51
|
Abstract
OPINION STATEMENT New neuroprotective treatments aimed at preventing or minimizing "delayed brain injury" are attractive areas of investigation and hold the potential to have substantial beneficial effects on aneurysmal subarachnoid hemorrhage (aSAH) survivors. The underlying mechanisms for this "delayed brain injury" are multi-factorial and not fully understood. The most ideal treatment strategies would have the potential for a pleotropic effect positively modulating multiple implicated pathophysiological mechanisms at once. My personal management (RFJ) of patients with aneurysmal subarachnoid hemorrhage closely follows those treatment recommendations contained in modern published guidelines. However, over the last 5 years, I have also utilized a novel treatment strategy, originally developed at the University of Maryland, which consists of a 14-day continuous low-dose intravenous heparin infusion (LDIVH) beginning 12 h after securing the ruptured aneurysm. In addition to its well-known anti-coagulant properties, unfractionated heparin has potent anti-inflammatory effects and through multiple mechanisms may favorably modulate the neurotoxic and neuroinflammatory processes prominent in aneurysmal subarachnoid hemorrhage. In my personal series of patients treated with LDIVH, I have found significant preservation of neurocognitive function as measured by the Montreal Cognitive Assessment (MoCA) compared to a control cohort of my patients treated without LDIVH (RFJ unpublished data presented at the 2015 AHA/ASA International Stroke Conference symposium on neuroinflammation in aSAH and in abstract format at the 2015 AANS/CNS Joint Cerebrovascular Section Annual Meeting). It is important for academic physicians involved in the management of these complex patients to continue to explore new treatment options that may be protective against the potentially devastating "delayed brain injury" following cerebral aneurysm rupture. Several of the treatment options included in this review show promise and could be carefully adopted as the level of evidence for each improves. Other proposed neuroprotective treatments like statins and magnesium sulfate were previously thought to be very promising and to varying degrees were adopted at numerous institutions based on somewhat limited human evidence. Recent clinical trials and meta-analysis have shown no benefit for these treatments, and I currently no longer utilize either treatment as prophylaxis in my practice.
Collapse
|
52
|
Peri-infarct depolarizations during focal ischemia in the awake Spontaneously Hypertensive Rat. Minimizing anesthesia confounds in experimental stroke. Neuroscience 2016; 325:142-52. [PMID: 27026594 DOI: 10.1016/j.neuroscience.2016.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Abstract
Anesthesia profoundly impacts peri-infarct depolarizations (PIDs), but only one prior report has described their monitoring during experimental stroke in awake animals. Since temporal patterns of PID occurrence are model specific, the current study examined PID incidence during focal ischemia in the awake Spontaneously Hypertensive Rat (SHR), and documented the impact of both prior and concurrent isoflurane anesthesia. For awake recordings, electrodes were implanted under isoflurane anesthesia 1day to 5weeks prior to occlusion surgery. Rats were then subjected to permanent or transient (2h) tandem occlusion of the middle cerebral and ipsilateral common carotid arteries, followed by PID monitoring for up to 3days. Comparison perfusion imaging studies evaluated PID-associated hyperemic transients during permanent ischemia under anesthesia at varied intervals following prior isoflurane exposure. Prior anesthesia attenuated PID number at intervals up to 1week, establishing 2weeks as a practical recovery duration following surgical preparation to avoid isoflurane preconditioning effects. PIDs in awake SHR were limited to the first 4h after permanent occlusions. Maintaining anesthesia during this interval reduced PID number, and prolonged their occurrence through several hours following anesthesia termination. Although PID number otherwise correlated with infarct size, PID suppression by anesthesia was not protective in the absence of reperfusion. PIDs persisted up to 36h after transient occlusions. These results differ markedly from the one previous report of such monitoring in awake Sprague-Dawley rats, which found an extended biphasic PID time course during 24h after both permanent and transient filament occlusions. PID occurrence closely reflects the time course of infarct progression in the respective models, and may be more useful than absolute PID number as an index of ongoing pathology.
Collapse
|
53
|
Richter F, Koulen P, Kaja S. N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release. Sci Rep 2016; 6:23481. [PMID: 27004851 PMCID: PMC4804239 DOI: 10.1038/srep23481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
Cortical spreading depression (CSD), a wave of neuronal depolarization in the cerebral cortex following traumatic brain injury or cerebral ischemia, significantly aggravates brain damage. Here, we tested whether N-palmitoylethanolamine (PEA), a substance that effectively reduces lesion volumes and neurological deficits after ischemic stroke, influences CSD. CSD was elicited chemically in adult rats and occurrence, amplitude, duration and propagation velocity of CSD was determined prior to and for 6 hours after intraperitoneal injection of PEA. The chosen systemic administration of PEA stabilized the amplitude of CSD for at least four hours and prevented the run-down of amplitudes that is typically observed and was also seen in untreated controls. The propagation velocity of the CSD waves was unaltered indicating stable neuronal excitability. The stabilization of CSD amplitudes by PEA indicates that inhibition or prevention of CSD does not underlie PEA's profound neuroprotective effect. Rather, PEA likely inhibits proinflammatory cytokine release thereby preventing the run-down of CSD amplitudes. This contribution of PEA to the maintenance of neuronal excitability in healthy tissue during CSD potentially adds to neuroprotection outside a damaged area, while other mechanisms control PEA-mediated neuroprotection in damaged tissue resulting from traumatic brain injury or cerebral ischemia.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Basic Medical Science, University of Missouri – Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
- Departments of Ophthalmology and Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
- Edward Hines Jr. VA Hospital, Research Service, 5000 S Fifth Ave., Hines, IL 60141, USA
| |
Collapse
|
54
|
del Zoppo GJ, Moskowitz M, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
55
|
Kramer DR, Fujii T, Ohiorhenuan I, Liu CY. Cortical spreading depolarization: Pathophysiology, implications, and future directions. J Clin Neurosci 2015; 24:22-7. [PMID: 26461911 DOI: 10.1016/j.jocn.2015.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023]
Abstract
Cortical spreading depolarization (CSD) is a spreading loss of ion homeostasis, altered vascular response, change in synaptic architecture, and subsequent depression in electrical activity following an inciting neurological injury. First described by Leão in 1944, this disturbance in neuronal electrophysiology has since been demonstrated in a number of animal studies, and recently a few human studies that examine the occurrence of this depolarizing phenomenon in the setting of a variety of pathological states, including migraines, cerebrovascular accidents, epilepsy, intracranial hemorrhages, and traumatic brain injuries. The onset of CSD has been demonstrated experimentally following a disruption in the neuronal environment leading to glutamate-induced toxicity. This initial event leads to pathological changes in the activity of ion channels that maintain membrane potential. Recovery mechanisms such as sodium-potassium pumps that aim to restore homeostasis fail, leading to osmolar shifts of fluid, swelling of the neuron, and ultimately a measurable depression in cortical activity that spreads in the order of millimeters per minute. Equally important is the resulting change in vascular response. In healthy tissue, increased electrical activity is coupled with release of vasodilatory factors such as nitric oxide and arachidonic acid metabolites that increase local blood flow to meet increased energy expenditure. In damaged tissue, not only is the restorative vascular response lacking but a vasoconstrictive response is promoted and the ischemia that follows adds to the severity of the initial injury. Tissue threatened by this ischemic response is then at elevated risk for CSD propagation and falls into a vicious cycle of electrical and hemodynamic disturbance. Efforts have been made to halt this spreading cortical depression using N-methyl-D-aspartate receptor antagonists and other ion channel blockers to minimize the damaging effects of CSD that can persist long after the triggering insult.
Collapse
Affiliation(s)
- Daniel R Kramer
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA.
| | - Tatsuhiro Fujii
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Ifije Ohiorhenuan
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Charles Y Liu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
56
|
Variation of repetitive cortical spreading depression waves is related with relative refractory period: a computational study. QUANTITATIVE BIOLOGY 2015. [DOI: 10.1007/s40484-015-0052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
58
|
Seidel JL, Escartin C, Ayata C, Bonvento G, Shuttleworth CW. Multifaceted roles for astrocytes in spreading depolarization: A target for limiting spreading depolarization in acute brain injury? Glia 2015; 64:5-20. [PMID: 26301517 DOI: 10.1002/glia.22824] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/31/2015] [Accepted: 03/02/2015] [Indexed: 12/17/2022]
Abstract
Spreading depolarizations (SDs) are coordinated waves of synchronous depolarization, involving large numbers of neurons and astrocytes as they spread slowly through brain tissue. The recent identification of SDs as likely contributors to pathophysiology in human subjects has led to a significant increase in interest in SD mechanisms, and possible approaches to limit the numbers of SDs or their deleterious consequences in injured brain. Astrocytes regulate many events associated with SD. SD initiation and propagation is dependent on extracellular accumulation of K(+) and glutamate, both of which involve astrocytic clearance. SDs are extremely metabolically demanding events, and signaling through astrocyte networks is likely central to the dramatic increase in regional blood flow that accompanies SD in otherwise healthy tissues. Astrocytes may provide metabolic support to neurons following SD, and may provide a source of adenosine that inhibits neuronal activity following SD. It is also possible that astrocytes contribute to the pathophysiology of SD, as a consequence of excessive glutamate release, facilitation of NMDA receptor activation, brain edema due to astrocyte swelling, or disrupted coupling to appropriate vascular responses after SD. Direct or indirect evidence has accumulated implicating astrocytes in many of these responses, but much remains unknown about their specific contributions, especially in the context of injury. Conversion of astrocytes to a reactive phenotype is a prominent feature of injured brain, and recent work suggests that the different functional properties of reactive astrocytes could be targeted to limit SDs in pathophysiological conditions.
Collapse
Affiliation(s)
- Jessica L Seidel
- Stroke and Neurovascular Regulation Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, F-92260 Fontenay-aux-Roses, France
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, F-92260 Fontenay-aux-Roses, France
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
59
|
Abstract
The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
Collapse
Affiliation(s)
- Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
60
|
Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the Spontaneously Hypertensive Rat: interaction with prior anesthesia and the impact of hyperglycemia. J Cereb Blood Flow Metab 2015; 35:1181-90. [PMID: 25757750 PMCID: PMC4640273 DOI: 10.1038/jcbfm.2015.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/16/2015] [Accepted: 02/08/2015] [Indexed: 02/07/2023]
Abstract
The relationship between peri-infarct depolarizations (PIDs) and infarction was investigated in a model of preconditioning by cortical freeze lesions (cryogenic lesions, CL) in the Spontaneously Hypertensive Rat. Small (< 5 mm(3)) lesions produced 24 hours before permanent focal ischemia were protective, without impacting baseline cerebral blood flow (CBF) and metabolism. Prior CL reduced infarct volume, associated with improved penumbral CBF as previously showed for ischemic preconditioning. The brief initial procedure avoided sham effects on infarct volume after subsequent occlusion under brief anesthesia. However, under prolonged isoflurane anesthesia for perfusion monitoring both sham and CL rats showed reduced PID incidence relative to naive animals. This anesthesia effect could be eliminated by using α-chloralose during perfusion imaging. As an additional methodological concern, blood glucose was frequently elevated at the time of the second surgery, reflecting buprenorphine-induced pica and other undefined mechanisms. Even modest hyperglycemia (>10 mmol/L) reduced PID incidence. In normoglycemic animals CL preconditioning reduced PID number by 50%, demonstrating associated effects on PID incidence, penumbral perfusion, and infarct progression. Hyperglycemia suppressed PIDs without affecting the relationship between CBF and infarction. This suggests that the primary effect of preconditioning is to improve penumbral perfusion, which in turn impacts PID incidence and infarct size.
Collapse
|
61
|
Gutiérrez-Vargas JA, Cespedes-Rubio A, Cardona-Gómez GP. Perspective of synaptic protection after post-infarction treatment with statins. J Transl Med 2015; 13:118. [PMID: 25884826 PMCID: PMC4403706 DOI: 10.1186/s12967-015-0472-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/23/2015] [Indexed: 11/30/2022] Open
Abstract
Stroke is the second most common cause of death in people over 45 years of age in Colombia and is the leading cause of permanent disability worldwide. Cerebral ischemia is a stroke characterized by decreased blood flow due to the occlusion of one or more cerebral arteries, which can cause memory problems and hemiplegia or paralysis, among other impairments. The literature contains hundreds of therapies (invasive and noninvasive) that exhibit a neuroprotective effect when evaluated in animal models. However, in clinical trials, most of these drugs do not reproduce the previously demonstrated neuroprotective property, and some even have adverse effects that had not previously been detected in animal experimentation. Statins are drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis. Several studies have shown that statin therapy in an animal model of focal cerebral ischemia reduces infarct volume, as well as markers of neurodegeneration, activates neuronal survival pathways, and improves performance on learning and memory tests. Given the implied therapeutic benefit and the limited understanding of the mechanism of action of statins in brain repair, it is necessary to address the biochemical and tissue effects of these drugs on synaptic proteins, such as NMDA receptors, synaptic adhesion proteins, and cytoskeletal proteins; these proteins are highly relevant therapeutic targets, which, in addition to giving a structural account of synaptic connectivity and function, are also indicators of cellular communication and the integrity of the blood–brain barrier, which are widely affected in the long term post-cerebral infarct but, interestingly, are protected by statins when administered during the acute phase.
Collapse
Affiliation(s)
- Johanna Andrea Gutiérrez-Vargas
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Angel Cespedes-Rubio
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. .,Neurodegenerative Diseases Research Group, Department of Animal Health - Faculty of Veterinary Medicine - University of Tolima, Ibague, Colombia.
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
62
|
Yıldırım T, Eylen A, Lule S, Erdener SE, Vural A, Karatas H, Ozveren MF, Dalkara T, Gursoy-Ozdemir Y. Poloxamer-188 and citicoline provide neuronal membrane integrity and protect membrane stability in cortical spreading depression. Int J Neurosci 2014; 125:941-6. [PMID: 25340256 DOI: 10.3109/00207454.2014.979289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.
Collapse
Affiliation(s)
- Timur Yıldırım
- a Department of Neurosurgery, Ankara Atatürk Education and Research Hospital , Ankara , Turkey
| | - Alpaslan Eylen
- b Department of Neurosurgery, Konya Numune Hospital , Konya , Turkey
| | - Sevda Lule
- c Institute of Neurological Sciences and Psychiatry, Hacettepe University , Ankara , Turkey
| | - Sefik Evren Erdener
- c Institute of Neurological Sciences and Psychiatry, Hacettepe University , Ankara , Turkey.,d Department of Neurology, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | - Atay Vural
- c Institute of Neurological Sciences and Psychiatry, Hacettepe University , Ankara , Turkey.,d Department of Neurology, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | - Hulya Karatas
- c Institute of Neurological Sciences and Psychiatry, Hacettepe University , Ankara , Turkey.,d Department of Neurology, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | - Mehmet Faik Ozveren
- e Department of Neurosurgery, Faculty of Medicine, Ordu University , Ordu , Turkey
| | - Turgay Dalkara
- c Institute of Neurological Sciences and Psychiatry, Hacettepe University , Ankara , Turkey.,d Department of Neurology, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | - Yasemin Gursoy-Ozdemir
- c Institute of Neurological Sciences and Psychiatry, Hacettepe University , Ankara , Turkey.,d Department of Neurology, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| |
Collapse
|
63
|
Lindquist BE, Shuttleworth CW. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo. J Cereb Blood Flow Metab 2014; 34:1779-90. [PMID: 25160669 PMCID: PMC4269755 DOI: 10.1038/jcbfm.2014.146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
64
|
Bere Z, Obrenovitch TP, Kozák G, Bari F, Farkas E. Imaging reveals the focal area of spreading depolarizations and a variety of hemodynamic responses in a rat microembolic stroke model. J Cereb Blood Flow Metab 2014; 34:1695-705. [PMID: 25074743 PMCID: PMC4269732 DOI: 10.1038/jcbfm.2014.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 07/02/2014] [Indexed: 01/24/2023]
Abstract
Spreading depolarizations (SDs) occur in stroke, but the spatial association between SDs and the corresponding hemodynamic changes is incompletely understood. We applied multimodal imaging to visualize the focal area of selected SDs, and hemodynamic responses with SDs propagating over the ischemic cortex. The intracarotid infusion of polyethylene microspheres (d=45 to 53 μm) produced multifocal ischemia in anesthetized rats (n=7). Synchronous image sequences captured through a cranial window above the frontoparietal cortex revealed: Changes in membrane potential (voltage-sensitive (VS) dye method); cerebral blood flow (CBF; laser speckle contrast (LSC) imaging); and hemoglobin (Hb) deoxygenation (red intrinsic optical signal (IOS) at 620 to 640 nm). A total of 31 SD events were identified. The foci of five SDs were seen in the cranial window, originating where CBF was the lowest (56.9±9%), but without evident signs of infarcts. The hyperemic CBF responses to propagating SDs were coupled with three types of Hb saturation kinetics. More accentuated Hb desaturation was related to a larger decrease in CBF shortly after ischemia induction. Microsphere-induced embolization triggers SDs in the rat brain, relevant for small embolic infarcts in patients. The SD occurrence during the early phase of ischemia is not tightly associated with immediate infarct evolution. Various kinetics of Hb saturation may determine the metabolic consequences of individual SDs.
Collapse
Affiliation(s)
- Zsófia Bere
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tihomir P Obrenovitch
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
65
|
Sayre NL, Chen Y, Sifuentes M, Stoveken B, Lechleiter JD. Purinergic receptor stimulation decreases ischemic brain damage by energizing astrocyte mitochondria. ADVANCES IN NEUROBIOLOGY 2014; 11:121-50. [PMID: 25236727 DOI: 10.1007/978-3-319-08894-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a leading cause of death in the world, cerebral ischemic stroke has limited treatment options. The lack of glucose and oxygen after stroke is particularly harmful in the brain because neuronal metabolism accounts for significantly more energy consumption per gram of body weight compared to other organs. Our laboratory has identified mitochondrial metabolism of astrocytes to be a key target for pharmacologic intervention, not only because astrocytes play a central role in regulating brain metabolism, but also because they are essential for neuronal health and support. Here we review current literature pertaining to the pathobiology of stroke, along with the role of astrocytes and metabolism in stroke. We also discuss our research, which has revealed that pharmacologic stimulation of metabotropic P2Y1 receptor signaling in astrocytes can increase mitochondrial energy production and also reduce damage after stroke.
Collapse
Affiliation(s)
- Naomi L Sayre
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
66
|
Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 2014; 8:231. [PMID: 25177270 PMCID: PMC4132372 DOI: 10.3389/fncel.2014.00231] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.
Collapse
Affiliation(s)
- Rafael Andres Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá D.C., Colombia
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| |
Collapse
|
67
|
Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 2014; 15:379-93. [PMID: 24857965 DOI: 10.1038/nrn3770] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Punctuated episodes of spreading depolarizations erupt in the brain, encumbering tissue structure and function, and raising fascinating unanswered questions concerning their initiation and propagation. Linked to migraine aura and headache, cortical spreading depression contributes to the morbidity in the world's migraine with aura population. Even more ominously, erupting spreading depolarizations accelerate tissue damage during brain injury. The once-held view that spreading depolarizations may not exist in the human brain has changed, largely because of the discovery of migraine genes that confer cortical spreading depression susceptibility, the application of sophisticated imaging tools and efforts to interrogate their impact in the acutely injured human brain.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova 35121 Padova, Italy
| | - Michael A Moskowitz
- 1] Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, 149 13th Street, Room 6403, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
68
|
Notturno F, Pace M, Zappasodi F, Cam E, Bassetti CL, Uncini A. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model. J Neurol Sci 2014; 342:146-51. [PMID: 24857352 DOI: 10.1016/j.jns.2014.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans.
Collapse
Affiliation(s)
- Francesca Notturno
- Department of Neuroscience and Imaging, University "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy; Neurocenter of Southern Switzerland Via Tesserete 46, 6903 Lugano, Switzerland
| | - Marta Pace
- Neurocenter of Southern Switzerland Via Tesserete 46, 6903 Lugano, Switzerland
| | - Filippo Zappasodi
- Department of Neuroscience and Imaging, University "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy; Institute of Advanced Biomedical Technologies, University "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy
| | - Etrugul Cam
- Universitätsklinik für Neurologie, Inselspital, Bern, Switzerland
| | - Claudio L Bassetti
- Neurocenter of Southern Switzerland Via Tesserete 46, 6903 Lugano, Switzerland; Universitätsklinik für Neurologie, Inselspital, Bern, Switzerland
| | - Antonino Uncini
- Department of Neuroscience and Imaging, University "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy; Neurocenter of Southern Switzerland Via Tesserete 46, 6903 Lugano, Switzerland.
| |
Collapse
|
69
|
Farkas E, Bari F. Spreading depolarization in the ischemic brain: does aging have an impact? J Gerontol A Biol Sci Med Sci 2014; 69:1363-70. [PMID: 24809351 DOI: 10.1093/gerona/glu066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recurrent waves of spreading depolarization (SD) spontaneously occur minutes after the onset of focal ischemia in the brain and keep generating for a number of days to follow. It has become widely accepted that ischemia-related SDs are part of the pathophysiology of cerebrovascular diseases and predict worse outcome. SDs may exacerbate ischemic injury via related atypical hemodynamic responses. The incidence of ischemic stroke is known to increase markedly with age; yet, very few studies investigated whether age alters SD evolution and whether a potential age-specific pattern of SD would contribute to the age-related intensification of infarct development. Experimental data demonstrate that aging has a marked impact on SD evolution and corresponding changes in cerebral blood flow. We hypothesize that an age-specific pattern of the SD-associated hemodynamic response must be involved in augmenting the expansion of ischemic brain damage in the elderly patients and that structural and functional (mal)adaptation of the cerebrovascular system with aging serves as a potential basis for compromised vascular reactivity and subsequent tissue damage. The concept put forward is expected to stimulate further investigation to achieve a comprehensive overview of the implication of SD in injury progression in the aged brain.
Collapse
Affiliation(s)
- Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
70
|
Bere Z, Obrenovitch TP, Bari F, Farkas E. Ischemia-induced depolarizations and associated hemodynamic responses in incomplete global forebrain ischemia in rats. Neuroscience 2013; 260:217-26. [PMID: 24365459 DOI: 10.1016/j.neuroscience.2013.12.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 10/25/2022]
Abstract
Spontaneous depolarizations around the core are a consistent feature of focal cerebral ischemia, but the associated regional hemodynamic changes are heterogeneous. We determined how the features of depolarizations relate to subsequent cerebral blood flow (CBF) changes in global forebrain ischemia. Forebrain ischemia was produced in halothane-anesthetized rats (n=13) by common carotid artery occlusion and hypovolemic hypotension. Mean arterial blood pressure (MABP) was monitored via a femoral catheter. Specific illuminations allowed the capture of image sequences through a cranial window to visualize: changes in membrane potential (voltage-sensitive dye method); CBF (laser speckle contrast imaging); cerebral blood volume (intrinsic optical signal, IOS at 540-550nm); and hemoglobin deoxygenation (IOS at 620-640nm). A depolarization occurred (n=9) when CBF fell below 43.4±5% of control (41±4mmHg MABP), and propagated with a distinct wave front at a rate of 2.8mm/min. Depolarizations were either persistent (n=4), intermediate (n=3) or short, transient depolarization (n=2). Persistent and intermediate depolarizations were associated with sustained hypoperfusion (-11.7±5.1%) and transient hypoperfusion (-17.4±5.2, relative to CBF before depolarization). Short, transient depolarizations did not generate clear CBF responses. Depolarizations during incomplete global ischemia occurred at the lower limit of CBF autoregulation, propagated similar to spreading depolarization (SD), and the hemodynamic responses indicated inverse neurovascular coupling. Similar to SDs associated with focal stroke, the propagating event can be persistent or transient.
Collapse
Affiliation(s)
- Z Bere
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary; Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary.
| | - T P Obrenovitch
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary.
| | - F Bari
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary.
| | - E Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary; Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary.
| |
Collapse
|
71
|
Sueiras M, Sahuquillo J, García-López B, Sánchez-Guerrero Á, Poca MA, Santamarina E, Riveiro M, Fabricius M, Strong AJ. [Cortical spreading depolarization phenomena in patients with traumatic and ischemic brain injuries. Results of a pilot study]. Med Intensiva 2013; 38:413-21. [PMID: 24342071 DOI: 10.1016/j.medin.2013.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/14/2013] [Accepted: 09/29/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To determine the frequency and duration of cortical spreading depolarization (CSD) and CSD-like episodes in patients with traumatic brain injury (TBI) and malignant middle cerebral artery infarction (MMCAI) requiring craniotomy. DESIGN A descriptive observational study was carried out during 19 months. SETTING Neurocritical patients. PATIENTS Sixteen patients were included: 9 with MMCAI and 7 with moderate or severe TBI, requiring surgical treatment. INTERVENTIONS A 6-electrode subdural electrocorticographic (ECoG) strip was placed onto the perilesional cortex. MAIN VARIABLES OF INTEREST An analysis was made of the time profile and the number and duration of CSD and CSD-like episodes recorded from the ECoGs. RESULTS Of the 16 patients enrolled, 9 presented episodes of CSD or CSD-like phenomena, of highly variable frequency and duration. CONCLUSIONS Episodes of CSD and CSD-like phenomena are frequently detected in the ischemic penumbra and/or traumatic cortical regions of patients with MMCAI who require decompressive craniectomy or of patients with contusional TBI.
Collapse
Affiliation(s)
- M Sueiras
- Servicio de Neurofisiología, Hospital Universitario Vall d'Hebron, Barcelona, España; Unidad de Investigación de Neurotraumatología y Neurocirugía (UNINN), Hospital Universitario Vall d'Hebron, Institut Fundació de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España
| | - J Sahuquillo
- Unidad de Investigación de Neurotraumatología y Neurocirugía (UNINN), Hospital Universitario Vall d'Hebron, Institut Fundació de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España; Servicio de Neurocirugía, Hospital Universitario Vall d'Hebron, Barcelona, España.
| | - B García-López
- Servicio de Neurofisiología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Á Sánchez-Guerrero
- Unidad de Investigación de Neurotraumatología y Neurocirugía (UNINN), Hospital Universitario Vall d'Hebron, Institut Fundació de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España
| | - M A Poca
- Unidad de Investigación de Neurotraumatología y Neurocirugía (UNINN), Hospital Universitario Vall d'Hebron, Institut Fundació de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España; Servicio de Neurocirugía, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - E Santamarina
- Servicio de Neurología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - M Riveiro
- Unidad de Investigación de Neurotraumatología y Neurocirugía (UNINN), Hospital Universitario Vall d'Hebron, Institut Fundació de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España; Unidad de Cuidados Intensivos de Neurotraumatología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - M Fabricius
- Department of Clinical Neurophysiology, Glostrup Hospital, Copenhagen, Dinamarca
| | - A J Strong
- Department of Neurosurgery, King's College, London, Reino Unido
| |
Collapse
|
72
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
73
|
The potential roles of 18F-FDG-PET in management of acute stroke patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:634598. [PMID: 23762852 PMCID: PMC3671294 DOI: 10.1155/2013/634598] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/14/2013] [Indexed: 01/17/2023]
Abstract
Extensive efforts have recently been devoted to developing noninvasive imaging tools capable of delineating brain tissue viability (penumbra) during acute ischemic stroke. These efforts could have profound clinical implications for identifying patients who may benefit from tPA beyond the currently approved therapeutic time window and/or patients undergoing neuroendovascular treatments. To date, the DWI/PWI MRI and perfusion CT have received the most attention for identifying ischemic penumbra. However, their routine use in clinical settings remains limited. Preclinical and clinical PET studies with [18F]-fluoro-2-deoxy-D-glucose (18F-FDG) have consistently revealed a decreased 18F-FDG uptake in regions of presumed ischemic core. More importantly, an elevated 18F-FDG uptake in the peri-ischemic regions has been reported, potentially reflecting viable tissues. To this end, this paper provides a comprehensive review of the literature on the utilization of 14C-2-DG and 18F-FDG-PET in experimental as well as human stroke studies. Possible cellular mechanisms and physiological underpinnings attributed to the reported temporal and spatial uptake patterns of 18F-FDG are addressed. Given the wide availability of 18F-FDG in routine clinical settings, 18F-FDG PET may serve as an alternative, non-invasive tool to MRI and CT for the management of acute stroke patients.
Collapse
|
74
|
A Systematic, Integrated Study on the Neuroprotective Effects of Hydroxysafflor Yellow A Revealed by (1)H NMR-Based Metabonomics and the NF-κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:147362. [PMID: 23710208 PMCID: PMC3654365 DOI: 10.1155/2013/147362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/02/2013] [Indexed: 01/10/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is the main active component of the Chinese herb Carthamus tinctorius L.. Purified HSYA is used as a neuroprotective agent to prevent cerebral ischemia. Injectable safflor yellow (50 mg, containing 35 mg HSYA) is widely used to treat patients with ischemic cardiocerebrovascular disease. However, it is unknown how HSYA exerts a protective effect on cerebral ischemia at the molecular level. A systematical integrated study, including histopathological examination, neurological evaluation, blood-brain barrier (BBB), metabonomics, and the nuclear factor-κB (NF-κB) pathway, was applied to elucidate the pathophysiological mechanisms of HSYA neuroprotection at the molecular level. HSYA could travel across the BBB, significantly reducing the infarct volume and improving the neurological functions of rats with ischemia. Treatment with HSYA could lead to relative corrections of the impaired metabolic pathways through energy metabolism disruption, excitatory amino acid toxicity, oxidative stress, and membrane disruption revealed by (1)H NMR-based metabonomics. Meanwhile, HSYA treatment inhibits the NF-κB pathway via suppressing proinflammatory cytokine expression and p65 translocation and binding activity while upregulating an anti-inflammatory cytokine.
Collapse
|
75
|
Zhang SJ, Ke Z, Li L, Yip SP, Tong KY. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery. Physiol Meas 2013; 34:423-35. [PMID: 23524534 DOI: 10.1088/0967-3334/34/4/423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.
Collapse
Affiliation(s)
- Shao-jie Zhang
- Interdisciplinary Division of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong
| | | | | | | | | |
Collapse
|
76
|
Gniel HM, Martin RL. Cortical spreading depression-induced preconditioning in mouse neocortex is lamina specific. J Neurophysiol 2013; 109:2923-36. [PMID: 23515796 DOI: 10.1152/jn.00855.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical spreading depression (CSD) is able to confer neuroprotection when delivered at least 1 day in advance of an ischemic event. However, its ability to confer neuroprotection in a more immediate time frame has not previously been investigated. Here we have used mouse neocortical brain slices to study the effects of repeated episodes of CSD in layer V and layer II/III pyramidal neurons. In layer V, CSD evoked at 15-min intervals caused successively smaller membrane depolarizations and increases in intracellular calcium compared with the response to the first CSD. With an inter-CSD interval of 30 min this preconditioning effect was much less marked, indicating that preconditioning lasts between 15 and 30 min. A single episode of CSD also provided a degree of protection in oxygen-glucose deprivation (OGD) by significantly lengthening the time a cell could withstand OGD before anoxic depolarization occurred. In layer II/III pyramidal neurons no preconditioning by CSD on subsequent episodes of CSD was observed, demonstrating that the response of pyramidal neurons to repeated CSD is lamina specific. The A1 receptor antagonist 8-cyclopentyl theophylline (8-CPT) reduced the layer V preconditioning in a concentration-related manner. Inhibition of extracellular formation of adenosine by blocking ecto-5'-nucleotidase with α,β-methyleneadenosine 5'-diphosphate prevented preconditioning in most but not all cells. Block of equilibrative nucleoside transporters 1 and 2 with dipyramidole alone or in combination with 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine also prevented preconditioning in some but not all cells. These data provide evidence that rapid preconditioning of one CSD by another is primarily mediated by adenosine.
Collapse
Affiliation(s)
- Helen M Gniel
- Research School of Biology, The Australian National Univ. Bldg. 134, Linnaeus Way, Acton, ACT, 0200, Australia.
| | | |
Collapse
|
77
|
He Y, Fujii M, Inoue T, Nomura S, Maruta Y, Oka F, Shirao S, Owada Y, Kida H, Kunitsugu I, Yamakawa T, Tokiwa T, Yamakawa T, Suzuki M. Neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: Analysis from a neurophysiological perspective. Brain Res 2013; 1497:53-60. [DOI: 10.1016/j.brainres.2012.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022]
|
78
|
Naito H, Takeda Y, Danura T, Kass IS, Morita K. Effect of lidocaine on dynamic changes in cortical reduced nicotinamide adenine dinucleotide fluorescence during transient focal cerebral ischemia in rats. Neuroscience 2013; 235:59-69. [PMID: 23321540 DOI: 10.1016/j.neuroscience.2013.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/27/2012] [Accepted: 01/08/2013] [Indexed: 01/24/2023]
Abstract
Rats were subjected to 90min of focal ischemia by occluding the left middle cerebral and both common carotid arteries. The dynamic changes in the formation of brain ischemic areas were analyzed by measuring the direct current (DC) potential and reduced nicotinamide adenine dinucleotide (NADH) fluorescence with ultraviolet irradiation. In the lidocaine group (n=10), 30min before ischemia, an intravenous bolus (1.5mg/kg) of lidocaine was administered, followed by a continuous infusion (2mg/kg/h) for 150min. In the control group (n=10), an equivalent amount of saline was administered. Following the initiation of ischemia, an area of high-intensity NADH fluorescence rapidly developed in the middle cerebral artery territory in both groups and the DC potential in this area showed ischemic depolarization. An increase in NADH fluorescence closely correlated with the DC depolarization. The blood flow in the marginal zone of both groups showed a similar decrease. Five minutes after the onset of ischemia, the area of high-intensity NADH fluorescence was significantly smaller in the lidocaine group (67% of the control; P=0.01). This was likely due to the suppression of ischemic depolarization by blockage of voltage-dependent sodium channels with lidocaine. Although lidocaine administration did not attenuate the number of peri-infarct depolarizations during ischemia, the high-intensity area and infarct volume were significantly smaller in the lidocaine group both at the end of ischemia (78% of the control; P=0.046) and 24h later (P=0.02). A logistic regression analysis demonstrated a relationship between the duration of ischemic depolarization and histologic damage and revealed that lidocaine administration did not attenuate neuronal damage when the duration of depolarization was identical. These findings indicate that the mechanism by which lidocaine decreases infarct volume is primarily through a reduction of the brain area undergoing NADH fluorescence increases which closely correlates with depolarization.
Collapse
Affiliation(s)
- H Naito
- Department of Anesthesiology, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
79
|
Oxymétrie cérébrale. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
80
|
Spreading ischemia after aneurysmal subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 115:125-9. [PMID: 22890658 DOI: 10.1007/978-3-7091-1192-5_26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Spreading depolarization (SD) is a wave of mass neuronal and glial depolarization associated with net influx of cations and water. Prolonged SDs facilitate neuronal death. SD induces tone alterations in cerebral resistance arterioles, leading to either transient hyperperfusion (physiological neurovascular coupling) in healthy tissue or hypoperfusion (inverse neurovascular coupling = spreading ischemia) in tissue at risk for progressive damage. Spreading ischemia has been shown experimentally in an animal model replicating the conditions present following aneurysmal subarachnoid hemorrhage (aSAH), in animal models of the ischemic core and penumbra following middle cerebral artery occlusion, and in patients with aSAH. In animals, spreading ischemia produced widespread cortical necrosis. In patients, spreading ischemia occurred in temporal correlation with ischemic lesion development early and late after aSAH. We briefly review important features of SD and spreading ischemia following aSAH.
Collapse
|
81
|
Abstract
Anoxic depolarization of pyramidal neurons results from a large inward current that is activated, in part, by excessive glutamate release during exposure to anoxia/ischemia. Pannexin-1 (Panx1) channels can be activated both by ischemia and NMDA receptors (NMDARs), but the mechanisms of Panx1 activation are unknown. We used whole-cell recordings to show that pharmacological inhibition or conditional genetic deletion of Panx1 strongly attenuates the anoxic depolarization of CA1 pyramidal neurons in acute brain slices from rats and mice. Anoxia or exogenous NMDA activated Src family kinases (SFKs), as measured by increased phosphorylation of SFKs at Y416. The SFK inhibitor PP2 prevented Src activation and Panx1 opening during anoxia. A newly developed interfering peptide that targets the SFK consensus-like sequence of Panx1 (Y308) attenuated the anoxic depolarization (AD) without affecting SFK activation. Importantly, the NMDAR antagonists, D-APV and R-CPP, attenuated AD currents carried by Panx1, and the combined application of D-APV and (10)panx (a Panx1 blocker) inhibited AD currents to the same extent as either blocker alone. We conclude that activation of NMDARs during anoxia/ischemia recruits SFKs to open Panx1, leading to sustained neuronal depolarizations.
Collapse
|
82
|
|
83
|
Mané M, Müller M. Temporo-spectral imaging of intrinsic optical signals during hypoxia-induced spreading depression-like depolarization. PLoS One 2012; 7:e43981. [PMID: 22952835 PMCID: PMC3430631 DOI: 10.1371/journal.pone.0043981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
Spreading depression (SD) is characterized by a sustained near-complete depolarization of neurons, a massive depolarization of glia, and a negative deflection of the extracellular DC potential. These electrophysiological signs are accompanied by an intrinsic optical signal (IOS) which arises from changes in light scattering and absorption. Even though the underlying mechanisms are unclear, the IOS serves as non-invasive tool to define the spatiotemporal dynamics of SD in brain slices. Usually the tissue is illuminated by white light, and light reflectance or transmittance is monitored. Using a polychromatic, fast-switchable light source we now performed temporo-spectral recordings of the IOS associated with hypoxia-induced SD-like depolarization (HSD) in rat hippocampal slices kept in an interface recording chamber. Recording full illumination spectra (320–680 nm) yielded distinct reflectance profiles for the different phases of HSD. Early during hypoxia tissue reflectance decreased within almost the entire spectrum due to cell swelling. HSD was accompanied by a reversible reflectance increase being most pronounced at 400 nm and 460 nm. At 440 nm massive porphyrin absorption (Soret band) was detected. Hypotonic solutions, Ca2+-withdrawal and glial poisoning intensified the reflectance increase during HSD, whereas hypertonic solutions dampened it. Replacement of Cl- inverted the reflectance increase. Inducing HSD by cyanide distorted the IOS and reflectance at 340–400 nm increased irreversibly. The pronounced changes at short wavelengths (380 nm, 460 nm) and their cyanide sensitivity suggest that block of mitochondrial metabolism contributes to the IOS during HSD. For stable and reliable IOS recordings during HSD wavelengths of 460–560 nm are recommended.
Collapse
Affiliation(s)
- Maria Mané
- DFG Research Center Molecular Physiology of the Brain (CMPB), Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Müller
- DFG Research Center Molecular Physiology of the Brain (CMPB), Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
84
|
Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, Herreras O. Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? Neuroscientist 2012; 19:25-42. [PMID: 22829393 DOI: 10.1177/1073858412453340] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs-Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
85
|
Grinberg YY, van Drongelen W, Kraig RP. Insulin-like growth factor-1 lowers spreading depression susceptibility and reduces oxidative stress. J Neurochem 2012; 122:221-9. [PMID: 22524542 DOI: 10.1111/j.1471-4159.2012.07763.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spreading depression (SD), the likely cause of migraine aura and perhaps migraine, is triggered by widespread and unfettered neuronal hyperexcitability. Migraine and the initiating hyperexcitability of seizure, which involve oxidative stress (OS), are likely interrelated. Environmental enrichment (EE) decreases seizure and can reduce migraine. EE's well-characterized neuroprotective effect involves insulin-like growth factor-1 (IGF-1). Accordingly, we asked if IGF-1 could mitigate the hyperexcitability that initiates SD using rat hippocampal slice cultures. We demonstrate that IGF-1 significantly decreased SD susceptibility and related OS. We mimicked OS of SD and observed that IGF-1 abolished hyperexcitability from OS. Application of an antioxidant significantly decreased SD susceptibility and co-administration of an antioxidant with IGF-1 produced no additive effect, whereas an oxidizer significantly increased SD, and this effect was abrogated by IGF-1. Moreover, IGF-1 significantly decreased baseline OS, despite seemingly paradoxically increasing CA3 bursting. These results suggest that IGF-1 increased endogenous antioxidants to levels sufficient to buffer against the OS of SD. Insulin similarly mitigated SD susceptibility, but required a far greater dose. Since brain IGF-1 increases with EE, and, like insulin, independently functions as an EE mimetic, we suggest that EE mimetics are a novel source of therapeutics for SD, and by extension, migraine.
Collapse
Affiliation(s)
- Yelena Y Grinberg
- Department of Neurology and Committee on Neurobiology, The University of Chicago Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
86
|
Abstract
In neurons exposed to glutamate, Ca²⁺ influx triggers intracellular Zn²⁺ release via an as yet unclear mechanism. As glutamate induces a Ca²⁺-dependent cytosolic acidification, the present work tested the relationships among intracellular Ca²⁺ concentration ([Ca²⁺](i)), intracellular pH (pH(i) ), and [Zn²⁺](i). Cultured hippocampal neurons were exposed to glutamate and glycine (Glu/Gly), while [Zn²⁺](i), [Ca²⁺](i) and pH(i) were monitored using FluoZin-3, Fura2-FF, and 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. Glu/Gly applications decreased pH(i) to 6.1 and induced intracellular Zn²⁺ release in a Ca²⁺-dependent manner, as expected. The pH(i) drop reduced the affinity of FluoZin-3 and Fura-2-FF for Zn²⁺. The rate of Glu/Gly-induced [Zn²⁺](i) increase was not correlated with the rate of [Ca²⁺](i) increase. Instead, the extent of [Zn²⁺](i) elevations corresponded well to the rate of pH(i) drop. Namely, [Zn²⁺](i) increased more in more highly acidified neurons. Inhibiting the mechanisms responsible for the Ca²⁺-dependent pH(i) drop (plasmalemmal Ca²⁺ pump and mitochondria) counteracted the Glu/Gly-induced intracellular Zn²⁺ release. Alkaline pH (8.5) suppressed Glu/Gly-induced intracellular Zn²⁺ release whereas acidic pH (6.0) enhanced it. A pH(i) drop to 6.0 (without any Ca²⁺ influx or glutamate receptor activation) led to intracellular Zn²⁺ release; the released Zn²⁺ (free Zn²⁺ plus Zn²⁺) bound to Fura-2FF and FluoZin-3) reached 1 μM.
Collapse
Affiliation(s)
- Lech Kiedrowski
- Departments of Psychiatry and Pharmacology, The Psychiatric Institute, The University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
87
|
Ashpole NM, Song W, Brustovetsky T, Engleman EA, Brustovetsky N, Cummins TR, Hudmon A. Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability. J Biol Chem 2012; 287:8495-506. [PMID: 22253441 DOI: 10.1074/jbc.m111.323915] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Stark Neuroscience Research Institute, Indiana University of School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Oliveira-Ferreira AI, Winkler MKL, Reiffurth C, Milakara D, Woitzik J, Dreier JP. Spreading depolarization, a pathophysiological mechanism of stroke and migraine aura. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.11.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spreading depolarization is a mechanism of abrupt, massive ion translocation between intraneuronal and extracellular space that entails cytotoxic edema in the brain’s gray matter. It is observed in patients as a large change of the slow electrical potential. Dependent on the energy status of the tissue, spreading depolarization is either preceded by nonspreading silencing due to neuronal hyperpolarization or accompanied by spreading silencing of electrical brain activity due to a depolarization block. Nonspreading silencing seems to translate into the initial clinical symptoms of ischemic stroke and spreading silencing translates into migraine aura. Direct electrophysiological evidence exists that spreading depolarization occurs in abundance in aneurysmal subarachnoid hemorrhage, delayed ischemic stroke after subarachnoid hemorrhage, malignant hemispheric stroke, spontaneous intracerebral hemorrhage and traumatic brain injury. Indirect evidence suggests its occurrence during migraine aura. In animals, spreading depolarizations facilitate neuronal death when they invade metabolically compromised tissue, whereas they are relatively innocuous in healthy tissue. Therapies targeting spreading depolarization may potentially treat these neurological conditions.
Collapse
Affiliation(s)
- Ana I Oliveira-Ferreira
- Department of Experimental Neurology, Charité University Medicine Berlin, Germany
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, Germany
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, Germany
| |
Collapse
|
90
|
Membrane Potential as Stroke Target. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
91
|
Breschi GL, Mastropietro A, Zucca I, Librizzi L, de Curtis M. Penumbra region excitability is not enhanced acutely after cerebral ischemia in the in vitro isolated guinea pig brain. Epilepsia 2011; 53:448-58. [DOI: 10.1111/j.1528-1167.2011.03356.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
92
|
Armstrong GAB, Xiao C, Krill JL, Seroude L, Dawson-Scully K, Robertson RM. Glial Hsp70 protects K+ homeostasis in the Drosophila brain during repetitive anoxic depolarization. PLoS One 2011; 6:e28994. [PMID: 22174942 PMCID: PMC3236231 DOI: 10.1371/journal.pone.0028994] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/17/2011] [Indexed: 01/04/2023] Open
Abstract
Neural tissue is particularly vulnerable to metabolic stress and loss of ion homeostasis. Repetitive stress generally leads to more permanent dysfunction but the mechanisms underlying this progression are poorly understood. We investigated the effects of energetic compromise in Drosophila by targeting the Na(+)/K(+)-ATPase. Acute ouabain treatment of intact flies resulted in subsequent repetitive comas that led to death and were associated with transient loss of K(+) homeostasis in the brain. Heat shock pre-conditioned flies were resistant to ouabain treatment. To control the timing of repeated loss of ion homeostasis we subjected flies to repetitive anoxia while recording extracellular [K(+)] in the brain. We show that targeted expression of the chaperone protein Hsp70 in glial cells delays a permanent loss of ion homeostasis associated with repetitive anoxic stress and suggest that this is a useful model for investigating molecular mechanisms of neuroprotection.
Collapse
|
93
|
Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng 2011; 40:367-77. [PMID: 22109805 DOI: 10.1007/s10439-011-0469-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging.
Collapse
|
94
|
Heiss WD. The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob Wepfer award 2011. Cerebrovasc Dis 2011; 32:307-20. [PMID: 21921593 DOI: 10.1159/000330462] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The concept of the ischemic penumbra was formulated 30 years ago based on experiments in animal models showing functional impairment and electrophysiological disturbances with decreasing flow to the brain below defined values (the threshold for function) and irreversible tissue damage with the blood supply further decreased (the threshold for infarction). The perfusion range between these thresholds was termed 'penumbra', and restitution of flow above the functional threshold was able to reverse the deficits without permanent damage. However, in further experiments, the dependency of the development of irreversible lesions on the interaction of the severity and duration of critically reduced blood flow was established - proving that the lower the flow, the shorter the time for efficient reperfusion. Therefore, infarction develops from the core of ischemia to the areas of less severe hypoperfusion. The propagation of irreversible tissue damage is characterized by a complex cascade of interconnected electrophysiological, molecular, metabolic and perfusional disturbances. Waves of depolarizations, the peri-infarct spreading depression-like depolarizations, inducing activation of ion pumps and liberation of excitatory transmitters, have dramatic consequences as drastically increased metabolic demand cannot be satisfied in regions with critically reduced blood supply. The translation of experimental concept into the basis for efficient treatment of stroke requires non-invasive methods by which regional flow and energy metabolism can be repeatedly investigated to demonstrate penumbra tissue that can benefit from therapeutic interventions. Positron emission tomography (PET) allows the quantification of regional cerebral blood flow, the regional metabolic rate for oxygen and the regional oxygen extraction fraction. From these variables, clear definitions of irreversible tissue damage and critically perfused but potentially salvageable tissue (i.e. the penumbra) can be achieved in animal models and stroke patients. Additionally, further tracers can be used for early detection of irreversible tissue damage, e.g. by the central benzodiazepine receptor ligand flumazenil. However, PET is a research tool and its complex logistics limit clinical routine applications. As a widely applicable clinical tool, perfusion/diffusion-weighted (PW/DW) MRI is used, and the 'mismatch' between the PW and the DW abnormalities serve as an indicator of the penumbra. However, comparative studies of PW/DW-MRI and PET have pointed to an overestimation of the core of irreversible infarction as well as of the penumbra by MRI modalities. Some of these discrepancies can be explained by unselective application of relative perfusion thresholds, which might be improved by more complex analytical procedures. Heterogeneity of the MRI signatures used for the definition of the mismatch are also responsible for disappointing results in the application of PW/DW-MRI for the selection of patients for clinical trials. As long as a validation of the mismatch selection paradigm is lacking, its use as a surrogate marker of outcome is limited.
Collapse
|
95
|
Abstract
Original experimental studies in nonhuman primate models of focal ischemia showed flow-related changes in evoked potentials that suggested a circumferential zone of low regional cerebral blood flow with normal K(+) homeostasis, around a core of permanent injury in the striatum or the cortex. This became the basis for the definition of the ischemic penumbra. Imaging techniques of the time suggested a homogeneous core of injury, while positing a surrounding 'penumbral' region that could be salvaged. However, both molecular studies and observations of vascular integrity indicate a more complex and dynamic situation in the ischemic core that also changes with time. The microvascular, cellular, and molecular events in the acute setting are compatible with heterogeneity of the injury within the injury center, which at early time points can be described as multiple 'mini-cores' associated with multiple 'mini-penumbras'. These observations suggest the progression of injury from many small foci to a homogeneous defect over time after the onset of ischemia. Recent observations with updated imaging techniques and data processing support these dynamic changes within the core and the penumbra in humans following focal ischemia.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Medicine (Division of Hematology), University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
96
|
Oxygen therapy improves energy metabolism in focal cerebral ischemia. Brain Res 2011; 1415:103-8. [PMID: 21872850 DOI: 10.1016/j.brainres.2011.07.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/29/2011] [Indexed: 12/30/2022]
Abstract
Oxygen therapy (OT) with hyperbaric oxygen (HBO) or normobaric hyperoxia (NBO) improves the oxygenation of penumbral tissue in experimental ischemic stroke. However, whether this results in the improvement of energy metabolism is unclear. We investigated the effect of both OTs on tissue acidosis and on ATP production. Beginning 25 min after filament middle cerebral artery occlusion (MCAO), mice breathed either air, 100% O₂ (NBO), or 100% O₂ at 3 ata (HBO) for 60 min. Regional tissue pH was measured using the umbelliferone fluorescence. Regional ATP concentration was depicted by substrate-specific bioluminescence. Severity of ischemia did not differ among groups in laser-Doppler flowmetry. Both NBO (70.1±14.0 mm³) and, more effectively, HBO (57.2±11.9 mm³) significantly reduced volume of tissue acidosis compared to air (89.4±4.0 mm³), p<0.05). Topographically, acidosis was less pronounced in the medial striatum and in the cortical ischemic border areas. This resulted in significantly smaller volumes of ATP depletion (77.8±7.7 mm³ in air, 61.4±15.2 mm³ in NBO and 51.2±14.4 mm³ in HBO; p<0.05). In conclusion, OT significantly improves energy metabolism in the border zones of focal cerebral ischemia which are the areas protected by OT in this model.
Collapse
|
97
|
Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y, Zhu W, Du Y, Jia L, Zhang Q, Dong Q, Zhu W, Zhang X, Bu B, Wang W. Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol 2011; 70:121-132. [PMID: 21786302 DOI: 10.1002/ana.22386] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Most patients with stroke caused by middle cerebral artery occlusion (MCAO) show cognitive deficit that is generally regarded as resulting from damage to the cerebral cortex rather than the hippocampus. Whether MCAO induces hippocampal damage and whether this contributes to the cognitive defects remains unclear. Here we investigate the hippocampal damage and its correlation to cognitive defects after exclusively unilateral MCAO and the underlying mechanism for that damage. METHODS Patients were assessed for hippocampal damage by magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), and the Mini Mental-Status Evaluation (MMSE) and Rey Auditory Verbal Learning Test (RAVLT) were used to assess for cognitive defects. RESULTS We provide the first evidence that patients with exclusively unilateral MCAO showed hippocampal damage characterized by an infarct-size-independent atrophy and alterations in neuronal and glial metabolites in the ipsilateral hippocampus, in parallel with cognitive impairment. Rodent MCAO also induced delayed shrinkage and pyramidal neuronal death in the ipsilateral hippocampus and an impairment of hippocampal-dependent spatial memory. Blocking Gap junctional communication (GJC) with carbenoxolone or downregulation of connexin43 (Cx43) significantly increased the survival of the pyramidal neurons in the ipsilateral hippocampus and improved behavioral scores. Furthermore, Cx43 heterozygous mice showed reduced shrinkage and metabolite abnormality in ipsilateral hippocampus after MCAO. INTERPRETATION Astroglial GJC plays a significant role in MCAO-induced remote hippocampal damage and cognitive impairment. It might be possible to improve the cognition in patients with MCAO by manipulating interastrocytic communication via the gap junction channels.
Collapse
Affiliation(s)
- Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 2011; 17:439-47. [PMID: 21475241 DOI: 10.1038/nm.2333] [Citation(s) in RCA: 822] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The term spreading depolarization describes a wave in the gray matter of the central nervous system characterized by swelling of neurons, distortion of dendritic spines, a large change of the slow electrical potential and silencing of brain electrical activity (spreading depression). In the clinic, unequivocal electrophysiological evidence now exists that spreading depolarizations occur abundantly in individuals with aneurismal subarachnoid hemorrhage, delayed ischemic stroke after subarachnoid hemorrhage, malignant hemispheric stroke, spontaneous intracerebral hemorrhage or traumatic brain injury. Spreading depolarization is induced experimentally by various noxious conditions including chemicals such as potassium, glutamate, inhibitors of the sodium pump, status epilepticus, hypoxia, hypoglycemia and ischemia, but it can can also invade healthy, naive tissue. Resistance vessels respond to it with tone alterations, causing either transient hyperperfusion (physiological hemodynamic response) in healthy tissue or severe hypoperfusion (inverse hemodynamic response, or spreading ischemia) in tissue at risk for progressive damage, which contributes to lesion progression. Therapies that target spreading depolarization or the inverse hemodynamic response may potentially treat these neurological conditions.
Collapse
|
99
|
Abstract
With the growing understanding of the mechanism of cell death in ischemia, new approaches for treatment such as neuroprotection have emerged. The basic aim of this strategy is to interfere with the events of the ischemic cascade, blocking the pathological processes and preventing the death of nerve cells in the ischemic penumebra. This concept involves inhibition of the pathological molecular events which eventually leads to the influx of calcium, activation of free radicals and neuronal death. Despite encouraging data from experimental animal models, all clinical trials of neuroprotective therapies have to date been unsuccessful. This article reviews some of the reasons for the failure of neuroprotection in the clinical trials so far. Despite all the negative reports, we believe it would be wrong to give up at this point, since there is still reasonable hope of finding an effective neuroprotection for stroke.
Collapse
Affiliation(s)
- E Auriel
- Stroke unit, Department of neurology, Tel Aviv Sourasky Medical Center and The Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | | |
Collapse
|
100
|
Kumagai T, Walberer M, Nakamura H, Endepols H, Sué M, Vollmar S, Adib S, Mies G, Yoshimine T, Schroeter M, Graf R. Distinct spatiotemporal patterns of spreading depolarizations during early infarct evolution: evidence from real-time imaging. J Cereb Blood Flow Metab 2011; 31:580-92. [PMID: 20700132 PMCID: PMC3049513 DOI: 10.1038/jcbfm.2010.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/19/2010] [Accepted: 07/13/2010] [Indexed: 01/27/2023]
Abstract
Experimental and clinical studies indicate that waves of cortical spreading depolarization (CSD) appearing in the ischemic penumbra contribute to secondary lesion growth. We used an embolic stroke model that enabled us to investigate inverse coupling of blood flow by laser speckle imaging (CBF(LSF)) to CSD as a contributing factor to lesion growth already in the early phase after arterial occlusion. Embolization by macrospheres injected into the left carotid artery of anesthetized rats reduced CBF(LSF) in the territories of the middle cerebral artery (MCA) (8/14 animals), the posterior cerebral artery (PCA) (2/14) or in less clearly defined regions (4/14). Analysis of MCA occlusions (MCAOs) revealed a first CSD wave starting off during ischemic decline at the emerging core region, propagating concentrically over large portions of left cortex. Subsequent recurrent waves of CSD did not propagate concentrically but preferentially circled around the ischemic core. In the vicinity of the core region, CSDs were coupled to waves of predominantly vasoconstrictive CBF(LSF) responses, resulting in further decline of CBF in the entire inner penumbra and in expansion of the ischemic core. We conclude that CSDs and corresponding CBF responses follow a defined spatiotemporal order, and contribute to early evolution of ischemic territories.
Collapse
Affiliation(s)
- Tetsuya Kumagai
- Max Planck Institute for Neurological Research, Cologne, Germany
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maureen Walberer
- Max Planck Institute for Neurological Research, Cologne, Germany
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Hajime Nakamura
- Max Planck Institute for Neurological Research, Cologne, Germany
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Heike Endepols
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Michael Sué
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Stefan Vollmar
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Sasan Adib
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Günter Mies
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michael Schroeter
- Max Planck Institute for Neurological Research, Cologne, Germany
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Rudolf Graf
- Max Planck Institute for Neurological Research, Cologne, Germany
| |
Collapse
|