51
|
Yu W, Diao Y, Zhang Y, Shi Y, Lv X, Zhang C, Zhang K, Yao W, Huang D, Zhang J. Bioinformatic analysis of FOXN3 expression and prognostic value in pancreatic cancer. Front Oncol 2022; 12:1008100. [PMID: 36324573 PMCID: PMC9619050 DOI: 10.3389/fonc.2022.1008100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
In most cancers, forkhead box N3 (FOXN3) acts as a transcriptional inhibitor to suppress tumor proliferation, but in pancreatic cancer, the opposite effect is observed. To confirm and investigate this phenomenon, FOXN3 expression in various carcinomas was determined using GEPIA2 and was found to be highly expressed in pancreatic cancer. Kaplan-Meier plotter was then used for survival analysis, revealing that high FOXN3 expression in pancreatic cancer might be associated with a poor prognosis. Similarly, clinical samples collected for immunohistochemical staining and survival analysis showed consistent results. The RNA-seq data of pancreatic cancer patients from the TCGA were then downloaded, and the differential expression gene set was obtained using R for gene set enrichment analysis (GSEA). The intersection of the above gene sets and FOXN3-related genes was defined as related differentially expressed gene sets (DEGs), and enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we analyzed the relationship between FOXN3 and immune infiltration in pancreatic cancer. Collectively, our findings reveal that FOXN3 is involved in the occurrence and progression of pancreatic cancer and may be useful as a prognostic tool in pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Postgraduates, Bengbu Medical College, Bengbu, China
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yongkang Diao
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ying Shi
- Obstetrics and Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangkang Lv
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chengwu Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Kangjun Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weifeng Yao
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jungang Zhang, ; Dongsheng Huang,
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jungang Zhang, ; Dongsheng Huang,
| |
Collapse
|
52
|
Kfoury S, Michl P, Roth L. Modeling Obesity-Driven Pancreatic Carcinogenesis-A Review of Current In Vivo and In Vitro Models of Obesity and Pancreatic Carcinogenesis. Cells 2022; 11:3170. [PMID: 36231132 PMCID: PMC9563584 DOI: 10.3390/cells11193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors. Increasing incidence together with a continued lack of targeted treatment options will cause PDAC to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the impact of obesity on pancreatic cancer development and progression, novel laboratory techniques have been developed. In this review, we summarize current in vitro and in vivo models of PDAC and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC cell lines as well as organoids are summarized and the genetically engineered models of PCAC compared to xenograft models are introduced. Finally, we review published in vitro and in vivo models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of obesity-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sally Kfoury
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Medicine, Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Laura Roth
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
53
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
54
|
Ji H, Zhang Q, Wang XX, Li J, Wang X, Pan W, Zhang Z, Ma B, Zhang HM. Identification of stromal microenvironment characteristics and key molecular mining in pancreatic cancer. Discov Oncol 2022; 13:83. [PMID: 36006549 PMCID: PMC9411435 DOI: 10.1007/s12672-022-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Pancreatic cancer is one of the deadliest cancers worldwide. The extracellular matrix (ECM) microenvironment affects the drug sensitivity and prognosis of pancreatic cancer patients. This study constructed an 8-genes pancreatic ECM scoring (PECMS) model, to classify the ECM features of pancreatic cancer, analyze the impact of ECM features on survival and drug sensitivity, and mine key molecules that influence ECM features in pancreatic cancer. METHODS GSVA score calculation and clustering were performed in TCGA-PAAD patients. Lasso regression was used to construct the PECMS model. The association between PECMS and patient survival was analyzed and validated in the CPTAC-3 dataset of TCGA and our single-center retrospective cohort. The relationships between PECMS and features of the matrix microenvironment were analyzed. Finally, PECMS feature genes were screened and verified in pancreatic cancer specimens to select key genes associated with the ECM microenvironment. RESULT The survival of the PECMS-high group was significantly worse. The PECMS-high group showed higher oxidative stress levels, lower levels of antigen presentation- and MHC-I molecule-related pathways, and less immune effector cell infiltration. Data from IMvigor-210 cohort suggested that PECMS-low group patients were more sensitive to immune checkpoint blockers. The PECMS score was negatively correlated with chemotherapy drug sensitivity. The negative association of PECMS with survival and drug sensitivity was validated in our retrospective cohort. KLHL32 expression predicted lower oxidative stress level and more immune cells infiltrate in pancreatic cancer. CONCLUSION PECMS is an effective predictor of prognosis and drug sensitivity in pancreatic cancer patients. KLHL32 may play an important role in the construction of ECM, and the mechanism is worth further study.
Collapse
Affiliation(s)
- Hongchen Ji
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
- Faculty of Hepatopancreatobiliary Surgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Qiong Zhang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Xiang-Xu Wang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Junjie Li
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, China
| | - Xiaowen Wang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Wei Pan
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China
| | - Zhuochao Zhang
- Faculty of Hepatopancreatobiliary Surgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Ben Ma
- Faculty of Hepatopancreatobiliary Surgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Hong-Mei Zhang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
55
|
Shi SY, Wang L, Peng Z, Wang Y, Lin Z, Hu X, Yuan J, Huang L, Feng ST, Luo Y. Multi-frequency magnetic resonance elastography of the pancreas: measurement reproducibility and variance among healthy volunteers. Gastroenterol Rep (Oxf) 2022; 10:goac033. [PMID: 35910246 PMCID: PMC9336557 DOI: 10.1093/gastro/goac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background Patients with chronic pancreatitis often have irreversible pancreatic insufficiency before a clinical diagnosis. Pancreatic cancer is a fatal malignant tumor in the advanced stages. Patients having high risk of pancreatic diseases must be screened early to obtain better outcomes using new imaging modalities. Therefore, this study aimed to investigate the reproducibility of tomoelastography measurements for assessing pancreatic stiffness and fluidity and the variance among healthy volunteers. Methods Forty-seven healthy volunteers were prospectively enrolled and underwent two tomoelastography examinations at a mean interval of 7 days. Two radiologists blindly and independently measured the pancreatic stiffness and fluidity at the first examination to determine the reproducibility between readers. One radiologist measured the adjacent pancreatic slice at the first examination to determine the reproducibility among slices and measured the pancreas at the second examination to determine short-term repeatability. The stiffness and fluidity of the pancreatic head, body, and tail were compared to determine anatomical differences. The pancreatic stiffness and fluidity were compared based on sex, age, and body mass index (BMI). Results Bland–Altman analyses (all P > 0.05) and intraclass correlation coefficients (all >0.9) indicated near perfect reproducibility among readers, slices, and examinations at short intervals. Neither stiffness (P = 0.477) nor fluidity (P = 0.368) differed among the pancreatic anatomical regions. The mean pancreatic stiffness was 1.45 ± 0.09 m/s; the mean pancreatic fluidity was 0.83 ± 0.06 rad. Stiffness and fluidity did not differ by sex, age, or BMI. Conclusion Tomoelastography is a promising and reproducible tool for assessing pancreatic stiffness and fluidity in healthy volunteers.
Collapse
Affiliation(s)
- Si-Ya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhi Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xuefang Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiaxin Yuan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
56
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
57
|
Shiraki Y, Mii S, Esaki N, Enomoto A. Possible disease-protective roles of fibroblasts in cancer and fibrosis and their therapeutic application. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:484-496. [PMID: 36237894 PMCID: PMC9529631 DOI: 10.18999/nagjms.84.3.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Cancer and fibrotic diseases are characterized by continuous inflammation, tissue wounds, and injuries. Cancer is a "wound that does not heal," and the uncontrolled proliferation of cancer cells disrupts normal tissue integrity and induces stromal fibroinflammatory reactions. Fibroblasts proliferate extensively in the stroma, playing a major role in the development of these diseases. There has been considerable evidence that fibroblasts contribute to fibrosis and tissue stiffening and promote disease progression via multiple mechanisms. However, recent emerging findings, mainly derived from single-cell transcriptomic analysis, indicated that fibroblasts are functionally heterogeneous, leading to the hypothesis that both disease-promoting and -restraining fibroblasts exist. We recently showed that a fibroblast population, defined by the expression of the glycosylphosphatidylinositol-anchored membrane protein Meflin may suppress but not promote fibrotic response and disease progression in cancer and fibrotic diseases. Although currently hypothetical, the primary function of Meflin-positive fibroblasts may be tissue repair after injury and cancer initiation occurred. This observation has led to the proposal of a potential therapy that converts the phenotype of fibroblasts from pro-tumor to anti-tumor. In this short review, we summarize our recent findings on the function of Meflin in the context of cancer and fibrotic diseases and discuss how we can utilize this knowledge on fibroblasts in translational medicine. We also discuss several aspects of the interpretation of survival analysis data, such as Kaplan-Meier analysis, to address the function of specific genes expressed in fibroblasts.
Collapse
Affiliation(s)
- Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
58
|
Increased Stiffness Downregulates Focal Adhesion Kinase Expression in Pancreatic Cancer Cells Cultured in 3D Self-Assembling Peptide Scaffolds. Biomedicines 2022; 10:biomedicines10081835. [PMID: 36009384 PMCID: PMC9405295 DOI: 10.3390/biomedicines10081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that participates in integrin-mediated signal transduction and contributes to different biological processes, such as cell migration, survival, proliferation and angiogenesis. Moreover, FAK can be activated by autophosphorylation at position Y397 and trigger different signaling pathways in response to increased extracellular matrix stiffness. In addition, FAK is overexpressed and/or hyperactivated in many epithelial cancers, and its expression correlates with tumor malignancy and invasion potential. One of the characteristics of solid tumors is an over deposition of ECM components, which generates a stiff microenvironment that promotes, among other features, sustained cell proliferation and survival. Researchers are, therefore, increasingly developing cell culture models to mimic the increased stiffness associated with these kinds of tumors. In the present work, we have developed a new 3D in vitro model to study the effect of matrix stiffness in pancreatic ductal adenocarcinoma (PDAC) cells as this kind of tumor is characterized by a desmoplastic stroma and an increased stiffness compared to its normal counterpart. For that, we have used a synthetic self-assembling peptide nanofiber matrix, RAD16-I, which does not suffer a significant degradation in vitro, thus allowing to maintain the same local stiffness along culture time. We show that increased matrix stiffness in synthetic 3D RAD16-I gels, but not in collagen type I scaffolds, promotes FAK downregulation at a protein level in all the cell lines analyzed. Moreover, even though it has classically been described that stiff 3D matrices promote an increase in pFAKY397/FAK proteins, we found that this ratio in soft and stiff RAD16-I gels is cell-type-dependent. This study highlights how cell response to increased matrix stiffness greatly depends on the nature of the matrix used for 3D culture.
Collapse
|
59
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
60
|
Wang W, He Y, Wu L, Zhai L, Chen L, Yao L, Yu K, Tang Z. N 6 -methyladenosine RNA demethylase FTO regulates extracellular matrix-related genes and promotes pancreatic cancer cell migration and invasion. Cancer Med 2022; 12:3731-3743. [PMID: 35879877 PMCID: PMC9939218 DOI: 10.1002/cam4.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 07/03/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly disease, and its post-transcriptional gene regulation mechanism remains unclear. The abundant extracellular matrix (ECM) in PC plays an important role in tumor progression. This study is the first to focus on the role of N6 -methyladenosine (m6 A) RNA methylation, an emerging post-transcriptional regulatory mechanism, in the regulation of the ECM in PC. Here, we found that ADAMTS2, COL12A1, and THBS2 were associated with the prognosis of PC by comprehensive analysis of differentially expressed genes from two independent GEO expression profile datasets and m6 A-related genes in RMVar database (PAAD). GO and KEGG enrichment analysis found that these m6 A-related targets are chiefly functionally concentrated in the ECM region and participate in ECM signal transduction. Correlation analysis revealed that these genes can be regulated by the demethylase FTO. Cell biology function assays showed that knockdown of FTO-inhibited PC cell abilities to migrate and invade in vitro. qRT-PCR and MeRIP experiments showed that after knockdown of FTO, the mRNA levels of ADAMTS2, COL12A1, and THBS2 and their m6 A modification levels were significantly reduced. These results indicate that m6 A RNA demethylation is associated with the regulation of ECM in PC. In conclusion, m6 A RNA demethylase FTO regulates ECM-related genes and promotes PC cell abilities to migrate and invade, our work provides a new perspective on the molecular mechanism of PC progression.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lun Wu
- Department of Hepatobiliary Surgery, Dongfeng HospitalHubei University of MedicineShiyanChina
| | - Lu‐Lu Zhai
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Long‐Jiang Chen
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li‐Chao Yao
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kai‐Huan Yu
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Gang Tang
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
61
|
Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, Tan EL, Ng SH, Masamune A, Ghafar SAA, Ismail N, Ho KL. Conditioned media of pancreatic cancer cells and pancreatic stellate cells induce myeloid-derived suppressor cells differentiation and lymphocytes suppression. Sci Rep 2022; 12:12315. [PMID: 35853996 PMCID: PMC9296552 DOI: 10.1038/s41598-022-16671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
Collapse
Affiliation(s)
- Yuen Ping Chong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Evelyn Priya Peter
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Feon Jia Ming Lee
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chu Mun Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Shereen Chai
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lorni Poh Chou Ling
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sook Han Ng
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Seremban, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ket Li Ho
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
62
|
Luo D, Liao S, Li Q, Lin Y, Wei J, Li Y, Liao X. Case Report: A Case of Locally Advanced Pancreatic Cancer Which Achieved Progression Free for Over 12 Months by Subsequent Therapy with Anlotinib Hydrochloride Plus Tegafur-Gimeracil-Oteracil Potassium (TS-1). Front Oncol 2022; 12:862600. [PMID: 35847852 PMCID: PMC9283868 DOI: 10.3389/fonc.2022.862600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Titled the "most destructive of all cancers", pancreatic cancer is a malignant tumor with a very poor prognosis and has a poor response to systemic therapy. At present, several studies have shown that tegafur-gimeracil-oteracil potassium (hereinafter referred to as TS-1) is no less superior to gemcitabine in the treatment of advanced pancreatic cancer. In addition, a number of current clinical studies have shown that targeted therapy combined with chemotherapy reflects therapeutic advantages in pancreatic cancer. Moreover, in vitro and in vivo experiments have also demonstrated that anlotinib can curb the proliferation of pancreatic cancer cells and induce their apoptosis. Here, we report for the first time that a patient with locally advanced pancreatic cancer achieved good efficacy after switching to TS-1 chemotherapy combined with anlotinib targeted therapy. Previously, the disease of the patient still rapidly progressed without control following the first switch to abraxane combined with gemcitabine chemotherapy (AG regimen) due to the progression after chemo-radiotherapy. In this case, the patient achieved progression-free survival (PFS) of over 14 months via the treatment with anlotinib targeted therapy combined with TS-1 chemotherapy and secondary radiotherapy (prior to secondary radiotherapy, the patient achieved a PFS of nearly 12 months via the treatment with oral anlotinib combined with TS-1). Up to now, the progress of the disease is ceased. The oral administration of targeted therapy and chemotherapy are still in progress and the general condition of the patient is good. This suggests that patients with advanced pancreatic cancer may benefit from treatment with the anlotinib targeted therapy combined with TS-1 chemotherapy.
Collapse
Affiliation(s)
- Dongcheng Luo
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sina Liao
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qian Li
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Youzhi Lin
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junbao Wei
- Radiotherapy Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoli Liao
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
63
|
Richardson DR, Azad MG, Afroz R, Richardson V, Dharmasivam M. Thiosemicarbazones reprogram pancreatic cancer bidirectional oncogenic signaling between cancer cells and stellate cells to suppress desmoplasia. Future Med Chem 2022; 14:1005-1017. [PMID: 35670251 DOI: 10.4155/fmc-2022-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Standard treatments have shown dismal activity against pancreatic cancer (PC), due in part to the development of a dense stroma (desmoplasia). This perspective discusses the development of the di-2-pyridylketone thiosemicarbazones that overcomes bidirectional oncogenic signaling between PC cells and pancreatic stellate cells (PSCs), which is critical for desmoplasia development. This activity is induced by the up-regulation of the metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which inhibits oncogenic signaling via HGF, IGF-1 and Sonic Hedgehog pathway. More recent studies have deciphered additional pathways including those mediated by Wnt and tenascin C that are secreted by PSCs to activate β-catenin and YAP/TAZ signaling in PC cells. Suppression of bidirectional signaling between cell types presents a unique therapeutic opportunity.
Collapse
Affiliation(s)
- D R Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
- Department of Pathology & Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - M Gholam Azad
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - V Richardson
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology & Drug Discovery, Griffith Institute of Drug Discovery, Griffith University & School of Environment & Science (N34), Nathan, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
64
|
Menezes S, Okail MH, Jalil SMA, Kocher HM, Cameron AJM. Cancer-associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets. J Pathol 2022; 257:526-544. [PMID: 35533046 PMCID: PMC9327514 DOI: 10.1002/path.5926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Cancer-associated fibroblasts (CAFs) have conflicting roles in the suppression and promotion of cancer. Current research focuses on targeting the undesirable properties of CAFs, while attempting to maintain tumour-suppressive roles. CAFs have been widely associated with primary or secondary therapeutic resistance, and strategies to modify CAF function have therefore largely focussed on their combination with existing therapies. Despite significant progress in preclinical studies, clinical translation of CAF targeted therapies has achieved limited success. Here we will review our emerging understanding of heterogeneous CAF populations in tumour biology and use examples from pancreatic ductal adenocarcinoma to explore why successful clinical targeting of protumourigenic CAF functions remains elusive. Single-cell technologies have allowed the identification of CAF subtypes with a differential impact on prognosis and response to therapy, but currently without clear consensus. Identification and pharmacological targeting of CAF subtypes associated with immunotherapy response offers new hope to expand clinical options for pancreatic cancer. Various CAF subtype markers may represent biomarkers for patient stratification, to obtain enhanced response with existing and emerging combinatorial therapeutic strategies. Thus, CAF subtyping is the next frontier in understanding and exploiting the tumour microenvironment for therapeutic benefit. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shinelle Menezes
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| | - Mohamed Hazem Okail
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| | - Siti Munira Abd Jalil
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
- Barts and the London HPB Centre, The Royal London HospitalBarts Health NHS TrustLondonUK
| | - Angus J M Cameron
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| |
Collapse
|
65
|
Fuller AM, Eisinger-Mathason TSK. Context Matters: Response Heterogeneity to Collagen-Targeting Approaches in Desmoplastic Cancers. Cancers (Basel) 2022; 14:cancers14133132. [PMID: 35804902 PMCID: PMC9264969 DOI: 10.3390/cancers14133132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common feature of tumor types such as breast cancer, prostate cancer, pancreatic cancer, and soft-tissue sarcoma is the deposition of collagen-rich tissue called desmoplasia. However, efforts to control tumor growth by disrupting desmoplasia, collectively known as “collagen-targeting approaches”, have had mixed and contradictory results, sometimes even within the same cancer type. We believe that this phenomenon may be due—at least partially—to the fact that “collagen” is not a single molecule, but rather a diverse molecular family composed of 28 unique collagen types. Therefore, in this review, we discuss the diversity of collagen molecules in normal and cancer tissue, and explore how collagen heterogeneity relates to the mixed efficacy of collagen-targeting approaches for cancer therapy. Abstract The deposition of collagen-rich desmoplastic tissue is a well-documented feature of the solid tumor microenvironment (TME). However, efforts to target the desmoplastic extracellular matrix (ECM) en masse, or collagen molecules more specifically, have been met with mixed and sometimes paradoxical results. In this review, we posit that these discrepancies are due—at least in part—to the incredible diversity of the collagen superfamily. Specifically, whereas studies of “collagen-targeting” approaches frequently refer to “collagen” as a single molecule or relatively homogeneous molecular family, 28 individual collagens have been identified in mammalian tissues, each with a unique structure, supramolecular assembly pattern, tissue distribution, and/or function. Moreover, some collagen species have been shown to exert both pro- and anti-neoplastic effects in the desmoplastic TME, even within the same cancer type. Therefore, herein, we describe the diversity of the collagen family in normal tissues and highlight the context-specific roles of individual collagen molecules in desmoplastic tumors. We further discuss how this heterogeneity relates to the variable efficacy of “collagen-targeting” strategies in this setting and provide guidance for future directions in the field.
Collapse
|
66
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
67
|
Agostini A, Orlacchio A, Carbone C, Guerriero I. Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought. Front Immunol 2022; 13:876291. [PMID: 35711414 PMCID: PMC9193393 DOI: 10.3389/fimmu.2022.876291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases and shows a high mortality rate among all solid tumors. PDAC is often associated with poor prognosis, due to the late diagnosis that leads to metastasis development, and limited efficacy of available treatments. The tumor microenvironment (TME) represents a reliable source of novel targets for therapy, and even if many of the biological interactions among stromal, immune, and cancer cells that populate the TME have been studied, much more needs to be clarified. The great limitation in the efficacy of current standard chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding cancer cells and the immunological evolution from a tumor-suppressor to an immunosuppressive environment. Nevertheless, combinatorial therapies may prove more effective at overcoming resistance mechanisms and achieving tumor cell killing. To achieve this result, a deeper understanding of the pathological mechanisms driving tumor progression and immune escape is required in order to design rationale-based therapeutic strategies. This review aims to summarize the present knowledge about cellular interactions in the TME, with much attention on immunosuppressive functioning and a specific focus on extracellular matrix (ECM) contribution.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ilaria Guerriero
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| |
Collapse
|
68
|
Yin C, Alqahtani A, Noel MS. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers (Basel) 2022; 14:2619. [PMID: 35681599 PMCID: PMC9179513 DOI: 10.3390/cancers14112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis. It is currently the third most common cause of cancer-related mortality, despite being the 11th most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet survival, particularly in the advanced stages, often remains under one year. We are turning to immunotherapies and targeted therapies in PDAC in order to directly attack the core features that make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC have generally been disappointing, we find optimism in recent preclinical and early clinical research. We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors, that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of driver mutations and metabolic pathways and highlight some technological achievements such as novel KRAS inhibitors.
Collapse
Affiliation(s)
| | | | - Marcus S. Noel
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (A.A.)
| |
Collapse
|
69
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
70
|
Hermenean A, Oatis D, Herman H, Ciceu A, D’Amico G, Trotta MC. Galectin 1-A Key Player between Tissue Repair and Fibrosis. Int J Mol Sci 2022; 23:ijms23105548. [PMID: 35628357 PMCID: PMC9142121 DOI: 10.3390/ijms23105548] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases.
Collapse
Affiliation(s)
- Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
- Correspondence:
| | - Daniela Oatis
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Giovanbattista D’Amico
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
71
|
Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
|
72
|
Channon LM, Tyma VM, Xu Z, Greening DW, Wilson JS, Perera CJ, Apte MV. Small extracellular vesicles (exosomes) and their cargo in pancreatic cancer: Key roles in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188728. [PMID: 35385773 DOI: 10.1016/j.bbcan.2022.188728] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is a devastating disease, offering poor mortality rates for patients. The current challenge being faced is the inability to diagnose patients in a timely manner, where potentially curative resection provides the best chance of survival. Recently, small/nanosized extracellular vesicles (sEVs), including exosomes, have gained significant preclinical and clinical attention due to their emerging roles in cancer progression and diagnosis. Extracellular vesicles (EVs) possess endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype of recipient cells. This review provides an overview of the role of EVs, their subtypes and their oncogenic cargo (as characterised by targeted studies as well as agnostic '-omics' analyses) in the pathobiology of pancreatic cancer. The discussion covers the progress of 'omics technology' that has enabled elucidation of the molecular mechanisms that mediate the role of EVs and their cargo in pancreatic cancer progression.
Collapse
Affiliation(s)
- Lily M Channon
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Victoria M Tyma
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Victoria 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Victoria 3086, Australia; Central Clinical School, Monash University, Australia, Victoria 3800, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria 3000, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| |
Collapse
|
73
|
Iida T, Mizutani Y, Esaki N, Ponik SM, Burkel BM, Weng L, Kuwata K, Masamune A, Ishihara S, Haga H, Kataoka K, Mii S, Shiraki Y, Ishikawa T, Ohno E, Kawashima H, Hirooka Y, Fujishiro M, Takahashi M, Enomoto A. Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics. Oncogene 2022; 41:2764-2777. [PMID: 35414659 DOI: 10.1038/s41388-022-02288-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
Previous therapeutic attempts to deplete cancer-associated fibroblasts (CAFs) or inhibit their proliferation in pancreatic ductal adenocarcinoma (PDAC) were not successful in mice or patients. Thus, CAFs may be tumor suppressive or heterogeneous, with distinct cancer-restraining and -promoting CAFs (rCAFs and pCAFs, respectively). Here, we showed that induced expression of the glycosylphosphatidylinositol-anchored protein Meflin, a rCAF-specific marker, in CAFs by genetic and pharmacological approaches improved the chemosensitivity of mouse PDAC. A chemical library screen identified Am80, a synthetic, nonnatural retinoid, as a reagent that effectively induced Meflin expression in CAFs. Am80 administration improved the sensitivity of PDAC to chemotherapeutics, accompanied by increases in tumor vessel area and intratumoral drug delivery. Mechanistically, Meflin was involved in the suppression of tissue stiffening by interacting with lysyl oxidase to inhibit its collagen crosslinking activity. These data suggested that modulation of CAF heterogeneity may represent a strategy for PDAC treatment.
Collapse
Affiliation(s)
- Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Liang Weng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kunio Kataoka
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
74
|
Fleming Martinez AK, Döppler HR, Bastea LI, Edenfield BH, Liou GY, Storz P. Ym1 + macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience 2022; 25:104327. [PMID: 35602933 PMCID: PMC9118688 DOI: 10.1016/j.isci.2022.104327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023] Open
Abstract
Desmoplasia around pancreatic lesions is a barrier for immune cells and a hallmark of developing and established pancreatic cancer. However, the contribution of the innate immune system to this process is ill-defined. Using the KC mouse model and primary cells in vitro, we show that alternatively activated macrophages (AAM) crosstalk with pancreatic lesion cells and pancreatic stellate cells (PSCs) to mediate fibrosis and progression of lesions. TGFβ1 secreted by AAM not only drives activation of quiescent PSCs but also in activated PSCs upregulates expression of TIMP1, a factor previously shown as crucial in fibrosis. Once activated, PSCs auto-stimulate proliferation via CXCL12. Furthermore, we found that TIMP1/CD63 signaling mediates PanIN lesion growth and TGFβ1 contributes to a cadherin switch and drives structural collapse of lesions, indicating a potential progression step. Taken together, our data indicate TGFβ1 produced by Ym1+ AAM as a major driver of processes that initiate the development of pancreatic cancer.
Collapse
Affiliation(s)
| | - Heike R. Döppler
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ligia I. Bastea
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Brandy H. Edenfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA,Department of Biological Sciences, Center for Cancer Research & Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
75
|
Geleta B, Tout FS, Lim SC, Sahni S, Jansson PJ, Apte MV, Richardson DR, Kovačević Ž. Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation of the metastasis suppressor NDRG1. J Biol Chem 2022; 298:101608. [PMID: 35065073 PMCID: PMC8881656 DOI: 10.1016/j.jbc.2022.101608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
A major barrier to successful pancreatic cancer (PC) treatment is the surrounding stroma, which secretes growth factors/cytokines that promote PC progression. Wnt and tenascin C (TnC) are key ligands secreted by stromal pancreatic stellate cells (PSCs) that then act on PC cells in a paracrine manner to activate the oncogenic β-catenin and YAP/TAZ signaling pathways. Therefore, therapies targeting oncogenic Wnt/TnC cross talk between PC cells and PSCs constitute a promising new therapeutic approach for PC treatment. The metastasis suppressor N-myc downstream-regulated gene-1 (NDRG1) inhibits tumor progression and metastasis in numerous cancers, including PC. We demonstrate herein that targeting NDRG1 using the clinically trialed anticancer agent di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibited Wnt/TnC-mediated interactions between PC cells and the surrounding PSCs. Mechanistically, NDRG1 and DpC markedly inhibit secretion of Wnt3a and TnC by PSCs, while also attenuating Wnt/β-catenin and YAP/TAZ activation and downstream signaling in PC cells. This antioncogenic activity was mediated by direct inhibition of β-catenin and YAP/TAZ nuclear localization and by increasing the Wnt inhibitor, DKK1. Expression of NDRG1 also inhibited transforming growth factor (TGF)-β secretion by PC cells, a key mechanism by which PC cells activate PSCs. Using an in vivo orthotopic PC mouse model, we show DpC downregulated β-catenin, TnC, and YAP/TAZ, while potently increasing NDRG1 expression in PC tumors. We conclude that NDRG1 and DpC inhibit Wnt/TnC-mediated interactions between PC cells and PSCs. These results further illuminate the antioncogenic mechanism of NDRG1 and the potential of targeting this metastasis suppressor to overcome the oncogenic effects of the PC-PSC interaction.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Faten S Tout
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Department of Medical Laboratory Science, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Syer Choon Lim
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Cancer Drug Resistance & Stem Cell Program, Faculty of Medicine and Health, School of Medical Science, University of Sydney, Sydney, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, New South Wales, Australia; Pancreatic Research Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Žaklina Kovačević
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
76
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Zatorski H, Małecka-Wojciesko E. Hedgehog Signaling Pathway Proteins in Prognosis of Pancreatic Ductal Adenocarcinoma and Its Differentiation From Chronic Pancreatitis. Pancreas 2022; 51:219-227. [PMID: 35584378 DOI: 10.1097/mpa.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The Hedgehog signaling pathway (Hh) probably plays a role in development and progression of pancreatic ductal adenocarcinoma (PDAC). METHODS In our study, 114 patients (83 with PDAC and 31 with chronic pancreatitis [CP]) after pancreatic surgery were enrolled. The immunoexpression of Sonic hedgehog (Shh), Smoothened (Smo), and Glioblastoma transcription factor 1 (Gli1) and Ki-67 were detected in tissue specimens. RESULTS Mean (standard deviation) immunoexpression of all Hh pathway molecules was significantly higher in PDAC than in CP patients: Shh, 2.24 (0.57) versus 1.17 (0.25) (P < 0.01); Smo, 2.62 (0.34) versus 1.21 (0.23) (P < 0.01); and Gli1, 1.74 (0.74) versus 1.15 (0.72) (P < 0.01). Patients with a lower expression level (z score <0) of Shh and Ki-67 have longer overall survival when compared with z score >0 (15.97 vs 8.53 months [P = 0.0087] and 15.20 vs 5.53 months [P = 0.0004], respectively). In addition, Shh sensitivity in PDAC detection was 84.3%; specificity, 93.5%; positive predictive value, 97.2%; and negative predictive value, 69%. CONCLUSIONS Our results suggest the prognostic role of the Hh pathway in PDAC and a role in the differential diagnosis with CP.
Collapse
Affiliation(s)
- Katarzyna Winter
- From the Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | | | | | | | - Marian Danilewicz
- Nephropathology, Division of Morphometry, Medical University of Lodz, Lodz, Poland
| | - Hubert Zatorski
- From the Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Wojciesko
- From the Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
77
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
78
|
Falasca V, Falasca M. Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules 2022; 12:320. [PMID: 35204820 PMCID: PMC8869154 DOI: 10.3390/biom12020320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when the tumour has locally advanced or metastasised. PDAC is resistant to most of the available chemotherapy and radiation therapy treatments, making surgery the most potent curative treatment. The desmoplastic tumour microenvironment contributes to determining PDAC pathophysiology, immune response and therapeutic efficacy. The existing therapeutic approaches such as FDA-approved chemotherapeutics, gemcitabine, abraxane and folfirinox, prolong survival marginally and are accompanied by adverse effects. Several studies suggest the role of cannabinoids as anti-cancer agents. Cannabinoid receptors are known to be expressed in pancreatic cells, with a higher expression reported in pancreatic cancer patients. Therefore, pharmacological targeting of the endocannabinoid system might offer therapeutic benefits in pancreatic cancer. In addition, emerging data suggest that cannabinoids in combination with chemotherapy can increase survival in transgenic pancreatic cancer murine models. This review provides an overview of the regulation of the expanded endocannabinoid system, or endocannabinoidome, in PDAC and will explore the potential of targeting this system for novel anticancer approaches.
Collapse
Affiliation(s)
- Valerio Falasca
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
79
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
80
|
Tan W, Duong MTQ, Zuo C, Qin Y, Zhang Y, Guo Y, Hong Y, Zheng JH, Min JJ. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Mol Ther 2022; 30:662-671. [PMID: 34400328 PMCID: PMC8821930 DOI: 10.1016/j.ymthe.2021.08.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/14/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer is resistant to conventional therapeutic interventions, mainly due to abundant cancer stromal cells and poor immune cell infiltration. Here, we used a targeted cancer therapy approach based on attenuated Salmonella typhimurium engineered to express cytolysin A (ClyA) to target cancer stromal cells and cancer cells and treat pancreatic cancer in mice. Nude mice bearing subcutaneous or orthotopic human pancreatic cancers were treated with engineered S. typhimurium expressing ClyA. The tumor microenvironment was monitored to analyze stromal cell numbers, stromal cell marker expression, and immune cell infiltration. The attenuated bacteria accumulated and proliferated specifically in tumor tissues after intravenous injection. The bacteria secreted ClyA into the tumor microenvironment. A single dose of ClyA-expressing Salmonella markedly inhibited growth of pancreatic cancer both in subcutaneous xenograft- and orthotopic tumor-bearing nude mice. Histological analysis revealed a marked decrease in expression of stromal cell markers and increased immune cell (neutrophils and macrophages) infiltration into tumors after colonization by ClyA-expressing bacteria. ClyA-expressing S. typhimurium destroyed cancer stromal cells and cancer cells in mouse models of human pancreatic cancer. This approach provides a novel strategy for combining anticancer and anti-stromal therapy to treat pancreatic cancer.
Collapse
Affiliation(s)
- Wenzhi Tan
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| | - Mai Thi-Quynh Duong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Yeshan Qin
- Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea
| | - Ying Zhang
- Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea
| | - Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China,Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea,Corresponding author: Jin Hai Zheng, College of Biology, Hunan University, Changsha, Hunan 410082, China.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea,Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea,Corresponding author: Jung-Joon Min, Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Jeonnam 58128, Republic of Korea.
| |
Collapse
|
81
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
82
|
Munigala S, Subramaniam DS, Subramaniam DP, Burroughs TE, Conwell DL, Sheth SG. Incidence and Risk of Pancreatic Cancer in Patients with a New Diagnosis of Chronic Pancreatitis. Dig Dis Sci 2022; 67:708-715. [PMID: 33630214 DOI: 10.1007/s10620-021-06886-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic pancreatitis (CP) is a risk factor for pancreatic ductal adenocarcinoma (PDAC); nevertheless, the true incidence of PDAC in CP patients in the United States remains unclear. AIMS We evaluated the risk of developing PDAC two or more years after a new diagnosis of CP. METHODS Retrospective study of veterans from September 1999 to October 2015. A three-year washout period was applied to exclude patients with preexisting CP and PDAC. PDAC risk was evaluated in patients with new-diagnosis CP and compared with controls without CP using Cox-proportional hazards model. CP, PDAC, and other covariates were extracted using ICD-9 codes. RESULTS After exclusions, we identified 7,883,893 patients [new-diagnosis CP - 21,765 (0.28%)]. PDAC was diagnosed in 226 (1.04%) patients in the CP group and 15,858 (0.20%) patients in the control group (p < 0.001). CP patients had a significantly higher PDAC risk compared to controls > 2 years [adjusted hazard ratio (HR) 4.28, 95% confidence interval (CI) 3.74-4.89, p < 0.001], 5 years (adjusted HR 3.32, 95% CI 2.75-4.00, p < 0.001) and 10 years of follow-up (adjusted HR 3.14, 95% CI 1.99-4.93, p < 0.001), respectively. By multivariable analysis, age (odds ratio 1.02, 95% CI 1.00-1.03, p = 0.03), current smoker (odds ratio 1.67, 95% CI 1.02-2.74, p = 0.042), current smoker + alcoholic (odds ratio 2.29, 95% CI 1.41-3.52, p < 0.001), and diabetes (odds ratio 1.51, 95% CI 1.14-1.99, p = 0.004) were the independent risk factors for PDAC. CONCLUSION Our data show that after controlling for etiology of CP and other cofactors, the risk of PDAC increased in CP patients after two years of follow-up, and risk was consistent and sustained beyond 5 years and 10 years of follow-up.
Collapse
Affiliation(s)
- Satish Munigala
- Saint Louis University Center for Outcomes Research (SLUCOR), 3545 Lafayette Ave, Salus Center 4th Floor, SLUCOR Office, St. Louis, MO, 63104, USA.
| | - Divya S Subramaniam
- Saint Louis University Center for Outcomes Research (SLUCOR), 3545 Lafayette Ave, Salus Center 4th Floor, SLUCOR Office, St. Louis, MO, 63104, USA
| | - Dipti P Subramaniam
- School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Thomas E Burroughs
- Saint Louis University Center for Outcomes Research (SLUCOR), 3545 Lafayette Ave, Salus Center 4th Floor, SLUCOR Office, St. Louis, MO, 63104, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sunil G Sheth
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
83
|
Cortesi M, Zanoni M, Pirini F, Tumedei MM, Ravaioli S, Rapposelli IG, Frassineti GL, Bravaccini S. Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. Int J Mol Sci 2021; 23:ijms23010254. [PMID: 35008679 PMCID: PMC8745092 DOI: 10.3390/ijms23010254] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
- Correspondence:
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Maria Maddalena Tumedei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Sara Ravaioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| |
Collapse
|
84
|
Ray A, Callaway MK, Rodríguez-Merced NJ, Crampton AL, Carlson M, Emme KB, Ensminger EA, Kinne AA, Schrope JH, Rasmussen HR, Jiang H, DeNardo DG, Wood DK, Provenzano PP. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 2021; 7:150330. [PMID: 34914633 PMCID: PMC8855836 DOI: 10.1172/jci.insight.150330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Mackenzie K Callaway
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Nelson J Rodríguez-Merced
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexandra L Crampton
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Marjorie Carlson
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Kenneth B Emme
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Ethan A Ensminger
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexander A Kinne
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Jonathan H Schrope
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Haley R Rasmussen
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Hong Jiang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David K Wood
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Paolo P Provenzano
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
85
|
Vaish U, Jain T, Are AC, Dudeja V. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. Int J Mol Sci 2021; 22:13408. [PMID: 34948209 PMCID: PMC8706283 DOI: 10.3390/ijms222413408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.
Collapse
Affiliation(s)
| | | | | | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (U.V.); (T.J.); (A.C.A.)
| |
Collapse
|
86
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Małecka-Wojciesko E. Alpha Smooth Muscle Actin (αSMA) Immunohistochemistry Use in the Differentiation of Pancreatic Cancer from Chronic Pancreatitis. J Clin Med 2021; 10:jcm10245804. [PMID: 34945100 PMCID: PMC8707555 DOI: 10.3390/jcm10245804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Aim: Fibrosis is observed both in pancreatic cancer (PDAC) and chronic pancreatitis (CP). The main cells involved in fibrosis are pancreatic stellate cells (PSCs), which activate alpha smooth muscle actin (αSMA), which is considered to be the best-known fibrosis marker. The aim of the study was to evaluate the expression of the αSMA in patients with PDAC and CP as the possible differentiation marker. Methods: We enrolled 114 patients undergoing pancreatic resection: 83 with PDAC and 31 with CP. Normal fragments of resected specimen from 21 patients represented the control tissue. The immunoexpressions of αSMA were detected in tissue specimens with immunohistochemistry (Abcam antibodies, GB). Results: Mean cytoplasmatic expression of αSMA protein in PDAC stromal cells was significantly higher compared to CP: 2.42 ± 0.37 vs 1.95 ± 0.45 (p < 0.01) and control group 0.61 ± 0.45 (p < 0.01). Strong immunoexpression of the αSMA protein was found in the vast majority (80.7%) of patients with PDAC, in about half (58%) of patients with CP, and not at all in healthy tissue. The expression of αSMA of different intensity was found in all patients with PDAC and CP, while in healthy tissue was minimal or absent. In PDAC patients, αSMA expression was significantly higher in tumors of diameter higher than 3 cm compared to smaller ones (p = 0.017). Conclusions: Presented findings confirm the significant role of fibrosis in both PDAC and CP; however, they do not confirm the role of αSMA as a marker of differentiation.
Collapse
Affiliation(s)
- Katarzyna Winter
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Correspondence: ; Tel.: +48-500-275-615; +48-4267-76-664; Fax: +48-678-6480
| | | | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, 90-153 Lodz, Poland;
| | | | - Marian Danilewicz
- Department of Nephropathology, Division of Morphometry, Medical University of Lodz, 90-153 Lodz, Poland; (M.W.-D.); (M.D.)
| | - Ewa Małecka-Wojciesko
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
87
|
Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021; 13:6135. [PMID: 34885243 PMCID: PMC8657427 DOI: 10.3390/cancers13236135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the median overall survival of PDAC patients rarely exceeds 1 year and has an overall 5-year survival rate of about 9%. These numbers are anticipated to worsen in the future due to the lack of understanding of the factors involved in its strong chemoresistance. Chemotherapy remains the only treatment option for most PDAC patients; however, the available therapeutic strategies are insufficient. The factors involved in chemoresistance include the development of a desmoplastic stroma which reprograms cellular metabolism, and both contribute to an impaired response to therapy. PDAC stroma is composed of immune cells, endothelial cells, and cancer-associated fibroblasts embedded in a prominent, dense extracellular matrix associated with areas of hypoxia and acidic extracellular pH. While multiple gene mutations are involved in PDAC initiation, this desmoplastic stroma plays an important role in driving progression, metastasis, and chemoresistance. Elucidating the mechanisms underlying PDAC resistance are a prerequisite for designing novel approaches to increase patient survival. In this review, we provide an overview of the stromal features and how they contribute to the chemoresistance in PDAC treatment. By highlighting new paradigms in the role of the stromal compartment in PDAC therapy, we hope to stimulate new concepts aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | | | - Khalid O. Alfarouk
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah 42316, Saudi Arabia;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| |
Collapse
|
88
|
Maneshi P, Mason J, Dongre M, Öhlund D. Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Front Cell Dev Biol 2021; 9:787485. [PMID: 34901028 PMCID: PMC8656238 DOI: 10.3389/fcell.2021.787485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst outcomes among cancers with a 5-years survival rate of below 10%. This is a result of late diagnosis and the lack of effective treatments. The tumor is characterized by a highly fibrotic stroma containing distinct cellular components, embedded within an extracellular matrix (ECM). This ECM-abundant tumor microenvironment (TME) in PDAC plays a pivotal role in tumor progression and resistance to treatment. Cancer-associated fibroblasts (CAFs), being a dominant cell type of the stroma, are in fact functionally heterogeneous populations of cells within the TME. Certain subtypes of CAFs are the main producer of the ECM components of the stroma, with the most abundant one being the collagen family of proteins. Collagens are large macromolecules that upon deposition into the ECM form supramolecular fibrillar structures which provide a mechanical framework to the TME. They not only bring structure to the tissue by being the main structural proteins but also contain binding domains that interact with surface receptors on the cancer cells. These interactions can induce various responses in the cancer cells and activate signaling pathways leading to epithelial-to-mesenchymal transition (EMT) and ultimately metastasis. In addition, collagens are one of the main contributors to building up mechanical forces in the tumor. These forces influence the signaling pathways that are involved in cell motility and tumor progression and affect tumor microstructure and tissue stiffness by exerting solid stress and interstitial fluid pressure on the cells. Taken together, the TME is subjected to various types of mechanical forces and interactions that affect tumor progression, metastasis, and drug response. In this review article, we aim to summarize and contextualize the recent knowledge of components of the PDAC stroma, especially the role of different collagens and mechanical traits on tumor progression. We furthermore discuss different experimental models available for studying tumor-stromal interactions and finally discuss potential therapeutic targets within the stroma.
Collapse
Affiliation(s)
- Parniyan Maneshi
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
89
|
Eukaryotic initiation factor 2 signaling behind neural invasion linked with lymphatic and vascular invasion in pancreatic cancer. Sci Rep 2021; 11:21197. [PMID: 34707166 PMCID: PMC8551178 DOI: 10.1038/s41598-021-00727-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Perineural invasion (PNI) is a typical poor prognostic factor in pancreatic ductal adenocarcinoma (PDAC). The mechanisms linking PNI to poor prognosis remain unclear. This study aimed to clarify what changes occurred alongside PNI in PDAC. A 128-patient cohort undergoing surgery for early-stage PDAC was evaluated. Subdivided into two groups, according to pathological state, a pancreatic nerve invasion (ne) score of less than three (from none to moderate invasion) was designated as the low-grade ne group. The high-grade (marked invasion) ne group (74 cases, 57.8%) showed a higher incidence of lymphatic metastasis (P = 0.002), a higher incidence of early recurrence (P = 0.004), decreased RFS (P < 0.001), and decreased DSS (P < 0.001). The severity of lymphatic (r = 0.440, P = 0.042) and venous (r = 0.610, P = 0.002) invasions was positively correlated with the ne score. Tumors having abundant stroma often displayed severe ne. Proteomics identified eukaryotic initiation factor 2 (EIF2) signaling as the most significantly enriched pathway in high-grade ne PDAC. Additionally, EIF2 signaling-related ribosome proteins decreased according to severity. Results showed that PNI is linked with lymphatic and vascular invasion in early-stage PDAC. Furthermore, the dysregulation of proteostasis and ribosome biogenesis can yield a difference in PNI severity.
Collapse
|
90
|
Perera CJ, Falasca M, Chari ST, Greenfield JR, Xu Z, Pirola RC, Wilson JS, Apte MV. Role of Pancreatic Stellate Cell-Derived Exosomes in Pancreatic Cancer-Related Diabetes: A Novel Hypothesis. Cancers (Basel) 2021; 13:cancers13205224. [PMID: 34680372 PMCID: PMC8534084 DOI: 10.3390/cancers13205224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating condition characterised by vague symptomatology and delayed diagnosis. About 30% of PDAC patients report a history of new onset diabetes, usually diagnosed within 3 years prior to the diagnosis of cancer. Thus, new onset diabetes, which is also known as pancreatic cancer-related diabetes (PCRD), could be a harbinger of PDAC. Diabetes is driven by progressive β cell loss/dysfunction and insulin resistance, two key features that are also found in PCRD. Experimental studies suggest that PDAC cell-derived exosomes carry factors that are detrimental to β cell function and insulin sensitivity. However, the role of stromal cells, particularly pancreatic stellate cells (PSCs), in the pathogenesis of PCRD is not known. PSCs are present around the earliest neoplastic lesions and around islets. Given that PSCs interact closely with cancer cells to drive cancer progression, it is possible that exosomal cargo from both cancer cells and PSCs plays a role in modulating β cell function and peripheral insulin resistance. Identification of such mediators may help elucidate the mechanisms of PCRD and aid early detection of PDAC. This paper discusses the concept of a novel role of PSCs in the pathogenesis of PCRD.
Collapse
Affiliation(s)
- Chamini J. Perera
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth 6102, Australia;
| | - Suresh T. Chari
- M.D Anderson Cancer Centre, Department of Gastroenterology, Hepatology and Nutrition, University of Texas, Houston, TX 75083, USA;
| | - Jerry R. Greenfield
- St Vincent Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia;
- Healthy Ageing, Garvan Institute of Medical Research, Darlinghurst 2830, Australia
- Department of Diabetes and Endocrinology, St Vincent’s Hospital, Darlinghurst 3065, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
- Correspondence: ; Tel.: +61-2-87389029
| |
Collapse
|
91
|
Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021; 13:5086. [PMID: 34680235 PMCID: PMC8533869 DOI: 10.3390/cancers13205086] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor clinical outcomes, largely attributed to incomplete responses to standard therapeutic approaches. Recently, selective inhibitors of the Transforming Growth Factor β (TGFβ) signaling pathway have shown early promise in the treatment of PDAC, particularly as a means of augmenting responses to chemo- and immunotherapies. However, TGFβ is a potent and pleiotropic cytokine with several seemingly paradoxical roles within the pancreatic tumor microenvironment (TME). Although TGFβ signaling can have potent tumor-suppressive effects in epithelial cells, TGFβ signaling also accelerates pancreatic tumorigenesis by enhancing epithelial-to-mesenchymal transition (EMT), fibrosis, and the evasion of the cytotoxic immune surveillance program. Here, we discuss the known roles of TGFβ signaling in pancreatic carcinogenesis, the biologic consequences of the genetic inactivation of select components of the TGFβ pathway, as well as past and present attempts to advance TGFβ inhibitors in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Luke G. Atia
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Ajay Rana
- Jesse Brown Veterans Affairs Hospital, Chicago, IL 60612, USA
| |
Collapse
|
92
|
Yang J, Xu J, Zhang B, Tan Z, Meng Q, Hua J, Liu J, Wang W, Shi S, Yu X, Liang C. Ferroptosis: At the Crossroad of Gemcitabine Resistance and Tumorigenesis in Pancreatic Cancer. Int J Mol Sci 2021; 22:10944. [PMID: 34681603 PMCID: PMC8539929 DOI: 10.3390/ijms222010944] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The overall five-year survival rate of pancreatic cancer has hardly changed in the past few decades (less than 10%) because of resistance to all known therapies, including chemotherapeutic drugs. In the past few decades, gemcitabine has been at the forefront of treatment for pancreatic ductal adenocarcinoma, but more strategies to combat drug resistance need to be explored. One promising possibility is ferroptosis, a form of a nonapoptotic cell death that depends on intracellular iron and occurs through the accumulation of lipid reactive oxygen species, which are significant in drug resistance. In this article, we reviewed gemcitabine-resistance mechanisms; assessed the relationship among ferroptosis, tumorigenesis and gemcitabine resistance, and explored a new treatment method for pancreatic cancer.
Collapse
Affiliation(s)
- Jianhui Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
93
|
The Diverse Applications of Pancreatic Ductal Adenocarcinoma Organoids. Cancers (Basel) 2021; 13:cancers13194979. [PMID: 34638463 PMCID: PMC8508245 DOI: 10.3390/cancers13194979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies. While immortalized cancer cell lines and genetically engineered murine models have increased our understanding of PDAC tumorigenesis, they do not recapitulate inter- and intra-patient heterogeneity. PDAC patient derived organoid (PDO) biobanks have overcome this hurdle, and provide an opportunity for the high throughput screening of potential new therapies. This review provides a summary of the PDAC PDO biobanks established to date, and discusses how they have advanced our understanding of PDAC biology. Looking forward, the development of coculturing techniques for specific immune or stromal cell populations will enable a better understanding of the crosstalk that occurs within the tumor microenvironment, and the impact of this crosstalk on treatment response.
Collapse
|
94
|
Watt DM, Morton JP. Heterogeneity in Pancreatic Cancer Fibroblasts-TGFβ as a Master Regulator? Cancers (Basel) 2021; 13:4984. [PMID: 34638468 PMCID: PMC8508541 DOI: 10.3390/cancers13194984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease for which there are very few available therapies. It is notable for its high degree of tumour complexity, with the tumour microenvironment often accounting for the majority of the tumour volume. Until recently, the biology of the stroma was poorly understood, particularly in terms of heterogeneity. Recent research, however, has shed light on the intricacy of signalling within the stroma and particularly the molecular and functional heterogeneity of the cancer associated fibroblasts. In this review, we summarise the recent improvements in our understanding of the different fibroblast populations within PDAC, with a focus on the role TGFβ plays to dictate their formation and function. These studies have highlighted some of the reasons for the failure of trials targeting the tumour stroma, however, there are still considerable gaps in our knowledge, and more work is needed to make effective fibroblast targeting a reality in the clinic.
Collapse
Affiliation(s)
- Dale M. Watt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK;
| | - Jennifer P. Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
95
|
Smith JP, Cao H, Chen W, Kallakury B, Phillips T, Sutton L, Cato A. Vaccination with Polyclonal Antibody Stimulator (PAS) Prevents Pancreatic Carcinogenesis in the KRAS Mouse Model. Cancer Prev Res (Phila) 2021; 14:933-944. [PMID: 34429319 PMCID: PMC8525505 DOI: 10.1158/1940-6207.capr-20-0650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
The incidence of pancreatic cancer is increasing significantly and will soon become the second leading cause of cancer-related deaths in the United States. We have previously shown that the gastrointestinal peptide gastrin, which is only expressed in the fetal pancreas and not in the adult pancreas, is activated during pancreatic carcinogenesis where it stimulates growth in an autocrine fashion. In this investigation, we used transgenic LSL-KrasG12D/+; P48-Cre mice that develop precancerous pancreatic intraepithelial neoplasia (PanIN) lesions and pancreatic cancer over time. Starting at 3 months of age, mice were either left untreated (control) or were treated with a gastrin-targeted vaccine, polyclonal antibody stimulator (PAS 250 μg) followed by a monthly booster until the mice reached 8 months of age when pancreata were excised, and analyzed by histology for PanIN grade in a blinded fashion. High-grade PanIN-3 lesions were significantly less in PAS-treated mice (P = 0.0077), and cancers developed in 33% of the control mice but only in 10% of the PAS-treated mice. Compared with the control mice, fibrosis was reduced by >50%, arginase positive M2 macrophages were reduced by 74%, and CD8+ T cells were increased by 73% in the pancreas extracellular matrix in PAS-treated mice. PREVENTION RELEVANCE: PAS vaccination significantly decreased high-grade PanIN lesions and altered the pancreas microenvironment, rendering it less carcinogenic.
Collapse
Affiliation(s)
- Jill P Smith
- Department of Medicine, Georgetown University, Washington D.C.
| | - Hong Cao
- Department of Medicine, Georgetown University, Washington D.C
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington D.C
| | | | | | | | - Allen Cato
- Cancer Advances, Inc. Durham, North Carolina
| |
Collapse
|
96
|
Malchiodi ZX, Cao H, Gay MD, Safronenka A, Bansal S, Tucker RD, Weinberg BA, Cheema A, Shivapurkar N, Smith JP. Cholecystokinin Receptor Antagonist Improves Efficacy of Chemotherapy in Murine Models of Pancreatic Cancer by Altering the Tumor Microenvironment. Cancers (Basel) 2021; 13:4949. [PMID: 34638432 PMCID: PMC8508339 DOI: 10.3390/cancers13194949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist, proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer. Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially expressed genes between tumors of mice treated with gemcitabine monotherapy and combination therapy were compared by RNAseq. When given in combination the two compounds exhibited inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival. Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+ T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy. Proglumide altered the expression of genes involved in fibrosis, epithelial-mesenchymal transition, and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to chemotherapy.
Collapse
Affiliation(s)
- Zoe X. Malchiodi
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Hong Cao
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Martha D. Gay
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Anita Safronenka
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Robin D. Tucker
- Department of Pathology, Georgetown University, Washington, DC 20057, USA;
| | - Benjamin A. Weinberg
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Amrita Cheema
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Jill P. Smith
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| |
Collapse
|
97
|
Zhao X, Yang X, Wang X, Zhao X, Zhang Y, Liu S, Anderson GJ, Kim SJ, Li Y, Nie G. Penetration Cascade of Size Switchable Nanosystem in Desmoplastic Stroma for Improved Pancreatic Cancer Therapy. ACS NANO 2021; 15:14149-14161. [PMID: 34478262 DOI: 10.1021/acsnano.0c08860] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells are surrounded by a dense extracellular matrix (ECM), which greatly restricts the access of therapeutic agents, resulting in poor clinical response to chemotherapy. Transforming growth factor-β1 (TGF-β1) signaling plays a crucial role in construction of the desmoplastic stroma and provides potential targets for PDAC therapy. To surmount the pathological obstacle, we developed a size switchable nanosystem based on PEG-PLGA nanospheres encapsulated within liposomes for the combined delivery of vactosertib (VAC), a TGF-β1 receptor kinase inhibitor, and the cytotoxic drug paclitaxel (TAX). By surface modification of the liposomes with a peptide, APTEDB, the nanosystem can be anchored to abundant tumor-associated fibronectin in PDAC stroma and decreases its size by releasing encapsulated TAX-loaded nanospheres, as well as VAC after collapse of the liposomes. The inhibition of ECM hyperplasia by VAC allows TAX more ready access to the cancer cells in addition to its small size, thereby shrinking pancreatic tumor xenografts more effectively than a combination of the free drugs. This size switchable nanosystem enables sequential delivery of drugs at a fixed dose combination with simplified administration and provides an encouraging cascade approach of drug penetration for enhanced chemotherapy in cancers with a dense desmoplastic stroma.
Collapse
Affiliation(s)
- Xiaozheng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Republic of Korea
- Medpacto Inc., 92 Myeongdal-ro, Seocho-gu, Seoul 06668, Republic of Korea
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
98
|
Immunosuppressive Roles of Galectin-1 in the Tumor Microenvironment. Biomolecules 2021; 11:biom11101398. [PMID: 34680031 PMCID: PMC8533562 DOI: 10.3390/biom11101398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Evasion of immune surveillance is an accepted hallmark of tumor progression. The production of immune suppressive mediators by tumor cells is one of the major mechanisms of tumor immune escape. Galectin-1 (Gal-1), a pivotal immunosuppressive molecule, is expressed by many types of cancer. Tumor-secreted Gal-1 can bind to glycosylated receptors on immune cells and trigger the suppression of immune cell function in the tumor microenvironment, contributing to the immune evasion of tumors. The aim of this review is to summarize the current literature on the expression and function of Gal-1 in the human tumor microenvironment, as well as therapeutics targeting Gal-1.
Collapse
|
99
|
Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, Finan JM, Sattler A, Makar R, Dawson DW, Xia Z, Hingorani SR, Sherman MH. Mesenchymal Lineage Heterogeneity Underlies Non-Redundant Functions of Pancreatic Cancer-Associated Fibroblasts. Cancer Discov 2021; 12:484-501. [PMID: 34548310 DOI: 10.1158/2159-8290.cd-21-0601] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblast (CAF) heterogeneity is increasingly appreciated, but the origins and functions of distinct CAF subtypes remain poorly understood. The abundant and transcriptionally diverse CAF population in pancreatic ductal adenocarcinoma (PDAC) is thought to arise from a common cell of origin, pancreatic stellate cells (PSCs), with diversification resulting from cytokine and growth factor gradients within the tumor microenvironment. Here we analyzed the differentiation and function of PSCs during tumor progression in vivo. Contrary to expectations, we found that PSCs give rise to a numerically minor subset of PDAC CAFs. Targeted ablation of PSC-derived CAFs within their host tissue revealed non-redundant functions for this defined CAF population in shaping the PDAC microenvironment, including production of specific extracellular matrix components and tissue stiffness regulation. Together, these findings link stromal evolution from distinct cells of origin to transcriptional heterogeneity among PDAC CAFs, and demonstrate unique functions for CAFs of a defined cellular origin.
Collapse
Affiliation(s)
| | - Mark W Berry
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | | | | | - Duanchen Sun
- Computational biology, Oregon Health & Science University
| | | | - Chet Oon
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Sohinee Bhattacharyya
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Hannah Sanford-Crane
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Wesley Horton
- Computational Biology, Oregon Health & Science University
| | - Jennifer M Finan
- Cell, Developmental and Cancer Biology, Oregon Health and Science University
| | - Ariana Sattler
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| | - Rosemary Makar
- Knight BioLibrary, Oregon Health & Science University School of Medicine
| | - David W Dawson
- Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA)
| | - Zheng Xia
- Computational Biology Program; Knight Cancer Institute, Oregon Health & Science University
| | | | - Mara H Sherman
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| |
Collapse
|
100
|
Dosch AR, Singh S, Dai X, Mehra S, Silva IDC, Bianchi A, Srinivasan S, Gao Z, Ban Y, Chen X, Banerjee S, Nagathihalli NS, Datta J, Merchant NB. Targeting Tumor-Stromal IL6/STAT3 Signaling through IL1 Receptor Inhibition in Pancreatic Cancer. Mol Cancer Ther 2021; 20:2280-2290. [PMID: 34518296 DOI: 10.1158/1535-7163.mct-21-0083] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 09/10/2021] [Indexed: 01/05/2023]
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense, desmoplastic stroma and the consequent altered interactions between cancer cells and their surrounding tumor microenvironment (TME) that promote disease progression, metastasis, and chemoresistance. We have previously shown that IL6 secreted from pancreatic stellate cells (PSC) stimulates the activation of STAT3 signaling in tumor cells, an established mechanism of therapeutic resistance in PDAC. We have now identified the tumor cell-derived cytokine IL1α as an upstream mediator of IL6 release from PSCs that is involved in STAT3 activation within the TME. Herein, we show that IL1α is overexpressed in both murine and human PDAC tumors and engages with its cognate receptor IL1R1, which is strongly expressed on stromal cells. Further, we show that IL1R1 inhibition using anakinra (recombinant IL1 receptor antagonist) significantly reduces stromal-derived IL6, thereby suppressing IL6-dependent STAT3 activation in human PDAC cell lines. Anakinra treatment results in significant reduction in IL6 and activated STAT3 levels in pancreatic tumors from Ptf1aCre/+;LSL-KrasG12D/+; Tgfbr2flox/flox (PKT) mice. Additionally, the combination of anakinra with cytotoxic chemotherapy significantly extends overall survival compared with vehicle treatment or anakinra monotherapy in this aggressive genetic mouse model of PDAC. These data highlight the importance of IL1 in mediating tumor-stromal IL6/STAT3 cross-talk in the TME and provide a preclinical rationale for targeting IL1 signaling as a therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Iago De Castro Silva
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Anna Bianchi
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Supriya Srinivasan
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhen Gao
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Xi Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Sulagna Banerjee
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|