Kermarrec N, Selloum S, Plantefeve G, Chosidow D, Paoletti X, Lopez A, Mantz J, Desmonts JM, Gougerot-Pocidalo MA, Chollet-Martin S. Regulation of peritoneal and systemic neutrophil-derived tumor necrosis factor-alpha release in patients with severe peritonitis: role of tumor necrosis factor-alpha converting enzyme cleavage.
Crit Care Med 2005;
33:1359-64. [PMID:
15942356 DOI:
10.1097/01.ccm.0000166359.47577.57]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE
Polymorphonuclear neutrophil (PMN) influx and peritoneal tumor necrosis factor (TNF)-alpha production are key host defense mechanisms during peritonitis. The aim of this study was to explore the potential interactions between TNF-alpha production and TNF-alpha converting enzyme (TACE) expression by PMN in the blood and peritoneum of patients with severe peritonitis.
DESIGN
A prospective study.
SETTING
A surgical adult intensive care unit in a university hospital.
PATIENTS
A total of 29 consecutive immunocompetent patients with severe sepsis within 48 hrs of onset were enrolled and underwent laparotomy for a diffuse secondary peritonitis. Thirteen volunteers served as controls.
MEASUREMENTS
Blood and peritoneal fluid recovered during laparotomy were analyzed and compared for 1) soluble TNF-alpha, soluble L-selectin, and type I and II TNF-alpha receptor levels; 2) PMN membrane TNF-alpha, membrane L-selectin, and TACE expression (flow cytometry); and 3) TNF-alpha production by cultured PMN. Correlations between these forms of PMN-derived TNF-alpha and the severity of the peritonitis and patient's outcome were investigated.
MAIN RESULTS
Elevated soluble TNF-alpha levels in both plasma and peritoneal fluid from the patients were found, together with decreased expression of membrane TNF-alpha and TACE up-regulation at the PMN surface. Soluble L-selectin and type I and II TNF receptors were highly released, suggesting also the role of TACE. In contrast, the capacity of both blood and peritoneal PMN to synthesize TNF-alpha in vitro, in optimal conditions of stimulation (lipopolysaccharide + interferon-gamma), was impaired as compared with controls' blood PMN. Regulation of PMN-derived TNF-alpha was similar in the two compartments, but responses were more pronounced in the peritoneum. TACE up-regulation at the surface of blood-derived PMN correlated with the Sequential Organ Failure Assessment score and vital outcome.
CONCLUSION
These human data demonstrate that mTACE is up-regulated at the PMN surface during severe peritonitis. This finding could be related to a paracrine regulatory loop involving some TACE substrates such as TNF-alpha, L-selectin, and TNF receptors.
Collapse