
Collapse
Affiliation(s)
- Gail P Risbridger
- Department of Anatomy & Developmental Biology, Monash University Clayton Campus, Melbourne 3800, Victoria, Australia.
| | | | | | | |
Collapse
|
52
|
Dietel M. Hormone replacement therapy (HRT), breast cancer and tumor pathology. Maturitas 2009; 65:183-9. [PMID: 20005648 DOI: 10.1016/j.maturitas.2009.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/25/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
Abstract
Within an average observation period of 5-6 years, several clinical trials reported an increased risk of breast cancer due to hormone replacement therapy (HRT). However, it remains disputable, whether the increased rate of breast cancers detected within the given time frame is indeed due to newly induced tumors and thus constitutes HRT-initiated primary breast cancers. Onco-pathologically speaking it appears more likely that HRT stimulates the growth of already existing small tumor nests which - due to their small size - would otherwise go undiagnosed. The major arguments are: In summary, HRT is hence more likely to be a tumor promoter than a de novo-inducer of breast cancers.
Collapse
Affiliation(s)
- Manfred Dietel
- Institut für Pathologie, Charité, Campus Mitte, Humboldt Universität Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
53
|
Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, Jindal S, Segara D, Jia L, Moore NL, Henshall SM, Birrell SN, Coetzee GA, Sutherland RL, Butler LM, Tilley WD. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res 2009; 69:6131-40. [PMID: 19638585 DOI: 10.1158/0008-5472.can-09-0452] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is emerging evidence that the balance between estrogen receptor-alpha (ER(alpha)) and androgen receptor (AR) signaling is a critical determinant of growth in the normal and malignant breast. In this study, we assessed AR status in a cohort of 215 invasive ductal breast carcinomas. AR and (ER(alpha)) were coexpressed in the majority (80-90%) of breast tumor cells. Kaplan-Meier product limit analysis and multivariate Cox regression showed that AR is an independent prognostic factor in (ER(alpha))-positive disease, with a low level of AR (less than median of 75% positive cells) conferring a 4.6-fold increased risk of cancer-related death (P = 0.002). Consistent with a role for AR in breast cancer outcome, AR potently inhibited (ER(alpha))transactivation activity and 17beta-estradiol-stimulated growth of breast cancer cells. Transfection of MDA-MB-231 breast cancer cells with either functionally impaired AR variants or the DNA-binding domain of the AR indicated that the latter is both necessary and sufficient for inhibition of (ER(alpha)) signaling. Consistent with molecular modeling, electrophoretic mobility shift assays showed binding of the AR to an estrogen-responsive element (ERE). Evidence for a functional interaction of the AR with an ERE in vivo was provided by chromatin immunoprecipitation data, revealing recruitment of the AR to the progesterone receptor promoter in T-47D breast cancer cells. We conclude that, by binding to a subset of EREs, the AR can prevent activation of target genes that mediate the stimulatory effects of 17beta-estradiol on breast cancer cells.
Collapse
Affiliation(s)
- Amelia A Peters
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Hanson Institute, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Lenharo Penteado SR, Fonseca AM, Bagnoli VR, Najar Abdo CH, Soares Júnior JM, Baracat EC. Effects of the addition of methyltestosterone to combined hormone therapy with estrogens and progestogens on sexual energy and on orgasm in postmenopausal women. Climacteric 2009; 11:17-25. [DOI: 10.1080/13697130701741932] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
55
|
Campagnoli C, Ambroggio S, Lotano MR, Peris C. Progestogen use in women approaching the menopause and breast cancer risk. Maturitas 2009; 62:338-42. [DOI: 10.1016/j.maturitas.2008.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/07/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
56
|
Ting AY, Kimler BF, Fabian CJ, Petroff BK. Tamoxifen prevents premalignant changes of breast, but not ovarian, cancer in rats at high risk for both diseases. Cancer Prev Res (Phila) 2009; 1:546-53. [PMID: 19139004 DOI: 10.1158/1940-6207.capr-08-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Women at increased risk for breast cancer are at increased risk for ovarian cancer as well, reflecting common risk factors and intertwined etiology of the two diseases. We previously developed a rat model of elevated breast and ovarian cancer risk, allowing evaluation of dual-target cancer prevention strategies. Tamoxifen, a Food and Drug Administration-approved breast cancer chemoprevention drug, has been shown to promote ovarian cysts in premenopausal women; however, the effect of tamoxifen on ovarian cancer risk is still controversial. In the current experiment, Fischer 344 rats (n = 8 per treatment group) received tamoxifen (TAM) or vehicle (control) in factorial combination with combined breast and ovarian carcinogen (17beta-estradiol and 7,12 dimethylbenza[a]anthracene, respectively). Mammary and ovarian morphologies were normal in the control and TAM groups. Carcinogen (CARC) treatment induced mammary dysplasia with elevated cell proliferation and reduced estrogen receptor-alpha expression and promoted preneoplastic changes in the ovary. In the CARC + TAM group, tamoxifen reduced preneoplastic changes and proliferation rate in the mammary gland, but not in the ovary, compared with rats treated with carcinogen alone. Putative stem cell markers (Oct-4 and aldehyde dehydrogenase 1) were also elevated in the mammary tissue by carcinogen and this expansion of the stem cell population was not reversed by tamoxifen. Our study suggests that tamoxifen prevents early progression to mammary cancer but has no effect on ovarian cancer progression in this rat model.
Collapse
Affiliation(s)
- Alison Y Ting
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
57
|
Gogoi R, Kudla M, Gil O, Fishman D. The activity of medroxyprogesterone acetate, an androgenic ligand, in ovarian cancer cell invasion. Reprod Sci 2009; 15:846-52. [PMID: 19017820 DOI: 10.1177/1933719108323446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES An epithelial ovarian cancer cell line constitutively expressing the androgen receptor was created to evaluate the mechanism and effects of androgen receptor activation on epithelial ovarian cancer cell invasion. METHODS Immunocytochemistry and Western blot analyses confirmed androgen receptor expression. Boyden chamber invasion assays were performed using cells treated with the androgen receptor ligands medroxyprogesterone acetate or dihydrotestosterone. The matrix metalloproteinases associated with invasion were investigated using zymographic assays. RESULTS Androgen receptor-mediated invasion is ligand dependent. While both medroxyprogesterone acetate and dihydrotestosterone signal through androgen receptor, medroxyprogesterone acetate is more effective at stimulating invasion of epithelial ovarian cancer cells. Unlike the wild-type epithelial ovarian cancer cells, this increase in invasion in androgen receptor + epithelial ovarian cancer cells does not seem to be dependent on matrix metalloproteinase 2 or 9 activation. CONCLUSION Although classified as a progestin, medroxyprogesterone acetate has significant androgenic activity unique from the pure androgen dihydrotestosterone. Our studies suggest that pharmacologic doses of medroxyprogesterone acetate may actually increase the invasive potential of epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Radhika Gogoi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, New York University, New York, NY, USA
| | | | | | | |
Collapse
|
58
|
Lin HY, Sun M, Lin C, Tang HY, London D, Shih A, Davis FB, Davis PJ. Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha-positive and -negative breast cancer cells. J Steroid Biochem Mol Biol 2009; 113:182-8. [PMID: 19159686 DOI: 10.1016/j.jsbmb.2008.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Androgens have important physiological effects in women. Not only are they the precursor hormones for estrogen biosynthesis in the ovaries and extragonadal tissues, but also act directly via androgen receptors (ARs) throughout the body. Studies of the role of androgens on breast cancer development are controversial and the mechanisms involved are not fully understood. In this report we demonstrate that a non-aromatizable androgen metabolite, dihydrotestosterone (DHT), stimulated cell proliferation in vitro of both estrogen receptor-alpha (ER-alpha)-positive MCF-7 cells and ER-alpha-negative MDA-MB-231 human breast cancer cells. A contribution of ER to the proliferative effect of DHT in MCF-7 cells was supported by actions of small interfering RNA (siRNA) ER-alpha transfection and of the specific inhibitor of ER, ICI 182,780 to block DHT-induced proliferation. A contribution of the possible conversion of DHT to androstane-3alpha, 17beta-diol was not excluded in these MCF-7 cell studies. In MDA-MB-231 cells, a novel mechanism was implicated, in that anti-integrin alphavbeta3 or an Arg-Gly-Asp (RGD) peptide targeted at a small molecule binding domain of the integrin eliminated the DHT effect on cell proliferation. Anti-integrin alphavbeta3 did not affect DHT action on MCF-7 cells. A contribution from classical androgen receptor to the DHT effect in each cell line was excluded. A proliferative DHT signal is transduced in both ER-alpha-positive and ER-alpha-negative breast cancer cells, but by discrete mechanisms.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Signal Transduction Laboratory, Ordway Research Institute, Inc., 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Ebrahimi M. Anabolic Steroid Exposure of Athletes of Qom, Iran, Through Performance Enhancing Drugs Use. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/rjet.2009.50.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
60
|
Tiefenbacher K, Daxenbichler G. The Role of Androgens in Normal and Malignant Breast Tissue. Breast Care (Basel) 2008; 3:325-331. [PMID: 20824027 DOI: 10.1159/000158055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgens, like estrogens, can be synthesized in the breast. As both active androgens and their corresponding receptors are present in breast tissue, we conclude that they play a role in breast physiology. This is supported by the fact that insufficient androgen production or sensitivity results in the development of gynecomastia. Complete androgen insensitivity due to receptor defects leads to normal female breast development in these XY women. While breast development is completely inhibited by male testosterone levels, partial but not total degradation of a developed breast by androgen treatment appears to be possible. Breast cancer in early stages seems to fulfill the prerequisites of androgen responsiveness. Androgen treatment of advanced breast cancer has shown similar effectiveness as anti-estrogen or estrogen-ablative therapy, but also considerable side effects. It has been speculated that the use of selective androgen modulators (SARMs), either alone or preferably in addition to anti-estrogens or aromatase inhibitors, may be a promising alternative to current therapy modalities in hormone-dependent breast cancer. In addition, future studies on the use of SARMs in prophylactic settings seem to be justified.
Collapse
|
61
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 PMCID: PMC3023124 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
62
|
Abstract
Despite the identical immunological mechanisms activating the release of mediators and consecutive symptoms in immediate-type allergy, there is still a clear clinical difference between female and male allergic patients. Even though the risk of being allergic is greater for boys in childhood, almost from adolescence onwards it seems to be a clear disadvantage to be a woman as far as atopic disorders are concerned. Asthma, food allergies and anaphylaxis are more frequently diagnosed in females. In turn, asthma and hay fever are associated with irregular menstruation. Pointing towards a role of sex hormones, an association of asthma and intake of contraceptives, and a risk for asthma exacerbations during pregnancy have been observed. Moreover, peri- and postmenopausal women were reported to increasingly suffer from asthma, wheeze and hay fever, being even enhanced by hormone replacement therapy. This may be on account of the recently identified oestradiol-receptor-dependent mast-cell activation. As a paradox of nature, women may even become hypersensitive against their own sex hormones, resulting in positive reactivity upon intradermal injection of oestrogen or progesterone. More importantly, this specific hypersensitivity is associated with recurrent miscarriages. Even though there is a striking gender-specific bias in IgE-mediated allergic diseases, public awareness of this fact still remains minimal today.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- Department of Pathophysiology, Center of Physiology, Pathophysiology and Immunology, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
63
|
Figueroa JD, Sakoda LC, Graubard BI, Chanock S, Rubertone MV, Erickson RL, McGlynn KA. Genetic variation in hormone metabolizing genes and risk of testicular germ cell tumors. Cancer Causes Control 2008; 19:917-29. [DOI: 10.1007/s10552-008-9153-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
|
64
|
Abstract
Until recently, the study of nuclear receptor (NR) function in breast cancer biology has been largely limited to estrogen and progesterone receptors. The development of reliable gene expression arrays, real-time quantitative RT-PCR, and immunohistochemical techniques for studying NR superfamily members in primary human breast cancers has now revealed the presence and potential importance of several additional NRs in the biology of breast cancer. These include receptors for steroid hormones (including androgens and corticosteroids), fat-soluble vitamins A and D, fatty acids, and xenobiotic lipids derived from diet. It is now clear that after NR activation, both genomic and nongenomic NR pathways can coordinately activate growth factor signaling pathways. Advances in our understanding of both NR functional networks and epithelial cell growth factor signaling pathways have revealed a frequent interplay between NR and epithelial cell growth factor family signaling that is clinically relevant to breast cancer. Understanding how growth factor receptors and their downstream kinases are activated by NRs (and vice-versa) is a central goal for maximizing treatment opportunities in breast cancer. In addition to the estrogen receptor, it is predicted that modulating the activity of other NRs will soon provide novel prevention and treatment approaches for breast cancer patients.
Collapse
Affiliation(s)
- Suzanne D Conzen
- Department of Medicine, The University of Chicago, MC 2115, Chicago, Illinois 60637, USA.
| |
Collapse
|
65
|
Salehi F, Turner MC, Phillips KP, Wigle DT, Krewski D, Aronson KJ. Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:276-300. [PMID: 18368557 DOI: 10.1080/10937400701875923] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer among Canadian women, accounting for about 30% of all new cancer cases each year. Although the incidence of breast cancer has increased over the past 50 years, the cause of this rise is unknown. Risk factors for breast cancer may be classified into four broad categories: (1) genetic/familial, (2) reproductive/hormonal, (3) lifestyle, and (4) environmental. Established risk factors for breast cancer include older age, later age at first full-term pregnancy, no full-term pregnancies, postmenopausal obesity, and genetic factors. However, these known risk factors cannot account for the majority of cases. In the early 1990s, it was suggested that exposure to some environmental chemicals such as organochlorine compounds may play a causal role in the etiology of breast cancer through estrogen-related pathways. The relationship between organochlorines and breast cancer risk has been studied extensively in the past decade and more, and at this point there is no clear evidence to support a causal role of most organochlorine pesticides in the etiology of human breast cancer, but more evidence is needed to assess risk associated with polychlorinated biphenyls (PCBs). Future studies need to consider the combined effects of exposures, concentrate on vulnerable groups such as those with higher levels of exposure, only consider exposures occurring during the most etiologically relevant time periods, and more thoroughly consider gene-environment interactions.
Collapse
Affiliation(s)
- Fariba Salehi
- McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Canada
| | | | | | | | | | | |
Collapse
|
66
|
Aubé M, Larochelle C, Ayotte P. 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) disrupts the estrogen-androgen balance regulating the growth of hormone-dependent breast cancer cells. Breast Cancer Res 2008; 10:R16. [PMID: 18275596 PMCID: PMC2374972 DOI: 10.1186/bcr1862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 12/10/2007] [Accepted: 02/14/2008] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Estrogen and androgen signalling pathways exert opposing influences on the proliferation of mammary epithelial and hormone-dependent breast cancer cells. We previously reported that plasma concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), the main metabolite of the insecticide DDT (1,1,1-trichloro-2,2-bis [p-chlorophenyl]ethane) and a potent androgen antagonist, were associated with tumor aggressiveness in women diagnosed with breast cancer. We sought to examine the biological plausibility of this association by testing the effect of p,p'-DDE on the proliferation of CAMA-1 cells, a human breast cancer cell line that expresses the estrogen receptor alpha (ERalpha) and the androgen receptor (AR), in the presence of physiological concentrations of estrogens and androgens in the cell culture medium. METHODS The proliferation of CAMA-1 cells was determined in 96-well plates following a 9-day treatment with p,p'-DDE alone (0.1 to 10 muM) or in combination with 17beta-estradiol (E2) (100 pM) and dihydrotestosterone (DHT) (100, 500, or 1,000 pM). We also assessed p,p'-DDE-induced modifications in cell cycle entry and the expression of the sex-steroid-dependent genes ESR1, AR, CCND1, and TFF1 (pS2) (mRNA and/or protein). RESULTS We found that treatment with p,p'-DDE induced a dose-response increase in the proliferation of CAMA-1 cells when cultivated in the presence of physiological concentrations of estrogens and androgens, but not in the absence of sex steroids in the cell culture medium. A similar effect of p,p'-DDE was noted on the proliferation of MCF7-AR1 cells, an estrogen-responsive cell line that was genetically engineered to overexpress the AR. DHT added together with E2 to the cell culture medium decreased the recruitment of CAMA-1 cells in the S phase and the expression of ESR1 and CCND1 by comparison with cells treated with E2 alone. These androgen-mediated effects were blocked with similar efficacy by p,p'-DDE and the potent antiandrogen hydroxyflutamide. CONCLUSION Our results suggest that p,p'-DDE could increase breast cancer progression by opposing the androgen signalling pathway that inhibits growth in hormone-responsive breast cancer cells. The potential role of environmental antiandrogens in breast carcinogenesis deserves further investigation.
Collapse
Affiliation(s)
- Michel Aubé
- Unité de Recherche en Santé Publique, Centre de Recherche du Centre Hospitalier Universitaire de Québec-CHUL, 2875 boulevard Laurier, Québec, QC G1V 2M2, Canada
| | | | | |
Collapse
|
67
|
Abstract
Recent discoveries suggest that several protein kinases are rapidly activated in response to ligand binding to cytoplasmic steroid hormone receptors (SRs), including progesterone receptors (PRs). Thus, PRs act as ligand-activated transcription factor "sensors" for growth factor-initiated signaling pathways in hormonally regulated tissues, such as the breast. Induction of rapid signaling upon progestin binding to PR-B provides a means to ensure that receptors and co-regulators are appropriately phosphorylated as part of optimal transcription complexes. Alternatively, PR-B activated kinase cascades provide additional avenues for progestin-regulated gene expression independent of PR nuclear action. Herein, an overview of progesterone/PR and signaling cross-talk in breast cancer models is provided. Kinases are emerging as key mediators of PR action. Cross-talk between SR and membrane-initiated signaling events suggests a mechanism for coordinate regulation of gene subsets by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to contribute to cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, Division of Hematology, Oncology, and Transplant, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|