51
|
Regmi S, Jeong JH. Superiority of three-dimensional stem cell clusters over monolayer culture: An archetype to biological application. Macromol Res 2016. [DOI: 10.1007/s13233-016-4107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
52
|
Shuai Y, Liao L, Su X, Yu Y, Shao B, Jing H, Zhang X, Deng Z, Jin Y. Melatonin Treatment Improves Mesenchymal Stem Cells Therapy by Preserving Stemness during Long-term In Vitro Expansion. Am J Cancer Res 2016; 6:1899-917. [PMID: 27570559 PMCID: PMC4997245 DOI: 10.7150/thno.15412] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSCs therapy. Here, we report a melatonin-based strategy to improve cell therapy of in vitro cultured MSCs. Among four small molecules with anti-aging and stem cell-protection properties (rapamycin, resveratrol, quercetin and melatonin), colony forming, proliferation, and osteogenic differentiation assay showed that melatonin was the most efficient to preserve self-renewal and differentiation properties of rat bone marrow MSCs (BMMSCs) after long-term passaging. Functional assays confirmed melatonin treatment did not affect the colony forming, proliferation and osteogenic differentiation of BMMSCs cultured for 1 or 4 passages, but largely prevented the decline of self-renew and differentiation capacity of BMMSCs cultured for 15 passages in vitro. Furthermore, heterotopic osteogenesis assay, critical size calvarial defects repair assay, osteoporosis treatment and experimental colitis therapy assay strongly certified that melatonin preserved the therapeutic effect of long-term passaged BMMSCs on bone regeneration and immunotherapy in vivo. Mechanistically, melatonin functioned by activating antioxidant defense system, inhibiting the pathway of cell senescence, and preserving the expression of gene governing the stemness. Taken together, our findings showed that melatonin treatment efficiently prevented the dysfunction and therapeutic failure of BMMSCs after long-term passaging, providing a practical strategy to improve the application of BMMSCs in tissue engineering and cytotherapy.
Collapse
|
53
|
Jang HK, Kim BS, Han J, Yoon JK, Lee JR, Jeong GJ, Shin JY. Therapeutic angiogenesis using tumor cell-conditioned medium. Biotechnol Prog 2016; 32:456-64. [DOI: 10.1002/btpr.2226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/31/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Hyeon-Ki Jang
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul 151-744 Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering; Seoul National University; Seoul 151-744 Republic of Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
- Bio-MAX Inst.; Inst. for Chemical Processes, Seoul National University; Seoul 151-744 Republic of Korea
| | - Jin Han
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| | - Jeong-Kee Yoon
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| | - Jung-Youn Shin
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Republic of Korea
| |
Collapse
|
54
|
Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7:e2062. [PMID: 26794657 PMCID: PMC4816164 DOI: 10.1038/cddis.2015.327] [Citation(s) in RCA: 811] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/13/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy.
Collapse
Affiliation(s)
- F Gao
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S M Chiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - D A L Motan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Z Zhang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - L Chen
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - H-L Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - H-F Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Q-L Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q Lian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
55
|
Abstract
Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown.
Collapse
|
56
|
Alawad A, Altuwaijri S, Aljarbu A, Kryczek I, Niu Y, Al-sobayil FA, Chang C, Bayoumi A, Zou W, Rudat V, Hammad M. Depletion of androgen receptor (AR) in mesenchymal stem cells (MSCs) inhibits induction of CD4+CD25+FOX3+ regulatory T (Treg) cells via androgen TGF-β interaction. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
57
|
Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells. Mol Ther 2015; 24:331-341. [PMID: 26478250 DOI: 10.1038/mt.2015.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4-15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6-10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells.
Collapse
|
58
|
Rice CM, Marks DI, Ben-Shlomo Y, Evangelou N, Morgan PS, Metcalfe C, Walsh P, Kane NM, Guttridge MG, Miflin G, Blackmore S, Sarkar P, Redondo J, Owen D, Cottrell DA, Wilkins A, Scolding NJ. Assessment of bone marrow-derived Cellular Therapy in progressive Multiple Sclerosis (ACTiMuS): study protocol for a randomised controlled trial. Trials 2015; 16:463. [PMID: 26467901 PMCID: PMC4606493 DOI: 10.1186/s13063-015-0953-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We have recently completed an evaluation of the safety and feasibility of intravenous delivery of autologous bone marrow in patients with progressive multiple sclerosis (MS). The possibility of repair was suggested by improvement in the neurophysiological secondary outcome measure seen in all participants. The current study will examine the efficacy of intravenous delivery of autologous marrow in progressive MS. Laboratory studies performed in parallel with the clinical trial will further investigate the biology of bone marrow-derived stem cell infusion in MS, including mechanisms underlying repair. METHODS/DESIGN A prospective, randomised, double-blind, placebo-controlled, stepped wedge design will be employed at a single centre (Bristol, UK). Eighty patients with progressive MS will be recruited; 60 will have secondary progressive disease (SPMS) but a subset (n = 20) will have primary progressive disease (PPMS). Participants will be randomised to either early or late (1 year) intravenous infusion of autologous, unfractionated bone marrow. The placebo intervention is infusion of autologous blood. The primary outcome measure is global evoked potential derived from multimodal evoked potentials. Secondary outcome measures include adverse event reporting, clinical (EDSS and MSFC) and self-assessment (MSIS-29) rating scales, optical coherence tomography (OCT) as well as brain and spine MRI. Participants will be followed up for a further year following the final intervention. Outcomes will be analysed on an intention-to-treat basis. DISCUSSION Assessment of bone marrow-derived Cellular Therapy in progressive Multiple Sclerosis (ACTiMuS) is the first randomised, placebo-controlled trial of non-myeloablative autologous bone marrow-derived stem cell therapy in MS. It will determine whether bone marrow cell therapy can, as was suggested by the phase I safety study, improve conduction in multiple central nervous system pathways affected in progressive MS. Furthermore, laboratory studies performed in parallel with the clinical trial will inform our understanding of the cellular pharmacodynamics of bone marrow infusion in MS patients and the mechanisms underlying cell therapy. TRIAL REGISTRATION ISRCTN27232902 Registration date 11/09/2012. NCT01815632 Registration date 19/03/2013.
Collapse
Affiliation(s)
- Claire M Rice
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK. .,Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - David I Marks
- Adult BMT Unit, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust & University of Bristol, St Michael's Hill, Bristol, BS2 8BJ, UK.
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.
| | - Nikos Evangelou
- Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Paul S Morgan
- Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Chris Metcalfe
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.
| | - Peter Walsh
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Nick M Kane
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | | | - Gail Miflin
- NHS Blood and Transplant, North Bristol Park, Bristol, BS34 7QH, UK.
| | - Stuart Blackmore
- NHS Blood and Transplant, North Bristol Park, Bristol, BS34 7QH, UK.
| | - Pamela Sarkar
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK. .,Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Juliana Redondo
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - Denise Owen
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - David A Cottrell
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Alastair Wilkins
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK. .,Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Neil J Scolding
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK. .,Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
59
|
Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y, Chiu SM, Liang X, Gao F, Chan CW, Tse HF, Shi J, Fu QL, Lian Q. Insensitivity of Human iPS Cells-Derived Mesenchymal Stem Cells to Interferon-γ-induced HLA Expression Potentiates Repair Efficiency of Hind Limb Ischemia in Immune Humanized NOD Scid Gamma Mice. Stem Cells 2015; 33:3452-67. [PMID: 26175298 DOI: 10.1002/stem.2094] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are immunoprivileged cells due to the low expression of major histocompatibility complex (MHC) II molecules. However, the expression of MHC molecules in human-induced pluripotent stem cells (iPSCs)-derived MSCs has not been investigated. Here, we examined the expression of human leukocyte antigen (HLA) in human MSCs derived from iPSCs, fetuses, and adult bone marrow (BM) after stimulation with interferon-γ (IFN-γ), compared their repair efficacy, cell retention, inflammation, and HLA II expression in immune humanized NOD Scid gamma (NSG) mice of hind limb ischemia. In the absence of IFN-γ stimulation, HLA-II was expressed only in BM-MSCs after 7 days. Two and seven days after stimulation, high levels of HLA-II were observed in BM-MSCs, intermediate levels were found in fetal-MSCs, and very low levels in iPSC-MSCs. The levels of p-STAT1, interferon regulatory factor 1, and class II transactivator exhibited similar phenomena. Moreover, p-STAT1 antagonist significantly reversed the high expression of HLA-II in BM-MSCs. Compared to adult BM-MSCs, transplanting iPSC-MSCs into hu-PBMNC NSG mice revealed markedly more survival iPSC-MSCs, less inflammatory cell accumulations, and better recovery of hind limb ischemia. The expression of HLA-II in MSCs in the ischemia limbs was detected in BM-MSCs group but not in iPSC-MSCs group at 7 and 21 days after transplantation. Our results demonstrate that, compared to adult MSCs, human iPSC-MSCs are insensitive to proinflammatory IFN-γ-induced HLA-II expression and iPSC-MSCs have a stronger immune privilege after transplantation. It may attribute to a better therapeutic efficacy in allogeneic transplantation.
Collapse
Affiliation(s)
- Yue-Qi Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuelin Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Meng-Xia Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wen-Xiang Gao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yin Yao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sin-Ming Chiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoting Liang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Fei Gao
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Camie W Chan
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.,Shenzhen Institutes of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
60
|
Maguire G, Friedman P. Systems biology approach to developing S 2RM-based “systems therapeutics” and naturally induced pluripotent stem cells. World J Stem Cells 2015; 7:745-756. [PMID: 26029345 PMCID: PMC4444614 DOI: 10.4252/wjsc.v7.i4.745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell’s power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely “systems therapeutic”, can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics”. A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S2RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S2RM technology, to develop a new class of therapeutics called “systems therapeutics.” Given the ubiquitous and powerful nature of innate S2RM-based healing in the human body, this “systems therapeutic” approach using S2RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.
Collapse
|
61
|
Moll G, Le Blanc K. Engineering more efficient multipotent mesenchymal stromal (stem) cells for systemic delivery as cellular therapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- G. Moll
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. Le Blanc
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
62
|
Mautner K, Blazuk J. Where Do Injectable Stem Cell Treatments Apply in Treatment of Muscle, Tendon, and Ligament Injuries? PM R 2015; 7:S33-S40. [DOI: 10.1016/j.pmrj.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
63
|
Peters EB, Liu B, Christoforou N, West JL, Truskey GA. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro. Ann Biomed Eng 2015; 43:2552-68. [PMID: 25777295 DOI: 10.1007/s10439-015-1301-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/11/2015] [Indexed: 01/17/2023]
Abstract
Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications.
Collapse
|
64
|
Jin Y, Hong HS, Son Y. Substance P enhances mesenchymal stem cells-mediated immune modulation. Cytokine 2015; 71:145-53. [DOI: 10.1016/j.cyto.2014.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022]
|
65
|
Abstract
With a range of therapeutic uses, from diabetes and Crohn's disease to wound repair, interest in the function, characterization, and expansion of mesenchymal stromal cells (MSCs) is growing rapidly. When considering the therapeutic use of MSCs, one must take into account a multitude of options including the ideal source of MSCs, the ideal donor, and the best means of expansion. Here we discuss different sources of MSCs, including cord blood, bone marrow, and adipose tissue, the option of using autologous and allogeneic donors, and finally we discuss GMP-applicable expansion protocols aimed at expanding MSCs for clinical use.
Collapse
Affiliation(s)
- Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Division of Blood and Marrow Transplantation, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, The George Washington University, Washington, DC, USA,
| |
Collapse
|
66
|
|
67
|
Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation. Cytotherapy 2014; 17:152-62. [PMID: 25453724 DOI: 10.1016/j.jcyt.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS The discovery of regenerative and immunosuppressive capacities of mesenchymal stromal cells (MSCs) raises hope for patients with tissue-damaging or severe, treatment-refractory autoimmune disorders. We previously presented a method to expand human MSCs in a bioreactor under standardized Good Manufacturing Practice conditions. Now we characterized the impact of critical treatment conditions on MSCs with respect to immunosuppressive capabilities and proliferation. METHODS MSC proliferation and survival after γ irradiation were determined by 5-carboxyfluorescein diacetate N-succinimidyl ester and annexinV/4',6-diamidino-2-phenylindole (DAPI) staining, respectively. T-cell proliferation assays were used to assess the effect of γ irradiation, passaging, cryopreservation, post-thaw equilibration time and hypoxia on T-cell suppressive capacities of MSCs. Quantitative polymerase chain reaction and β-galactosidase staining served as tools to investigate differences between immunosuppressive and non-immunosuppressive MSCs. RESULTS γ irradiation of MSCs abrogated their proliferation while vitality and T-cell inhibitory capacity were preserved. Passaging and long cryopreservation time decreased the T-cell suppressive function of MSCs, and postthaw equilibration time of 5 days restored this capability. Hypoxic culture markedly increased MSC proliferation without affecting their T-cell-suppressive capacity and phenotype. Furthermore, T-cell suppressive MSCs showed higher CXCL12 expression and less β-galactosidase staining than non-suppressive MSCs. DISCUSSION We demonstrate that γ irradiation is an effective strategy to abrogate MSC proliferation without impairing the cells' immunosuppressive function. Hypoxia significantly enhanced MSC expansion, allowing for transplantation of MSCs with low passage number. In summary, our optimized MSC expansion protocol successfully addressed the issues of safety and preservation of immunosuppressive MSC function after ex vivo expansion for therapeutic purposes.
Collapse
|
68
|
Centeno CJ. Clinical challenges and opportunities of mesenchymal stem cells in musculoskeletal medicine. PM R 2014; 6:70-7. [PMID: 24439149 DOI: 10.1016/j.pmrj.2013.08.612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
The use of stem cells in orthopedics has been researched for many years, with robust animal data that show efficacy in cartilage healing, tendon repair, and intervertebral disk treatment. Early clinical data are also just starting to be published, and these results are encouraging. Safety data in large case series, some that lasted for many years, have also been published. The field of tissue engineering with stem cells in musculoskeletal impairments has the potential to reduce morbidity and improve clinical outcomes. The regulatory environment for this area of medicine is still developing.
Collapse
Affiliation(s)
- Christopher J Centeno
- The Centeno-Schultz Clinic, 403 Summit Boulevard, Unit 201, Broomfield, CO 80021-8253(∗).
| |
Collapse
|
69
|
A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS One 2014; 9:e102426. [PMID: 25090227 PMCID: PMC4121064 DOI: 10.1371/journal.pone.0102426] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Because human mesenchymal stem cells (hMSC) have profound immunomodulatory effects, many attempts have been made to use hMSCs in preclinical and clinical trials. For hMSCs to be used in therapy, a large population of hMSCs must be generated by in vitro expansion. However, the immunomodulatory changes following the in vitro expansion of hMSCs have not been elucidated. In this study, we evaluated the effect of replicative senescence on the immunomodulatory ability of hMSCs in vitro and in vivo. Late-passage hMSCs showed impaired suppressive effect on mitogen-induced mononuclear cell proliferation. Strikingly, late-passage hMSCs had a significantly compromised protective effect against mouse experimental colitis, which was confirmed by gross and histologic examination. Among the anti-inflammatory cytokines, the production of prostaglandin E2 (PGE2) and the expression of its primary enzyme, cyclooxygenase-2 (COX-2), were profoundly increased by pre-stimulation with interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and this response was significantly decreased with consecutive passages. We demonstrated that the impaired phosphorylation activity of p38 MAP kinase (p38 MAPK) in late-passage hMSCs led to a compromised immunomodulatory ability through the regulation of COX-2. In conclusion, our data indicate that the immunomodulatory ability of hMSCs gradually declines with consecutive passages via a p38-mediated alteration of COX-2 and PGE2 levels.
Collapse
|
70
|
The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration. Biomaterials 2014; 35:4489-98. [DOI: 10.1016/j.biomaterials.2014.02.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 12/29/2022]
|
71
|
Harris GM, Piroli ME, Jabbarzadeh E. Deconstructing the Effects of Matrix Elasticity and Geometry in Mesenchymal Stem Cell Lineage Commitment. ADVANCED FUNCTIONAL MATERIALS 2014; 24:2396-2403. [PMID: 25530746 PMCID: PMC4267324 DOI: 10.1002/adfm.201303400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A wide variety of environmental factors including physical and biochemical signals are responsible for stem cell behavior and function. In particular, matrix elasticity and cell shape have been shown to determine stem cell function, yet little is known about the interplay between how these physical cues control cell differentiation. For the first time, by using ultraviolet (UV) lithography to pattern poly(ethylene) glycol (PEG) hydrogels we are able to manufacture microenvironments capable of parsing the effects of matrix elasticity, cell shape, and cell size in order to explore the relationship between matrix elasticity and cell shape in mesenchymal stem cell (MSC) lineage commitment. Our data shows that cells cultured on 1,000 μm2 circles, squares, and rectangles were primarily adipogenic lineage regardless of matrix elasticity, while cells cultured on 2,500 and 5,000 μm2 shapes more heavily depended on shape and elasticity for lineage specification. We further went on to characterize how modifying the cell cytoskeleton through pharmacological inhibitors can modify cell behavior. By showing MSC lineage commitment relationships due to physical signals, this study highlights the importance of cell shape and matrix elasticity in further understanding stem cell behavior for future tissue engineering strategies.
Collapse
Affiliation(s)
- Greg M. Harris
- Department of Chemical Engineering, University of South Carolina, SC 29208
| | - Maria E. Piroli
- Department of Biomedical Engineering, University of South Carolina, SC 29208
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, SC 29208
- Department of Biomedical Engineering, University of South Carolina, SC 29208
- Department of Orthopaedic Surgery, University of South Carolina, SC 29208
- Corresponding author Ehsan Jabbarzadeh Ph.D., Assistant Professor of Chemical Engineering, Assistant Professor of Biomedical Engineering, Assistant Professor of Orthopaedic Surgery, University of South Carolina, Columbia, SC 29208, Ph: (803) 777-3297, Fax: (803) 777-8265,
| |
Collapse
|
72
|
Demerdash Z, El Baz H, Mahmoud F, Mohamed S, Maher K, Gaafar T, Shawky S, Hassan M, Abdelhady D, Taha T. Enhancing ex vivo expansion of cord blood-derived unrestricted somatic stem cells for clinical applications. Cell Prolif 2014; 46:628-36. [PMID: 24460716 DOI: 10.1111/cpr.12070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To study effects of serum-containing medium (SCM) versus serum-free medium (SFM) and influence of seeding density, on rate of expansion of cord blood (CB) unrestricted somatic stem cells (USSCs), as a prerequisite for evaluating their therapeutic potential in ongoing clinical trials. MATERIAL AND METHODS Isolation, propagation and characterization of USSCs from CB samples were performed and followed by their passage 3 culture in SCM and SFM, at cell densities of 5, 50, 500 and 5000 cells/cm(2) . RESULTS The cells were CD44(+) , CD90(+) , CD73(+) , CD105(+) , CD34(-) , CD45(-) , and HLA-DR, with Oct4 & Sox2 gene expression; they were differentiated into osteoblasts and adipocytes. USSCs cultured in SCM had significantly higher population doubling levels (P < 0.01) than those cultured in SFM. Those cultured in SCM at 5 cells/cm(2) and those cultured in SFM at 50 cells/cm(2) had significantly higher population doubling (P < 0.01) levels than those cultured at higher cell densities. CONCLUSIONS For scaling up of USSCs from 106 (?) to 1012 (?) in 6 weeks, culturing of CB-derived cells of early passage (≤P3) in SCM at low cell seeding density (5 cells/cm(2) ) is suggested for increasing cell count with lower passaging frequency, followed by culture of expanded USSCs at 50 cells/cm(2) in SFM, to avoid undesirable effects of bovine serum in clinical applications.
Collapse
Affiliation(s)
- Z Demerdash
- Immunology, Theodor Bilharz Research Institute, Cairo, 12411, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Shen J, Nair A, Saxena R, Zhang CC, Borrelli J, Tang L. Tissue engineering bone using autologous progenitor cells in the peritoneum. PLoS One 2014; 9:e93514. [PMID: 24681529 PMCID: PMC3969359 DOI: 10.1371/journal.pone.0093514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/06/2014] [Indexed: 01/01/2023] Open
Abstract
Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs) in the peritoneal lavage fluid from mice with peritoneal catheter implants. The osteogenic potential of these peritoneal progenitor cells was demonstrated by their ability to easily infiltrate decalcified bone implants, produce osteocalcin and form mineralized bone in 8 weeks. Additionally, when poly(l-lactic acid) scaffolds loaded with bone morphogenetic protein-2 (a known osteogenic differentiation agent) were implanted into the peritoneum, signs of osteogenesis were seen within 8 weeks of implantation. The results of this investigation support the concept that scaffolds containing BMP-2 can stimulate the formation of bone in the peritoneum via directed autologous stem and progenitor cell responses.
Collapse
Affiliation(s)
- Jinhui Shen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Ashwin Nair
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Ramesh Saxena
- Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joseph Borrelli
- Texas Health Physicians Group, Texas Health Arlington Memorial Hospital, Arlington, Texas, United States of America
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, United States of America
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
74
|
Kwong PJ, Nam HY, Wan Khadijah WE, Kamarul T, Abdullah RB. Comparison of in vitro developmental competence of cloned caprine embryos using donor karyoplasts from adult bone marrow mesenchymal stem cells vs ear fibroblast cells. Reprod Domest Anim 2014; 49:249-53. [PMID: 24456113 DOI: 10.1111/rda.12262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/07/2013] [Indexed: 01/04/2023]
Abstract
The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs.
Collapse
Affiliation(s)
- P J Kwong
- Animal Biotechnology-Embryo Laboratory, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | | | | | | |
Collapse
|
75
|
Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. BIOMED RESEARCH INTERNATIONAL 2014; 2014:951512. [PMID: 24511552 PMCID: PMC3912818 DOI: 10.1155/2014/951512] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/08/2013] [Indexed: 12/14/2022]
Abstract
Administration of bone marrow-derived mesenchymal stem cells (MSCs) is an innovative approach for the treatment of a range of diseases that are not curable by current therapies including heart failure. A number of clinical trials have been completed and many others are ongoing; more than 2,000 patients worldwide have been administered with culture-expanded allogeneic or autologous MSCs for the treatment of various diseases, showing feasibility and safety (and some efficacy) of this approach. However, protocols for isolation and expansion of donor MSCs vary widely between these trials, which could affect the efficacy of the therapy. It is therefore important to develop international standards of MSC production, which should be evidence-based, regulatory authority-compliant, of good medical practice grade, cost-effective, and clinically practical, so that this innovative approach becomes an established widely adopted treatment. This review article summarizes protocols to isolate and expand bone marrow-derived MSCs in 47 recent clinical trials of MSC-based therapy, which were published after 2007 onwards and provided sufficient methodological information. Identified issues and possible solutions associated with the MSC production methods, including materials and protocols for isolation and expansion, are discussed with reference to relevant experimental evidence with aim of future clinical success of MSC-based therapy.
Collapse
|
76
|
Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA, Atta HM, Abdel-Aziz MT. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med 2014; 37:54-71. [PMID: 24090088 PMCID: PMC4066552 DOI: 10.1179/2045772312y.0000000069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. METHODS In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. RESULTS Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2-3 grades), ankle dorsiflexors (1-2 grades), long toe extensors (1-2 grades), and plantar flexors (0-2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. CONCLUSION Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold.
Collapse
Affiliation(s)
- Sherif M. Amr
- Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | - Ashraf Gouda
- Department of Orthopaedics and Traumatology, Al-Helal Hospital, Cairo, Egypt
| | - Wael T. Koptan
- Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | - Ahmad A. Galal
- Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | | | - Laila A. Rashed
- Department of Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt
| | - Hazem M. Atta
- Department of Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt
| | | |
Collapse
|
77
|
Hydrogen sulfide augments the proliferation and survival of human induced pluripotent stem cell–derived mesenchymal stromal cells through inhibition of BKCa. Cytotherapy 2013; 15:1395-405. [DOI: 10.1016/j.jcyt.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/09/2013] [Accepted: 06/16/2013] [Indexed: 01/01/2023]
|
78
|
Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ 2013; 21:216-25. [PMID: 24185619 PMCID: PMC3890955 DOI: 10.1038/cdd.2013.158] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.
Collapse
Affiliation(s)
- S Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - B Yuan
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Beijing 100050, China
| | - Y Shi
- 1] Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China [2] Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
79
|
Zhang Y, Liang X, Lian Q, Tse HF. Perspective and challenges of mesenchymal stem cells for cardiovascular regeneration. Expert Rev Cardiovasc Ther 2013; 11:505-17. [PMID: 23570363 DOI: 10.1586/erc.13.5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotent differentiation potential and can be derived from embryonic, neonatal and adult differentiation stage III tissue sources. While increasing preclinical studies and clinical trials have indicated that MSC-based therapy is a promising strategy for cardiovascular regeneration, there are major challenges to overcome before this stem-cell technology can be widely applied in clinical settings. In this review, the following important issues will be addressed. First, optimal sources of MSC derivation suitable for myocardial repair are not determined. Second, assessments for preclinical and clinical studies of MSCs require more scientific data analysis. Third, mechanisms of MSC-based therapy for cardiovascular regeneration have not been fully understood yet. Finally, the potential benefit-risk ratio of MSC therapy needs to be evaluated systematically. Additionally, future development of MSC therapy will be discussed.
Collapse
Affiliation(s)
- Yuelin Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
80
|
Rice CM, Kemp K, Wilkins A, Scolding NJ. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet 2013; 382:1204-13. [PMID: 24095194 DOI: 10.1016/s0140-6736(13)61810-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is a major cause of neurological disability, and particularly occurs in young adults. It is characterised by conspicuous patches of damage throughout the brain and spinal cord, with loss of myelin and myelinating cells (oligodendrocytes), and damage to neurons and axons. Multiple sclerosis is incurable, but stem-cell therapy might offer valuable therapeutic potential. Efforts to develop stem-cell therapies for multiple sclerosis have been conventionally built on the principle of direct implantation of cells to replace oligodendrocytes, and therefore to regenerate myelin. Recent progress in understanding of disease processes in multiple sclerosis include observations that spontaneous myelin repair is far more widespread and successful than was previously believed, that loss of axons and neurons is more closely associated with progressive disability than is myelin loss, and that damage occurs diffusely throughout the CNS in grey and white matter, not just in discrete, isolated patches or lesions. These findings have introduced new and serious challenges that stem-cell therapy needs to overcome; the practical challenges to achieve cell replacement alone are difficult enough, but, to be useful, cell therapy for multiple sclerosis must achieve substantially more than the replacement of lost oligodendrocytes. However, parallel advances in understanding of the reparative properties of stem cells--including their distinct immunomodulatory and neuroprotective properties, interactions with resident or tissue-based stem cells, cell fusion, and neurotrophin elaboration--offer renewed hope for development of cell-based therapies. Additionally, these advances suggest avenues for translation of this approach not only for multiple sclerosis, but also for other common neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire M Rice
- University of Bristol Institute of Clinical Neurosciences, Burden MS Stem Cell Laboratories and BrAMS Unit, Frenchay Hospital, Bristol, UK
| | | | | | | |
Collapse
|
81
|
Rice CM, Cottrell D, Wilkins A, Scolding NJ. Primary progressive multiple sclerosis: progress and challenges. J Neurol Neurosurg Psychiatry 2013; 84:1100-6. [PMID: 23418213 DOI: 10.1136/jnnp-2012-304140] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary progressive multiple sclerosis (MS) has long been recognised as presenting great difficulties to our management of what is increasingly a treatable neurological disease. Here we review some basic and clinical aspects of primary progressive MS, and describe how the disorder in fact offers powerful insights and opportunities for better understanding multiple sclerosis, and from a practical perspective an invaluable clinical substrate for studying and treating progressive disability in MS. Difficult hurdles remain, however, and these too are reviewed.
Collapse
Affiliation(s)
- Claire M Rice
- University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
| | | | | | | |
Collapse
|
82
|
Sun YQ, Deng MX, He J, Zeng QX, Wen W, Wong DSH, Tse HF, Xu G, Lian Q, Shi J, Fu QL. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice. Stem Cells 2013; 30:2692-9. [PMID: 22987325 PMCID: PMC3549478 DOI: 10.1002/stem.1241] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/29/2012] [Indexed: 12/29/2022]
Abstract
We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. Stem Cells 2012;30:2692–2699
Collapse
Affiliation(s)
- Yue-Qi Sun
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 2013; 33:1322-34. [PMID: 23756689 PMCID: PMC3764389 DOI: 10.1038/jcbfm.2013.91] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022]
Abstract
Although ischemic stroke is a major cause of morbidity and mortality, current therapies benefit only a small proportion of patients. Transplantation of mesenchymal stromal cells (MSC, also known as mesenchymal stem cells or multipotent stromal cells) has attracted attention as a regenerative therapy for numerous diseases, including stroke. Mesenchymal stromal cells may aid in reducing the long-term impact of stroke via multiple mechanisms that include induction of angiogenesis, promotion of neurogenesis, prevention of apoptosis, and immunomodulation. In this review, we discuss the clinical rationale of MSC for stroke therapy in the context of their emerging utility in other diseases, and their recent clinical approval for treatment of graft-versus-host disease. An analysis of preclinical studies examining the effects of MSC therapy after ischemic stroke indicates near-universal agreement that MSC have significant favorable effect on stroke recovery, across a range of doses and treatment time windows. These results are interpreted in the context of completed and ongoing human clinical trials, which provide support for MSC as a safe and potentially efficacious therapy for stroke recovery in humans. Finally, we consider principles of brain repair and manufacturing considerations that will be useful for effective translation of MSC from the bench to the bedside for stroke recovery.
Collapse
Affiliation(s)
- Mark A Eckert
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Quynh Vu
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Kate Xie
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Jingxia Yu
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Wenbin Liao
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Steven C Cramer
- Departments of Neurology and Anatomy and Neurobiology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Weian Zhao
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
84
|
Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro. Cytotherapy 2013; 15:1469-83. [PMID: 23981539 DOI: 10.1016/j.jcyt.2013.05.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND AIMS Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. METHODS MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. RESULTS hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. CONCLUSIONS hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity.
Collapse
|
85
|
Liu GS, Peshavariya HM, Higuchi M, Chan EC, Dusting GJ, Jiang F. Pharmacological priming of adipose-derived stem cells for paracrine VEGF production with deferoxamine. J Tissue Eng Regen Med 2013; 10:E167-76. [DOI: 10.1002/term.1796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/08/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Guei-Sheung Liu
- O'Brien Institute; Fitzroy Victoria Australia
- Centre for Eye Research Australia and Department of Ophthalmology; University of Melbourne; East Melbourne Victoria Australia
| | - Hitesh M. Peshavariya
- O'Brien Institute; Fitzroy Victoria Australia
- Centre for Eye Research Australia and Department of Ophthalmology; University of Melbourne; East Melbourne Victoria Australia
| | | | - Elsa C. Chan
- O'Brien Institute; Fitzroy Victoria Australia
- Centre for Eye Research Australia and Department of Ophthalmology; University of Melbourne; East Melbourne Victoria Australia
| | - Gregory J. Dusting
- O'Brien Institute; Fitzroy Victoria Australia
- Centre for Eye Research Australia and Department of Ophthalmology; University of Melbourne; East Melbourne Victoria Australia
| | - Fan Jiang
- O'Brien Institute; Fitzroy Victoria Australia
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital; Shandong University; Jinan Shandong Province China
| |
Collapse
|
86
|
Dissaranan C, Cruz MA, Kiedrowski MJ, Balog BM, Gill BC, Penn MS, Goldman HB, Damaser MS. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant 2013; 23:1395-406. [PMID: 23866688 PMCID: PMC4464671 DOI: 10.3727/096368913x670921] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vaginal delivery is a risk factor for stress urinary incontinence (SUI). Mesenchymal stem cells (MSCs) home to injured organs and can facilitate repair. The goal of this study was to determine if MSCs home to pelvic organs after simulated childbirth injury and facilitate recovery from SUI via paracrine factors. Three experiments were performed. Eighteen female rats received vaginal distension (VD) or sham VD and labeled intravenous (IV) MSCs to investigate if MSCs home to the pelvic organs. Whole-organ imaging and immunofluorescence were performed 1 week later. Thirty-four female rats received VD and IV MSCs, VD and IV saline, or sham VD and IV saline to investigate if MSCs accelerate recovery of continence. Twenty-nine female rats received VD and periurethral concentrated conditioned media (CCM), VD and periurethral control media, or sham VD and periurethral control media to investigate if factors secreted by MSCs accelerate recovery from VD. Urethral histology and function were assessed 1 week later. Significantly more MSCs were observed in the urethra, vagina, and spleen after VD compared to sham VD. Continence as measured by leak point pressure (LPP) was significantly reduced after VD in rats treated with saline or control media compared to sham VD but not in those given MSCs or CCM. External urethral sphincter (EUS) function as measured by electromyography (EMG) was not improved with MSCs or CCM. Rats treated with MSCs or CCM demonstrated an increase in elastin fibers near the EUS and urethral smooth muscle more similar to that of sham-injured animals than rats treated with saline or control media. MSCs homed to the urethra and vagina and facilitated recovery of continence most likely via secretion of paracrine factors. Both MSCs and CCM have promise as novel noninvasive therapies for SUI.
Collapse
|
87
|
Liu X, Wang X, Wang X, Ren H, He J, Qiao L, Cui FZ. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater 2013; 9:6798-805. [PMID: 23380207 DOI: 10.1016/j.actbio.2013.01.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
A class of designer functionalized self-assembling peptide nanofiber scaffolds developed from self-assembling peptide RADA16-I (AcN-RADARADARADARADA-CONH2) has become increasingly attractive not only for studying spatial behaviors of cells, but also for developing approaches for a wide range of medical applications including regenerative medicine, rapid hemostasis and cell therapy. In this study, we report three functionalized self-assembling peptide hydrogels that serve as a three-dimensional (3-D) artificial microenvironment to control human adipose stem cell (hASC) behavior in vitro. Short peptide motifs SKPPGTSS (bone marrow homing motif), FHRRIKA (heparin-binding motif) and PRGDSGYRGDS (two-unit RGD cell adhesion motif) were used to extend the C-terminus of RADA16-I to obtain functionalized peptides. Atomic force microscopy confirmed the formation of self-assembling nanofibers in the mixture of RADA16-I peptide and functionalized peptides. The behaviors of hASCs cultured in 3-D peptide hydrogels, including migration, proliferation and growth factor-secretion ability, were studied. Our results showed that the functionalized peptide hydrogels were suitable 3-D scaffolds for hASC growth with higher cell proliferation, migration and the secretion of angiogenic growth factors compared with tissue culture plates and pure RADA16-I scaffolds. The present study suggests that these functionalized designer peptide hydrogels not only have promising applications for diverse tissue engineering and regenerative medicine applications as stem cell delivery vehicles, but also could be a biomimetic 3-D system to study nanobiomaterial-stem cell interactions and to direct stem cell behaviors.
Collapse
|
88
|
Regassa A, Kim WK. Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes. Cell Biol Int 2013; 37:961-71. [PMID: 23620084 DOI: 10.1002/cbin.10122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022]
Abstract
We have examined the effect of oleic acid (OA) concentrations and incubation time, along with chicken serum (CS), on adipogenic differentiation and expression of adipogenic transcripts in hen preadipocytes. Preadipocytes were treated with (i) an adipogenic cocktail (DMI) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine and 20 µg/mL insulin alone and DMI + 75, 150, 300 or 600 µM OA for 48 h; (ii) DMI + 300 µM OA (DMIOA) for 6, 12, 24 or 48 h; and (iii) foetal bovine serum (FBS), CS, DMI + FBS, DMI + CS, DMIOA + FBS and DMIOA + CS. While FABP4 was significantly expressed with increasing concentrations of OA, the expression of C/EBPβ, LEPR and FAS were unchanged compared with the control. PPARγ2 expression was unchanged across all time-points. A significantly higher level of C/EBPα was measured at 48 h, but the levels of C/EBPβ increased after 12 h. Levels of FABP4 significantly increased with the time of incubation after 12 h, but that of LPL was reduced (P < 0.05) at 6, 24 and 48 h. FABP4 was highly expressed in cells treated with CS, DMI + CS and DMIOA + CS compared to cells treated with FBS, DMI + FBS and DMIOA + FBS. In conclusion, increased concentrations of OA and incubation time increases lipid accumulation; FABP4 and C/EBPβ are potential transcription factors regulating OA induced adipogenesis of fat cells obtained from laying hen. CS is a potent inducer of adipogenic differentiation in hen preadipocytes.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
89
|
Conese M, Carbone A, Castellani S, Di Gioia S. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 2013; 197:445-73. [PMID: 23652321 DOI: 10.1159/000348831] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|
90
|
The simulated microgravity enhances multipotential differentiation capacity of bone marrow mesenchymal stem cells. Cytotechnology 2013; 66:119-31. [PMID: 23579245 DOI: 10.1007/s10616-013-9544-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/03/2013] [Indexed: 01/22/2023] Open
Abstract
Multi-differentiation capability is an essential characteristic of bone marrow mesenchymal stem cells (BMSCs). Method on obtaining higher-quality stem cells with an improved differentiation potential has gained significant attention for the treatment of clinical diseases and developmental biology. In our study, we investigated the multipotential differentiation capacity of BMSCs under simulated microgravity (SMG) condition. F-actin staining found that cytoskeleton took on a time-dependent change under SMG condition, which caused spindle to round morphological change of the cultured cells. Quantitative PCR and Western Blotting showed the pluripotency marker OCT4 was up-regulated in the SMG condition especially after SMG of 72 h, which we observed would be the most appropriate SMG duration for enhancing pluripotency of BMSCs. After dividing BMSCs into normal gravity (NG) group and SMG group, we induced them respectively in endothelium oriented, adipogenic and neuronal induction media. Immunostaining and Western Blotting found that endothelium oriented differentiated BMSCs expressed higher VWF and CD31 in the SMG group than in the NG group. The neuron-like cells derived from BMSCs in the SMG group also expressed higher level of MAP2 and NF-H. Furthermore, the quantity of induced adipocytes increased in the SMG group compared to the NG group shown by Oil Red O staining, The expression of PPARγ2 increased significantly under SMG condition. Therefore, we demonstrated that SMG could promote BMSCs to differentiate into many kinds of cells and predicted that enhanced multi-potential differentiation capacity response in BMSCs following SMG might be relevant to the changes of cytoskeleton and the stem cell marker OCT4.
Collapse
|
91
|
Li Z, Tian X, Yuan Y, Song Z, Zhang L, Wang X, Li T. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells. Mol Med Rep 2013; 7:1945-9. [PMID: 23589181 DOI: 10.3892/mmr.2013.1423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/04/2013] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising treatment for diseases of the nervous system. However, MSCs often lose their stemness and homing abilities when cultured in conventional two‑dimensional (2D) systems. Consequently, it is important to explore novel culture methods for MSC-based therapies in clinical practice. To investigate the effect of a cell culture using chitosan membranes on MSCs, the morphology of MSCs cultured using chitosan membranes was observed and the expression of stemness marker genes was analyzed. We demonstrated that MSCs cultured using chitosan membranes form spheroids. Additionally, the expression of stemness marker genes, including Oct4, Sox2 and Nanog, increased significantly when MSCs were cultured using chitosan membranes compared with 2D culture systems. Finally, MSCs cultured using chitosan membranes were found to have an increased potential to differentiate into nerve cells and chrondrocytes. In conclusion, we demonstrated that MSCs cultured on chitosan membranes maintain their stemness and homing abilities. This finding may be further investigated for the development of novel cell-based therapies for diseases involving neuron-like cells and chondrogenesis.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | | | | | | | | | | | | |
Collapse
|
92
|
Hung SC. Effects of hypoxic culture on bone marrow mesenchymal stem cells: From bench to bedside. FORMOSAN JOURNAL OF SURGERY 2013. [DOI: 10.1016/j.fjs.2013.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
93
|
Bitirim VC, Kucukayan-Dogu G, Bengu E, Akcali KC. Patterned carbon nanotubes as a new three-dimensional scaffold for mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3054-60. [PMID: 23623132 DOI: 10.1016/j.msec.2013.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/07/2013] [Accepted: 03/24/2013] [Indexed: 11/15/2022]
Abstract
We investigated the cellular adhesive features of mesenchymal stem cells (MSC) on non-coated and collagen coated patterned and vertically aligned carbon nanotube (CNT) structures mimicking the natural extra cellular matrix (ECM). Patterning was achieved using the elasto-capillary induced by water treatment on the CNT arrays. After confirmation with specific markers both at transcript and protein levels, MSCs from different passages were seeded on either collagen coated or non-coated patterned CNTs. Adhesion and growth of MSCs on the patterned CNT arrays were examined using scanning electron microscopy image analysis and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. The highest MSC count was observed on the non-coated patterned CNTs at passage zero, while decreasing numbers of MSCs were found at the later passages. Similarly, MTT assay results also revealed a decrease in the viability of the MSCs for the later passages. Overall, the cell count and viability experiments indicated that MSCs were able to better attach to non-coated patterned CNTs compared to those coated with collagen. Therefore, the patterned CNT surfaces can be potentially used as a scaffold mimicking the ECM environment for MSC growth which presents an alternative approach to MSC-based transplantation therapy applications.
Collapse
Affiliation(s)
- Verda Ceylan Bitirim
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | | | | | | |
Collapse
|
94
|
Cao Y, Yang T, Gu C, Yi D. Pigment epithelium-derived factor delays cellular senescence of human mesenchymal stem cells in vitro by reducing oxidative stress. Cell Biol Int 2013; 37:305-13. [PMID: 23359450 DOI: 10.1002/cbin.10041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/23/2012] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that represent a promising approach in the field of regenerative medicine; however, this potential diminishes with senescence. Pigment epithelium-derived factor (PEDF) gives some protection by reducing oxidative stress, which is known to accelerate cellular senescence. Thus we hypothesized that PEDF could delay senescence during MSC expansion by reducing oxidative stress. Proliferation and differentiation potentials, oxidative stress, senescence and p53/p16 expressions have been examined. In MSCs cultured under normoxic conditions treated with PEDF, proliferative lifespan in vitro was significantly increased compared with control group not given PEDF, with ∼10 additional population doublings (PD) occurring before terminal growth arrest. Most of the MSCs cultured under normoxic conditions ceased to proliferate after 20-28 PD, while few senescent cells were found in the hypoxic, PEDF-hypoxic and PEDF-normoxic cultures; this was associated with downregulation of p53 and p16 expression and decreased oxidative stress. PEDF also preserved differentiation potentials of MSCs compared with the control group. Thus PEDF suppression of oxidative stress delays cellular senescence and allows greater expansion of MSCs.
Collapse
Affiliation(s)
- Yukun Cao
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | |
Collapse
|
95
|
Uji M, Nakada A, Nakamura T. Intravenous administration of adipose-derived stromal cells does not ameliorate bleomycin-induced lung injury in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojrm.2013.22007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
96
|
Tamama K, Kerpedjieva SS. Acceleration of Wound Healing by Multiple Growth Factors and Cytokines Secreted from Multipotential Stromal Cells/Mesenchymal Stem Cells. Adv Wound Care (New Rochelle) 2012; 1:177-182. [PMID: 24527301 DOI: 10.1089/wound.2011.0296] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although multipotential stromal cells/mesenchymal stem cell (MSCs) initially gained attention because of their ability to differentiate into multiple cell lineages, it is their capacity to produce and secrete growth factors and cytokines that makes them particularly valuable as potential cell therapeutics. THE PROBLEM Wound healing is an intricate process consisting of several integrated stages, including angiogenesis, collagen production, and cell migration and proliferation. Coordinating these processes to ensure rapid and thorough wound healing is necessary when developing therapeutics. This coordination, however, is disrupted in chronic nonhealing wounds, wherein the impaired blood supply and resulting ischemia compromise cellular functions and make it difficult to deliver the necessary signaling molecules. BASIC/CLINICAL SCIENCE ADVANCES MSCs secrete a combination of growth factors and cytokines, which have been shown to promote wound repair. This combination of growth factors and cytokines successfully induces angiogenesis, reduces inflammation, and promotes fibroblast migration and collagen production. CLINICAL CARE RELEVANCE The growth factors and cytokines secreted by MSCs can be administered to wounds by either transplanting cells or, as a safer alternative, using the conditioned medium of MSCs, which contains these secreted bioactive molecules. For their success in reducing wound closure time, MSCs offer a promising option for treating chronic wounds. Still, possible undesirable effects of MSC-based therapeutics, such as keloid formation, need to be carefully studied. CONCLUSION With its strong ability to secrete diverse growth factors and cytokines, MSC-based therapeutics, either with cell transplantation or the conditioned medium, offers a novel approach toward chronic nonhealing wounds.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
97
|
Fu QL, Chow YY, Sun SJ, Zeng QX, Li HB, Shi JB, Sun YQ, Wen W, Tse HF, Lian Q, Xu G. Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy 2012. [PMID: 22882409 DOI: 10.1111/j.1398-9995.2012.02875.x.] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Human induced pluripotent stem cells (iPSCs) possess remarkable self-renewal capacity and the potential to differentiate into novel cell types, such as mesenchymal stem cells (MSCs). iPSC-MSCs have been shown to enhance tissue regeneration and attenuate tissue ischaemia; however, their contribution to the immune regulation of Th2-skewed allergic rhinitis (AR) and asthma remains unclear. OBJECTIVE This study compared the immunomodulatory effects of iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on lymphocyte proliferation, T-cell phenotypes and cytokine production in peripheral blood mononuclear cells (PBMCs) in patients with AR, and investigated the possible molecular mechanisms underlying the immunomodulatory properties of iPSC-MSCs. METHODS In co-cultures of PBMCs with iPSC-MSCs or BM-MSCs, lymphocyte proliferation was evaluated using 3H-thymidine (3H-TdR) uptake, carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) assays; the regulatory T-cell (Treg) phenotype was determined by flow cytometry, and cytokine levels were measured using an enzyme-linked immunosorbent assay. The immunomodulatory properties of both MSCs were further evaluated using NS398 and transwell experiments. RESULTS Similar to BM-MSCs, we determined that iPSC-MSCs significantly inhibit lymphocyte proliferation and promote Treg response in PBMCs (P < 0.05). Accordingly, the cytokine milieu (IFN-γ, IL-4, IL-5, IL-10 and IL-13) in the supernatants of PBMCs changed significantly (P < 0.05). The immunomodulatory properties of iPSC-MSCs and BM-MSCs were associated with prostaglandin E2 (PGE2) production and cell-cell contact. CONCLUSIONS These data demonstrate that iPSC-MSCs are capable of modulating T-cell phenotypes towards Th2 suppression through inducing Treg expansion, suggesting that iPSC-MSCs can be used as an alternative candidate to adult MSCs to treat allergic airway diseases.
Collapse
Affiliation(s)
- Q L Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Fu QL, Chow YY, Sun SJ, Zeng QX, Li HB, Shi JB, Sun YQ, Wen W, Tse HF, Lian Q, Xu G. Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy 2012; 67:1215-22. [PMID: 22882409 PMCID: PMC3555482 DOI: 10.1111/j.1398-9995.2012.02875.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 12/11/2022]
Abstract
Background Human induced pluripotent stem cells (iPSCs) possess remarkable self-renewal capacity and the potential to differentiate into novel cell types, such as mesenchymal stem cells (MSCs). iPSC-MSCs have been shown to enhance tissue regeneration and attenuate tissue ischaemia; however, their contribution to the immune regulation of Th2-skewed allergic rhinitis (AR) and asthma remains unclear. Objective This study compared the immunomodulatory effects of iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on lymphocyte proliferation, T-cell phenotypes and cytokine production in peripheral blood mononuclear cells (PBMCs) in patients with AR, and investigated the possible molecular mechanisms underlying the immunomodulatory properties of iPSC-MSCs. Methods In co-cultures of PBMCs with iPSC-MSCs or BM-MSCs, lymphocyte proliferation was evaluated using 3H-thymidine (3H-TdR) uptake, carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) assays; the regulatory T-cell (Treg) phenotype was determined by flow cytometry, and cytokine levels were measured using an enzyme-linked immunosorbent assay. The immunomodulatory properties of both MSCs were further evaluated using NS398 and transwell experiments. Results Similar to BM-MSCs, we determined that iPSC-MSCs significantly inhibit lymphocyte proliferation and promote Treg response in PBMCs (P < 0.05). Accordingly, the cytokine milieu (IFN-γ, IL-4, IL-5, IL-10 and IL-13) in the supernatants of PBMCs changed significantly (P < 0.05). The immunomodulatory properties of iPSC-MSCs and BM-MSCs were associated with prostaglandin E2 (PGE2) production and cell–cell contact. Conclusions These data demonstrate that iPSC-MSCs are capable of modulating T-cell phenotypes towards Th2 suppression through inducing Treg expansion, suggesting that iPSC-MSCs can be used as an alternative candidate to adult MSCs to treat allergic airway diseases.
Collapse
Affiliation(s)
- Q L Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Zhang Y, Liao S, Yang M, Liang X, Poon MW, Wong CY, Wang J, Zhou Z, Cheong SK, Lee CN, Tse HF, Lian Q. Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension. Cell Transplant 2012; 21:2225-39. [PMID: 22776744 DOI: 10.3727/096368912x653020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although transplantation of adult bone marrow mesenchymal stem cells (BM-MSCs) holds promise in the treatment for pulmonary arterial hypertension (PAH), the poor survival and differentiation potential of adult BM-MSCs have limited their therapeutic efficiency. Here, we compared the therapeutic efficacy of human embryonic stem cell-derived MSCs (hESC-MSCs) with adult BM-MSCs for the treatment of PAH in an animal model. One week following monocrotaline (MCT)-induced PAH, mice were randomly assigned to receive phosphate-buffered saline (MCT group); 3.0×10(6) human BM-derived MSCs (BM-MSCs group) or 3.0×10(6) hESC-derived MSCs (hESC-MSCs group) via tail vein injection. At 3 weeks post-transplantation, the right ventricular systolic pressure (RVSP), degree of RV hypertrophy, and medial wall thickening of pulmonary arteries were lower=, and pulmonary capillary density was higher in the hESC-MSC group as compared with BM-MSC and MCT groups (all p < 0.05). At 1 week post-transplantation, the number of engrafted MSCs in the lungs was found significantly higher in the hESC-MSC group than in the BM-MSC group (all p < 0.01). At 3 weeks post-transplantation, implanted BM-MSCs were undetectable whereas hESC-MSCs were not only engrafted in injured pulmonary arteries but had also undergone endothelial differentiation. In addition, protein profiling of hESC-MSC- and BM-MSC-conditioned medium revealed a differential paracrine capacity. Classification of these factors into bioprocesses revealed that secreted factors from hESC-MSCs were preferentially involved in early embryonic development and tissue differentiation, especially blood vessel morphogenesis. We concluded that improved cell survival and paracrine capacity of hESC-MSCs provide better therapeutic efficacy than BM-MSCs in the treatment for PAH.
Collapse
Affiliation(s)
- Yuelin Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 2012; 33:136-43. [PMID: 22227317 PMCID: PMC3412175 DOI: 10.1016/j.it.2011.11.004] [Citation(s) in RCA: 460] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/29/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs), also called multipotent mesenchymal stromal cells, exist in almost all tissues and are a key cell source for tissue repair and regeneration. Under pathological conditions, such as tissue injury, these cells are mobilized towards the site of damage. Tissue damage is usually accompanied by proinflammatory factors, produced by both innate and adaptive immune responses, to which MSCs are known to respond. Indeed, recent studies have shown that there are bidirectional interactions between MSCs and inflammatory cells, which determine the outcome of MSC-mediated tissue repair processes. Although many details of these interactions remain to be elucidated, we provide here a synthesis of the current status of this newly emerging and rapidly advancing field.
Collapse
Affiliation(s)
- Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|