51
|
Mockett BG, Brooks WM, Tate WP, Abraham WC. Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus. Brain Res 2004; 1021:92-100. [PMID: 15328036 DOI: 10.1016/j.brainres.2004.06.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 11/21/2022]
Abstract
The role of dopamine in the hippocampus remains poorly defined. Numerous studies have suggested that it acts as a neuromodulator of late-phase long-term potentiation (L-LTP) in CA1, while other reports controversially indicate that D1/D5 receptor (D1/D5R) activation may directly initiate activity-independent LTP. We have further investigated this putative role of dopamine in area CA1 in rat hippocampal slices using field potential recording techniques. Application of the dopamine D1/D5 receptor agonists SKF 38393 and 6-bromo-APB at 100 microM for 20 min did not induce an activity-independent L-LTP. Varying the incubation conditions still did not permit either SKF 38393 or an alternative D1/D5R agonist, 6-chloro-PB, to induce L-LTP. To further determine if intracellular mechanisms, which may act to limit the expression of LTP, were preventing D1/D5R-induced L-LTP expression, we inhibited protein phosphatase 1 activity by reducing cyclin-dependent kinase 5 (cdk5) inhibition of inhibitor 1. Inhibition of cdk5 by roscovitine (10 microM, 40 min) did not facilitate the ability of SKF 38393 to induce L-LTP in CA1. Biochemical experiments confirmed that the concentration of agonist used significantly elevated intracellular cAMP levels, suggesting that effective D1/D5R activation was achieved. Furthermore, coactivation with NMDA receptors (NMDAR) resulted in a synergistic increase in cAMP. These findings demonstrate that D1/D5R activation in CA1 initiates intracellular second messenger accumulation, but that this is insufficient to induce an activity-independent L-LTP.
Collapse
Affiliation(s)
- Bruce G Mockett
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin 9001, New Zealand.
| | | | | | | |
Collapse
|
52
|
Huang YY, Simpson E, Kellendonk C, Kandel ER. Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci U S A 2004; 101:3236-41. [PMID: 14981263 PMCID: PMC365773 DOI: 10.1073/pnas.0308280101] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To address the role of D1 receptors in the medial prefrontal cortex, we combined pharmacological and genetic manipulations to examine long-term synaptic potentiation (LTP)/long-term synaptic depression (LTD) in brain slices of rats and mice. We found that the D1 antagonist SCH23390 selectively blocked the maintenance but not the induction of LTP in the prefrontal cortex. Conversely, activation of D1 receptors facilitated the maintenance of LTP, and this effect is impaired in heterozygous D1 receptor knockout mice. Low-frequency stimulation induced a transient depression in the medial prefrontal cortex. This depression could be transformed into LTD by coapplication of dopamine. Coapplication of dopamine, however, shows no facilitating effect on LTD in heterozygous D1 receptor knockout mice. These results provide pharmacological and genetic evidence for a role of D1 receptors in the bidirectional modulation of synaptic plasticity in the medial prefrontal cortex. The absence of this modulation in heterozygous knockout mice shows that a dysregulation of dopamine receptor expression levels can have dramatic effects on synaptic plasticity in the prefrontal cortex.
Collapse
Affiliation(s)
- Yan-You Huang
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
53
|
Jang CG, Lee SY, Yoo JH, Yan JJ, Song DK, Loh HH, Ho IK. Impaired water maze learning performance in μ-opioid receptor knockout mice. ACTA ACUST UNITED AC 2003; 117:68-72. [PMID: 14499482 DOI: 10.1016/s0169-328x(03)00291-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous study has demonstrated that the lack of mu-opioid receptor decreased LTP in the dentate gyrus of the hippocampus, suggesting the possibility that the lack of mu-opioid receptor may accompany a change in learning and memory. However, no behavioral study has been undertaken to correlate LTP deficits with spatial memory impairment in mu-opioid receptor knockout mice. Therefore, the present study investigated the hypothesis that mu-opioid receptors contribute to learning and memory by using the Morris water maze, and comparing responses in wild type and mu-opioid receptor gene knockout mice. Our results indicated that mu-opioid receptor knockout mice showed a significant spatial memory impairment compared to wild type in the Morris water maze. This result suggests that the expression of mu-opioid receptor plays an important role in spatial learning and memory examined by Morris water maze.
Collapse
Affiliation(s)
- Choon-Gon Jang
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Gyoungi-do, Suwon 440-746, South Korea.
| | | | | | | | | | | | | |
Collapse
|
54
|
White NM, Salinas JA. Mnemonic functions of dorsal striatum and hippocampus in aversive conditioning. Behav Brain Res 2003; 142:99-107. [PMID: 12798270 DOI: 10.1016/s0166-4328(02)00402-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
These experiments examined the mnemonic functions of hippocampus and dorsal striatum in Pavlovian aversive conditioning. Rats were trained in a single session by presenting three paired tones and footshocks. Immediately after training, they were given microinjections of D-amphetamine or vehicle into either dorsal hippocampus or dorsal striatum. Twenty-four hours later conditioned freezing (measured as cessation of movement by infrared motion detectors) to the experimental context and to the tone were measured separately. Compared to vehicle injections, amphetamine injections into dorsal hippocampus significantly increased conditioned freezing to the context but not to the tone. Injections into dorsal striatum increased conditioned freezing to both the context and the tone. These results converge with findings from lesion experiments suggesting that hippocampus is involved in aversive conditioning with contextual CSs only, and that dorsal striatum is involved in aversive conditioning with both contextual and discrete cue CSs. The functions of the these two structures in relation to that of the amygdala in the mediation of conditioned freezing are discussed.
Collapse
Affiliation(s)
- Norman M White
- Department of Psychology, McGill University, 1205 Dr Penfield Avenue, Montreal, Que., Canada H3A 1B1.
| | | |
Collapse
|
55
|
Abstract
It is only recently that a number of studies on synaptic plasticity in the hippocampus and other brain areas have considered that a heterosynaptic modulatory input could be recruited as well as the coincident firing of pre- and post-synaptic neurons. So far, the strongest evidence for such a regulation has been attributed to dopaminergic (DA) systems but other modulatory pathways have also been considered to influence synaptic plasticity. This review will focus on dopamine contribution to synaptic plasticity in different brain areas (hippocampus, striatum and prefrontal cortex) with, for each region, a few lines on the distribution of DA projections and receptors. New insights into the possible mechanisms underlying these plastic changes will be considered. The contribution of various DA systems in certain forms of learning and memory will be reviewed with recent advances supporting the hypothesis of similar cellular mechanisms underlying DA regulation of synaptic plasticity and memory processes in which the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway has a potential role. To summarize, endogenous DA, which depends on the activity patterns of DA midbrain neurons in freely moving animals, appears as a key regulator in specific synaptic changes observed at certain stages of learning and memory and of synaptic plasticity.
Collapse
Affiliation(s)
- Thérèse M Jay
- Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris Sud, Bât. 446, 91405 Orsay, France.
| |
Collapse
|
56
|
Shobe J. The role of PKA, CaMKII, and PKC in avoidance conditioning: permissive or instructive? Neurobiol Learn Mem 2002; 77:291-312. [PMID: 11991759 DOI: 10.1006/nlme.2001.4022] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article explores the causal and correlative relationships between kinases and learning and memory. Specifically, the contributions of three kinases-protein kinase A (PKA), calcium calmodulin-dependent kinase II (CaMKII), and protein kinase C (PKC)-are assessed during the consolidation phase of avoidance conditioning. The following sources of evidence are considered: inhibitor data, activity monitoring, and transgenic studies. An exhaustive effort is made to address several issues regarding the participation of these kinases in (a) posttraining timing and magnitude, (b) location across many brain regions, and (c) the use of multiple pharmacological agents and assays. In addition, this article attempts to integrate the behavioral data with the purported role of kinases in long-term potentiation (LTP).
Collapse
Affiliation(s)
- Justin Shobe
- Department of Neurobiology and Behavior, University of California-Irvine, 2205 BioSci II, Irvine, CA 92696-4550, USA.
| |
Collapse
|
57
|
Lezcano N, Bergson C. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons. J Neurophysiol 2002; 87:2167-75. [PMID: 11929934 DOI: 10.1152/jn.00541.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
D1/D5 dopamine receptors in basal ganglia, hippocampus, and cerebral cortex modulate motor, reward, and cognitive behavior. Previous work with recombinant proteins revealed that in cells primed with heterologous G(q/11)-coupled G-protein-coupled receptor (GPCR) agonists, the typically G(s)-linked D1/D5 receptors can stimulate robust release of calcium from internal stores when coexpressed with calcyon. To learn more about the intracellular signaling mechanisms underlying these D1/D5 receptor regulated behaviors, we explored the possibility that endogenous receptors stimulate internal release of calcium in neurons. We have identified a population of neurons in primary cultures of hippocampus and neocortex that respond to D1/D5 dopamine receptor agonists with a marked increase in intracellular calcium (Ca) levels. The D1/D5 receptor stimulated responses occurred in the absence of extracellular Ca(2+) indicating the rises in Ca involve release from internal stores. In addition, the responses were blocked by D1/D5 receptor antagonists. Further, the D1/D5 agonist-evoked responses were state dependent, requiring priming with agonists of G(q/11)-coupled glutamate, serotonin, muscarinic, and adrenergic receptors or with high external K(+) solution. In contrast, D1/D5 receptor agonist-evoked Ca(2+) responses were not detected in neurons derived from striatum. However, D1/D5 agonists elevated cAMP levels in striatal cultures as effectively as in neocortical and hippocampal cultures. Further, neither forskolin nor 8-Br-cAMP stimulation following priming was able to mimic the D1/D5 agonist-evoked Ca(2+) response in neocortical neurons indicating that increased cAMP levels are not sufficient to stimulate Ca release. Our data suggest that D1-like dopamine receptors likely modulate neocortical and hippocampal neuronal excitability and synaptic function via Ca(2+) as well as cAMP-dependent signaling.
Collapse
Affiliation(s)
- Nelson Lezcano
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | |
Collapse
|
58
|
Huang X, Lawler CP, Lewis MM, Nichols DE, Mailman RB. D1 dopamine receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:65-139. [PMID: 11526741 DOI: 10.1016/s0074-7742(01)48014-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- X Huang
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
59
|
Zhou XH, Brakebusch C, Matthies H, Oohashi T, Hirsch E, Moser M, Krug M, Seidenbecher CI, Boeckers TM, Rauch U, Buettner R, Gundelfinger ED, Fässler R. Neurocan is dispensable for brain development. Mol Cell Biol 2001; 21:5970-8. [PMID: 11486035 PMCID: PMC87315 DOI: 10.1128/mcb.21.17.5970-5978.2001] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain.
Collapse
Affiliation(s)
- X H Zhou
- Department of Experimental Pathology, Lund University, 221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001; 13:1071-7. [PMID: 11285003 DOI: 10.1046/j.0953-816x.2001.01485.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical glutamatergic and nigral dopaminergic afferents impinge on projection spiny neurons of the striatum, providing the most significant inputs to this structure. Isolated activation of glutamate or dopamine (DA) receptors produces short-term effects on striatal neurons, whereas the combined stimulation of both glutamate and DA receptors is able to induce long-lasting modifications of synaptic excitability. Repetitive stimulation of corticostriatal fibres causes a massive release of both glutamate and DA in the striatum and, depending on the glutamate receptor subtype preferentially activated, produces either long-term depression (LTD) or long-term potentiation (LTP) of excitatory synaptic transmission. D1-like and D2-like DA receptors interact synergistically to allow LTD formation, while they operate in opposition during the induction phase of LTP. Corticostriatal synaptic plasticity is severely impaired after chronic DA denervation and requires the stimulation of DARPP-32, a small protein expressed in dopaminoceptive spiny neurons which acts as a potent inhibitor of protein phosphatase-1. In addition, the formation of LTD and LTP requires the activation of PKG and PKA, respectively, in striatal projection neurons. These kinases appear to be stimulated by the activation of D1-like receptors in distinct neuronal populations.
Collapse
Affiliation(s)
- D Centonze
- Clinica Neurologica, Dip. Neuroscienze, Università di Tor Vergata, Via di Tor Vergata 135, Rome 00133, Italy
| | | | | | | | | |
Collapse
|
61
|
Abstract
Dopamine is an important neurotransmitter involved in learning and memory including emotional memory. The involvement of dopamine in conditioned fear has been widely documented. However, little is known about the molecular mechanisms that underlie contextual fear conditioning and memory consolidation. To address this issue, we used dopamine D1-deficient mice (D1-/-) and their wild-type (D1+/+) and heterozygote (D1+/-) siblings to assess aversive learning and memory. We quantified two different aspects of fear responses to an environment where the mice have previously received unsignaled footshocks. Using one-trial step-through passive avoidance and conditioned freezing paradigms, mice were conditioned to receive mild inescapable footshocks then tested for acquisition, retention and extinction of conditioned fear responses 5 min after and up to 45-90 days post-training. No differences were observed among any of the genotypes in the acquisition of passive avoidance response or fear-induced freezing behavior. However, with extended testing, D1-/- mice exhibited prolonged retention and delayed extinction of conditioned fear responses in both tasks, suggesting that D1-/- mice are capable of acquiring aversive learning normally. These findings demonstrate that the dopamine D1 receptor is not important for acquisition or consolidation of aversive learning and memory but has an important role in modulating the extinction of fear memory.
Collapse
Affiliation(s)
- M El-Ghundi
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
62
|
Frost DO, Cadet JL. Effects of methamphetamine-induced neurotoxicity on the development of neural circuitry: a hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:103-18. [PMID: 11113502 DOI: 10.1016/s0165-0173(00)00042-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of the developing brain to methamphetamine has well-studied biochemical and behavioral consequences. We review: (1) the effects of methamphetamine on mature serotonergic and dopaminergic pathways; (2) the mechanisms of methamphetamine neurotoxicity and (3) the role of serotonergic and dopaminergic signaling in sculpting developing neural circuitry. Consideration of these data suggest the types of neural circuit alterations that may result from exposure of the developing brain to methamphetamine and that may underlie functional defects.
Collapse
Affiliation(s)
- D O Frost
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
63
|
Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 2000; 103:805-13. [PMID: 11114336 DOI: 10.1016/s0092-8674(00)00183-5] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom bodies. Instead, it is strongly expressed in two large neurons that project over all the lobes of the mushroom bodies, a finding that suggests a modulatory role for AMN in memory formation. Genetically engineered blockade of vesicle recycling in these cells abbreviates memory as in the amnesiac mutant. Moreover, restoration of amn gene expression to these cells reestablishes normal olfactory memory in an amn deletion background. These results indicate that AMN neuropeptide release onto the mushroom bodies is critical for normal olfactory memory.
Collapse
Affiliation(s)
- S Waddell
- Center for Learning and Memory Department of Brain and Cognitive Sciences Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
64
|
Sidhu A, Niznik HB. Coupling of dopamine receptor subtypes to multiple and diverse G proteins. Int J Dev Neurosci 2000; 18:669-77. [PMID: 10978845 DOI: 10.1016/s0736-5748(00)00033-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The family of five dopamine receptors subtypes activate cellular effector systems through G proteins. Historically, dopamine receptors were thought to only stimulate or inhibit adenylyl cyclase, by coupling to either G(s)alpha or G(i)alpha, respectively. Recent studies in transfected cells, reviewed here, have shown that multiple and highly diverse signaling pathways are activated by specific dopamine receptor subtypes. This multiplicity of signaling responses occurs through selective coupling to distinct G proteins and each of the receptors can interact with more than one G protein. Although some of the multiple coupling of dopamine receptors to different G proteins occurs from within the same family of G proteins, these receptors can also couple to G proteins belonging to different families. Such multiple interactions between receptors and G proteins elicits functionally distinct physiological effects which acts to enhance and subsequently suppress the original receptor response, and to activate apparently distinct signaling pathways. In the brain, where coexpression of functionally distinct receptors in heterogeneous cells further adds to the complexity of dopamine signaling, minor alterations in receptor/G protein coupling states during either development or in adults, may underlie the imbalanced signaling seen in dopaminergic-linked diseases such as schizophrenia, Parkinson's disease and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- A Sidhu
- Laboratory of Molecular Neurochemistry, Department of Pediatrics, Georgetown University Medical Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20007, USA.
| | | |
Collapse
|
65
|
Sanders MJ, Sick TJ, Perez-Pinzon MA, Dietrich WD, Green EJ. Chronic failure in the maintenance of long-term potentiation following fluid percussion injury in the rat. Brain Res 2000; 861:69-76. [PMID: 10751566 DOI: 10.1016/s0006-8993(00)01986-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Traumatic brain injury (TBI) can produce chronic cognitive learning/memory deficits that are thought to be mediated, in part, by impaired hippocampal function. Experimentally induced TBI is associated with deficits in hippocampal synaptic plasticity (long-term potentiation, or LTP) at acute post-injury intervals but plasticity has not been examined at long-term survival periods. The present study was conducted to assess the temporal profile of LTP after injury and to evaluate the effects of injury severity on plasticity. Separate groups of rats were subjected to mild (1.1-1.4 atm), moderate (1.8-2.1 atm), or severe (2.2-2.7 atm) fluid percussion (FP) injury (or sham surgery) and processed for hippocampal electrophysiology in the first or eighth week after injury. LTP was defined as a lasting increase in field excitatory post-synaptic potential (fEPSP) slope in area CA1 following tetanic stimulation of the Schaffer collaterals. The fEPSP slope was measured for 60 min after tetanus. Assessment of LTP at the acute interval (6 days) revealed modest peak slope potentiation values (129-139%), which declined in each group (including sham) over the hour-long recording session and did not differ between groups. Eight weeks following injury, slices from all groups exhibited robust maximal potentiation (134-147%). Levels of potentiation among groups were similar at the 5-min test interval but differed significantly at the 30- and 60-min test intervals. Whereas sham slices showed stable potentiation for the entire 60-min assessment period, slices in all of the injury groups exhibited a significant decline in potentiation over this period. These experiments reveal a previously unknown effect of TBI whereby experimentally induced injury results in a chronic inability of the CA1 hippocampus to maintain synaptic plasticity. They also provide evidence that sham surgical procedures can significantly influence hippocampal physiology at the acute post-TBI intervals. The results have implications for the mechanisms underlying the impaired synaptic plasticity following TBI.
Collapse
Affiliation(s)
- M J Sanders
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | | | | | | |
Collapse
|
66
|
Matthies H, Schroeder H, Becker A, Loh H, Höllt V, Krug M. Lack of expression of long-term potentiation in the dentate gyrus but not in the CA1 region of the hippocampus of mu-opioid receptor-deficient mice. Neuropharmacology 2000; 39:952-60. [PMID: 10727705 DOI: 10.1016/s0028-3908(99)00203-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The possible involvement of the mu-opioid receptor subtype in mechanisms of long-term potentiation (LTP) of the lateral perforant pathway to the dentate gyrus neurons, as well as of the Schaffer collateral-commissural input of CA1 neurons, was investigated using mu-opioid receptor-deficient mutant mice. In transversal hippocampal slices from mice lacking the mu-opioid receptor (MOR) only a short potentiation in the dentate gyrus after tetanization of the lateral perforant pathway was found. In contrast, the loss of the mu-opioid receptor in the CA1 region did not affect the potentiation of the field potentials induced by tetanization of the Schaffer collaterals. In parallel experiments, the application of 10 microM of the selective MOR-antagonist, funaltrexamine, decreased LTP in the dentate gyrus of wild-type mice but again did not alter the potentiation of the field potentials in the CA1. The loss of MOR-binding in the hippocampus was accompanied by a reduction in D2-binding sites indicating a possible compensatory role of the dopaminergic system. The D1- and glutamate binding was not affected. These observations confirm earlier results with pharmacological blockade of opioid receptors in the dentate gyrus and demonstrate an essential role of MOR activation for the generation of LTP in the dentate gyrus of the mouse but not necessarily in the CA1 region.
Collapse
Affiliation(s)
- H Matthies
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- J D Berke
- Secton on Molecular Plasticity, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
68
|
Bouron A, Reuter H. The D1 dopamine receptor agonist SKF-38393 stimulates the release of glutamate in the hippocampus. Neuroscience 2000; 94:1063-70. [PMID: 10625048 DOI: 10.1016/s0306-4522(99)00352-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to better assess the role of dopamine on exocytosis. Since direct activation of adenylate cyclase (e.g., with forskolin) enhances neurotransmitter release it was of interest to see whether the activation of D1-type dopamine receptors, which are positively coupled to adenylate cyclase, could also modulate the molecular machinery underlying the fusion of synaptic vesicles and the release of neurotransmitter. To answer this question we have looked at the effect of the D1-type dopamine receptor agonist SKF-38393 on the spontaneous release of glutamate from cultured rat hippocampal neurons. SKF-38393 enhanced the frequency but not the amplitude of tetrodotoxin-resistant excitatory postsynaptic currents which argues for a presynaptic locus of D1 action. This effect was blocked by the D1-dopaminergic receptor antagonist SCH-23390 and the protein kinase A inhibitors H-7 and Rp-cAMP whereas pertussis toxin failed to affect the dopaminergic response. In addition, carbachol and Ruthenium Red also stimulated exocytosis but did not occlude the SKF-38393-induced modulation. These results indicate that SKF-38393 presynaptically enhances the release of glutamate via a pertussis toxin-insensitive and protein kinase A-dependent mechanism, which most likely involves D1-type dopamine receptors. Our results underline the importance of protein kinase A as potent modulator of synaptic transmission and suggest that high concentrations of dopamine can greatly enhance the release of glutamate in the hippocampus.
Collapse
Affiliation(s)
- A Bouron
- Department of Pharmacology, University of Bern, Switzerland
| | | |
Collapse
|
69
|
Bardgett ME, Henry JD. Locomotor activity and accumbens Fos expression driven by ventral hippocampal stimulation require D1 and D2 receptors. Neuroscience 1999; 94:59-70. [PMID: 10613497 DOI: 10.1016/s0306-4522(99)00303-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies have suggested that excitatory projections from the ventral hippocampus to the nucleus accumbens modulate locomotor activity in rats. Furthermore, the ability of ventral hippocampal neurons to alter locomotor activity may involve the dense dopaminergic innervation found in the nucleus accumbens. The purpose of this study was to: (i) more fully characterize the locomotor effects of acute alterations in ventral hippocampal activity; (ii) ascertain the influence of dopamine agonists and antagonists on locomotor changes produced by altered ventral hippocampal activity; and (iii) use immediate early gene induction to determine whether dopamine antagonists alter the response of nucleus accumbens neurons to ventral hippocampal stimulation. By comparing a variety of excitatory amino acid agonists, it was found that ventral hippocampal infusion of N-methyl-D-aspartate elevated locomotor activity in a subconvulsive manner, while other excitatory amino acid receptor agonists did not. Inactivation of the ventral hippocampus achieved by lidocaine infusion did not suppress ongoing locomotor activity, nor did it affect amphetamine-induced increases in locomotor activity. Increases in locomotor activity induced by ventral hippocampal N-methyl-D-aspartate infusion were blocked by systemic administration of haloperidol (a D2 receptor antagonist), SCH-23390 (a D1 receptor antagonist) or reserpine. Cellular expression of the protein product of the immediate early gene, c-fos, was dramatically increased in the nucleus accumbens shell after ventral hippocampal N-methyl-D-aspartate infusion, and haloperidol, SCH-23390 and reserpine attenuated this effect. These results suggest that the increases, but not decreases, in ventral hippocampal activity have a measurable effect on ongoing rates of locomotion, and that this effect requires both D1 and D2 receptors. Moreover, the studies of Fos expression suggest that dopamine receptor antagonists attenuate neuronal responses to ventral hippocampal stimulation within the nucleus accumbens, a brain region important in the generation and maintenance of locomotor activity.
Collapse
Affiliation(s)
- M E Bardgett
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
70
|
El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O'Dowd BF, George SR. Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Pharmacol 1999; 383:95-106. [PMID: 10585522 DOI: 10.1016/s0014-2999(99)00573-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dopamine D(1) receptors are expressed in the hippocampus and prefrontal cortex, suggesting a role in cognition. Dopamine D(1) receptor-deficient mice (D(1)-/-) were used to investigate the role of this receptor in spatial learning and memory. Using the Morris water maze, mice were trained to locate a hidden platform. Subsequently, the platform was removed from the maze and mice were scored for the percentage of time spent in the target quadrant and the number of crossings through the target position. D(1)-/- mice had significantly longer escape latencies compared to wild-type (D(1)+/+) and heterozygous (D(1)+/-) littermates and showed absence of spatial bias during the probe trials. In a visually cued task, D(1)-/- mice performed better than on the hidden platform trials, but maintained slightly higher escape latencies than D(1)+/+ and D(1)+/- mice. Naive D(1)-/- mice exposed only to the cued task eventually acquired identical escape latencies as the D(1)+/+ and D(1)+/- mice. Sensorimotor reflexes, locomotor activity, spontaneous alternation and contextual learning were not different among the groups. These results indicate that D(1)-/- mice have a deficit in spatial learning without visual or motor impairment, suggesting that dopamine D(1) receptors are involved in at least one form of the cognitive processes.
Collapse
Affiliation(s)
- M El-Ghundi
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
71
|
Swanson-Park JL, Coussens CM, Mason-Parker SE, Raymond CR, Hargreaves EL, Dragunow M, Cohen AS, Abraham WC. A double dissociation within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience 1999; 92:485-97. [PMID: 10408599 DOI: 10.1016/s0306-4522(99)00010-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We compared the effects of the D1/D5 receptor antagonist SCH-23390 with the beta-adrenergic receptor antagonist propranolol on the persistence of long-term potentiation in the CA1 and dentate gyrus subregions of the hippocampus. In slices, SCH-23390 but not propranolol reduced the persistence of long-term potentiation in area CA1 without affecting its induction. The drugs exerted reverse effects in the dentate gyrus, although in this case the induction of long-term potentiation was also affected by propranolol. The lack of effect of SCH-23390 on the induction and maintenance of long-term potentiation in the dentate gyrus was confirmed in awake animals. The drug also had little or no effect on the expression of inducible transcription factors. In area CA1 of awake animals, SCH-23390 blocked persistence of long-term potentiation beyond 3 h, confirming the results in slices. To rule out a differential release of catecholamines induced by our stimulation protocols between brain areas, we compared the effects of the D1/D5 agonist SKF-38393 with the beta-adrenergic agonist isoproterenol on the persistence of a weakly induced, decremental long-term potentiation in CA1 slices. SKF-38393 but not isoproterenol promoted greater persistence of long-term potentiation over a 2-h period. In contrast, isoproterenol but not SKF-38392 facilitated the induction of long-term potentiation. These data demonstrate that there is a double dissociation of the catecholamine modulation of long-term potentiation between CA1 and the dentate gyrus, suggesting that long-term potentiation in these brain areas may be differentially consolidated according to the animal's behavioural state.
Collapse
Affiliation(s)
- J L Swanson-Park
- Department of Psychology and the Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
73
|
Sibley DR. New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 1999; 39:313-41. [PMID: 10331087 DOI: 10.1146/annurev.pharmtox.39.1.313] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopaminergic receptors are widespread throughout the central and peripheral nervous systems, where they regulate a variety of physiological, behavioral, and endocrine functions. These receptors are also clinically important drug targets for the treatment of a number of disorders, such as Parkinson's disease, schizophrenia, and hyperprolactinemia. To date, five different dopamine receptor subtypes have been cloned and characterized. Many of these subtypes are pharmacologically similar, making it difficult to selectively stimulate or block a specific receptor subtype in vivo. Thus, the assignment of various physiological or behavioral functions to specific dopamine receptor subtypes using pharmacological tools is difficult. In view of this, a number of investigators have--in order to elucidate functional roles--begun to use highly selective genetic approaches to alter the expression of individual dopamine receptor subtypes in vivo. This review discusses recent studies involving the use of genetic approaches for the study of dopaminergic receptor function.
Collapse
Affiliation(s)
- D R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1406, USA.
| |
Collapse
|