51
|
Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2009; 25:E2. [PMID: 18980476 DOI: 10.3171/foc.2008.25.11.e2] [Citation(s) in RCA: 537] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current understanding of spinal cord injury pathophysiology and discusses important emerging regenerative approaches that have been translated into clinical trials or have a strong potential to do so. The pathophysiology of spinal cord injury involves a primary mechanical injury that directly disrupts axons, blood vessels, and cell membranes. This primary mechanical injury is followed by a secondary injury phase involving vascular dysfunction, edema, ischemia, excitotoxicity, electrolyte shifts, free radical production, inflammation, and delayed apoptotic cell death. Following injury, the mammalian central nervous system fails to adequately regenerate due to intrinsic inhibitory factors expressed on central myelin and the extracellular matrix of the posttraumatic gliotic scar. Regenerative approaches to block inhibitory signals including Nogo and the Rho-Rho-associated kinase pathways have shown promise and are in early stages of clinical evaluation. Cell-based strategies including using neural stem cells to remyelinate spared axons are an attractive emerging approach.
Collapse
Affiliation(s)
- James W Rowland
- Division of Genetics and Development, Toronto Western Research Institute, Institute of Medical Science, University of Toronto, Canada
| | | | | | | |
Collapse
|
52
|
|
53
|
Parr AM, Kulbatski I, Wang XH, Keating A, Tator CH. Fate of transplanted adult neural stem/progenitor cells and bone marrow–derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery. ACTA ACUST UNITED AC 2008; 70:600-7; discussion 607. [DOI: 10.1016/j.surneu.2007.09.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 09/21/2007] [Indexed: 02/03/2023]
|
54
|
Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R, Mannoji C, Miyashita T, Okawa A, Yoshinaga K, Yamazaki M. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell–derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine 2008; 9:600-10. [DOI: 10.3171/spi.2008.9.08135] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Object
The authors previously reported that Schwann cells (SCs) could be derived from bone marrow stromal cells (BMSCs) in vitro and that they promoted axonal regeneration of completely transected rat spinal cords in vivo. The aim of the present study is to evaluate the efficacy of transplanted BMSC-derived SCs (BMSC-SCs) in a rat model of spinal cord contusion, which is relevant to clinical spinal cord injury.
Methods
Bone marrow stromal cells were cultured as plastic-adherent cells from the bone marrow of GFPtransgenic rats. The BMSC-SCs were derived from BMSCs in vitro with sequential treatment using beta-mercaptoethanol, all-trans-retinoic acid, forskolin, basic fibroblast growth factor, platelet derived–growth factor, and heregulin. Schwann cells were cultured from the sciatic nerve of neonatal, GFP-transgenic rats. Immunocytochemical analysis and the reverse transcriptase–polymerase chain reaction were performed to characterize the BMSC-SCs. For transplantation, contusions with the New York University impactor were delivered at T-9 in 10- to 11-week-old male Wistar rats. Four groups of rats received injections at the injury site 7 days postinjury: the first received BMSCSCs and matrigel, a second received peripheral SCs and matrigel, a third group received BMSCs and matrigel, and a fourth group received matrigel alone. Histological and immunohistochemical studies, electron microscopy, and functional assessments were performed to evaluate the therapeutic effects of BMSC-SC transplantation.
Results
Immunohistochemical analysis and reverse transcriptase–polymerase chain reaction revealed that BMSC-SCs have characteristics similar to SCs not only in their morphological characteristics but also in their immunocytochemical phenotype and genotype. Histological examination revealed that the area of the cystic cavity was significantly reduced in the BMSC-SC and SC groups compared with the control rats. Immunohistochemical analysis showed that transplanted BMSCs, BMSC-SCs, and SCs all maintained their original phenotypes. The BMSC-SC and SC groups had a larger number of tyrosine hydroxilase–positive fibers than the control group, and the BMSC-SC group had more serotonin-positive fibers than the BMSC or control group. The BMSC-SC group showed significantly better hindlimb functional recovery than in the BMSC and control group. Electron microscopy revealed that transplanted BMSC-SCs existed in association with the host axons.
Conclusions
Based on their findings, the authors concluded that BMSC-SC transplantation reduces the size of the cystic cavity, promotes axonal regeneration and sparing, results in hindlimb functional recovery, and can be a useful tool for spinal cord injury as a substitute for SCs.
Collapse
Affiliation(s)
| | - Masao Koda
- 3Department of Orthopaedic Surgery, Prefectural Togane Hospital, Chiba
| | - Mari Dezawa
- 4Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto; and
| | - Tomoko Kadota
- 2Bioenvironmental Medicine, Chiba University Graduate School of Medicine, Chiba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Parr A, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator C. Transplanted adult spinal cord–derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 2008; 155:760-70. [DOI: 10.1016/j.neuroscience.2008.05.042] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/04/2008] [Accepted: 05/05/2008] [Indexed: 01/21/2023]
|
56
|
Knafo S, Choi D. Clinical studies in spinal cord injury: moving towards successful trials. Br J Neurosurg 2008; 22:3-12. [PMID: 18224516 DOI: 10.1080/02688690701593595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spinal cord injury is a devastating condition for which there is still no cure. Many new therapies have emerged in the past few decades that have attempted to improve the outcome after injury, with varying levels of supporting experimental and clinical data. Most studies have been preliminary and have lacked control groups, but positive results can often be embraced by clinicians and patients who are faced without an alternative, despite the poor design and bias of many studies. This article is a review of clinical studies in spinal cord injury and discusses guidelines for future clinical trial design.
Collapse
Affiliation(s)
- S Knafo
- Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
57
|
Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008; 30:5-16. [PMID: 18387258 DOI: 10.1179/174313208x284070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanical trauma to the spinal cord is often accompanied by irreversible tissue damage, limited endogenous repair and permanent loss of motor, sensory and autonomic function. The implantation of exogenous cells or the stimulation of endogenous cells, to repopulate and replace or to provide a conducive environment for repair, offers a promising therapeutic direction for overcoming the multitude of obstacles facing successful recovery from spinal cord injury. Although relatively new to the scene of cell based therapies for reparative medicine, stem cells and their progenitors have been labeled as the 'cell of the future' for revolutionizing the treatment of CNS injury and neurodegenerative disorders. The following review examines the different types of stem cells and their progenitors, their utility in experimental models of spinal cord injury and explores the outstanding issues that still need to be addressed before they move towards clinical implementation.
Collapse
Affiliation(s)
- J Louro
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
58
|
Wu JC, Huang WC, Tsai YA, Chen YC, Cheng H. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. J Neurosurg Spine 2008; 8:208-14. [DOI: 10.3171/spi/2008/8/3/208] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Object
The aim of this study was to assess functional outcomes of nerve repair using acidic fibroblast growth factor (FGF) in patients with cervical spinal cord injury (SCI).
Methods
Nine patients who had cervical SCI for longer than 5 months were included in pre- and postoperative assessments of their neurological function. The assessments included evaluating activities of daily living, associated functional ability, and degree of spasticity, motor power, sensation, and pain perception. After the first set of assessments, the authors repaired the injured segment of the spinal cord using a total laminectomy followed by the application of fibrin glue containing acidic FGF. Clinical evaluations were conducted 1, 2, 3, 4, 5, and 6 months after the surgery. Preoperative versus postoperative differences in injury severity and grading of key muscle power and sensory points were calculated using the Wilcoxon signed-rank test.
Results
The preoperative degree of injury severity, as measured using the American Spinal Injury Association (ASIA) scoring system, showed that preoperative motor (52.4 ± 25.9 vs 68.6 ± 21.5), pinprick (61.0 ± 34.9 vs 71.6 ± 31.0), and light touch scores (57.3 ± 33.9 vs 71.9 ± 30.2) were significantly lower than the respective postoperative scores measured 6 months after surgery (p = 0.005, 0.012, and 0.008, respectively).
Conclusions
Based on the significant difference in ASIA motor and sensory scale scores between the preoperative status and the 6-month postoperative follow-up, this novel nerve repair strategy of using acidic FGF may have a role in the repair of human cervical SCI. Modest nerve regeneration occurred in all 9 patients after this procedure without any observed adverse effects. This repair strategy thus deserves further investigation, clinical consideration, and refinement.
Collapse
Affiliation(s)
- Jau-Ching Wu
- 1Department of Neurosurgery and
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 5School of Medicine and
| | - Wen-Cheng Huang
- 1Department of Neurosurgery and
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 5School of Medicine and
| | - Yun-An Tsai
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 3Departments of Physical Medicine and Rehabilitation and
- 5School of Medicine and
| | - Yu-Chun Chen
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 4Family Medicine, Taipei Veterans General Hospital; and
- 5School of Medicine and
| | - Henrich Cheng
- 1Department of Neurosurgery and
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 6Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
59
|
Koda M, Kamada T, Hashimoto M, Murakami M, Shirasawa H, Sakao S, Ino H, Yoshinaga K, Koshizuka S, Moriya H, Yamazaki M. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2007; 16:2206-14. [PMID: 17885772 PMCID: PMC2140138 DOI: 10.1007/s00586-007-0499-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 06/01/2007] [Accepted: 08/28/2007] [Indexed: 01/09/2023]
Abstract
The aim of this study was to evaluate the efficacy in adult rat completely transected spinal cord of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to bone marrow stromal cells (BMSC). BMSC were infected with adenovirus vectors carrying beta-galactosidase (AxCALacZ) or BDNF (AxCABDNF) genes. The T8 segment of spinal cord was removed and replaced by graft containing Matrigel alone (MG group) or Matrigel and BMSC infected by AxCALacZ (BMSC-LacZ group) or AxCABDNF (BMSC-BDNF group). Axons in the graft were evaluated by immunohistochemistry and functional recovery was assessed with BBB locomotor scale. In the BMSC-BDNF group, the number of fibers positive for growth associated protein-43, tyrosine hydroxylase, and calcitonin gene-related peptide was significantly larger than numbers found for the MG and BMSC-LacZ groups. Rats from BMSC-BDNF and BMSC-LacZ groups showed significant recovery of hind limb function compared with MG rats; however, there was no significant difference between groups in degree of functional recovery. These findings demonstrate that adenovirus vector-mediated ex vivo gene transfer of BDNF enhances the capacity of BMSC to promote axonal regeneration in this completely transected spinal cord model; however, BDNF failed to enhance hind limb functional recovery. Further investigation is needed to establish an optimal combination of cell therapy and neurotrophin gene transfer for cases of spinal cord injury.
Collapse
Affiliation(s)
- Masao Koda
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury. Exp Neurol 2007; 209:368-77. [PMID: 17950280 DOI: 10.1016/j.expneurol.2007.09.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/29/2007] [Accepted: 09/01/2007] [Indexed: 01/09/2023]
Abstract
This article reviews stem cell-based strategies for spinal cord injury repair, and practical issues concerning their translation to the clinic. Recent progress in the stem cell field includes clinically compliant culture conditions and directed differentiation of both embryonic stem cells and somatic stem cells. We provide a brief overview of the types of stem cells under evaluation, comparing their advantages and disadvantages for use in human clinical trials. We review the practical considerations and risks that must be addressed before human treatments can begin. With a growing understanding of these practical issues, stem cell biology, and spinal cord injury pathophysiology, stem cell-based therapies are moving closer to clinical application.
Collapse
Affiliation(s)
- Margaret Coutts
- Reeve-Irvine Research Center, Stem Cell Research Center, Department of Anatomy and Neurobiology, College of Medicine, University of California Irvine, Irvine, CA, USA
| | | |
Collapse
|
61
|
Divani AA, Hussain MS, Magal E, Heary RF, Qureshi AI. The Use of Stem Cells’ Hematopoietic Stimulating Factors Therapy Following Spinal Cord Injury. Ann Biomed Eng 2007; 35:1647-56. [PMID: 17641973 DOI: 10.1007/s10439-007-9359-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/13/2007] [Indexed: 11/29/2022]
Abstract
Spinal cord injury (SCI) remains one of the most devastating conditions in medicine, particularly due to the loss of productive life years and the high economic burden it places on our society. There are limited therapeutic options available to reduce the morbidity and mortality related to SCI. However, recent work with stem cells in repairing SCI appears to be promising, making this one of the most exciting frontiers in medicine. A brief review of the mechanisms of SCI is presented. Stem cells from a variety of sources have shown effectiveness in improving motor function after SCI in animals. The pre-clinical use of stem cells in SCI and methods of delivery are discussed. The potential use of granulocyte-colony stimulating factor (G-CSF) to increase the number of stem cells engrafting at the site of injury in order to improve neurological and motor function recovery following SCI is introduced. G-CSF, through stimulation of lymphohemopoietic stem cells in peripheral blood, can potentially cause repopulation of the SCI region with neural progenitor cells. This allows for improved functional outcomes. More pre-clinical and translational research exploring this possibility is required.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology and Neurosciences, UMDNJ, New Jersey Medical School, Zeenat Qureshi Stroke Research Center, Newark, NJ 07103, USA.
| | | | | | | | | |
Collapse
|
62
|
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007; 40:609-19. [PMID: 17603514 DOI: 10.1038/sj.bmt.1705757] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) into the injured brain or spinal cord may provide therapeutic benefit. Several models of central nervous system (CNS) injury have been examined, including that of ischemic stroke, traumatic brain injury and traumatic spinal cord injury in rodent, primate and, more recently, human trials. Although it has been suggested that differentiation of MSCs into cells of neural lineage may occur both in vitro and in vivo, this is unlikely to be a major factor in functional recovery after brain or spinal cord injury. Other mechanisms of recovery that may play a role include neuroprotection, creation of a favorable environment for regeneration, expression of growth factors or cytokines, vascular effects or remyelination. These mechanisms are not mutually exclusive, and it is likely that more than one contribute to functional recovery. In light of the uncertainty surrounding the fate and mechanism of action of MSCs transplanted into the CNS, further preclinical studies with appropriate animal models are urgently needed to better inform the design of new clinical trials.
Collapse
Affiliation(s)
- A M Parr
- Department of Surgery, University Health Network and Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
63
|
Bareyre FM. Neuronal repair and replacement in spinal cord injury. J Neurol Sci 2007; 265:63-72. [PMID: 17568612 DOI: 10.1016/j.jns.2007.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/05/2007] [Accepted: 05/08/2007] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) often induces loss of motor and/or sensory function below the level of injury. While deficits persist in complete lesions, partial lesions of the spinal cord can be followed by spontaneous functional recovery. In this review we address the mechanisms underlying spontaneous recovery in the adult CNS. We argue that the adult brain and spinal cord are able to spontaneously respond to SCI, and do so by (i) anatomically reorganizing axonal connections and (ii) generating new precursor cells. Knowledge of the endogenous recovery strategies should also provide the basis for the development of new therapeutic strategies for spinal cord injury. In this review we describe the processes of endogenous axonal repair and cell replacement in the injured spinal cord and discuss how transplantation of stem/progenitor cells could enhance these endogenous repair strategies.
Collapse
Affiliation(s)
- Florence M Bareyre
- Research Unit Therapy Development, Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University Munich, Marchioninistr, 17, 81377 Munich, Germany.
| |
Collapse
|
64
|
Koda M, Nishio Y, Kamada T, Someya Y, Okawa A, Mori C, Yoshinaga K, Okada S, Moriya H, Yamazaki M. Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 2007; 1149:223-231. [PMID: 17391650 DOI: 10.1016/j.brainres.2007.02.058] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to elucidate the effects of granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of bone marrow-derived stem cells on the injured spinal cord. Bone marrow cells of green fluorescent protein (GFP) transgenic mice were transplanted into lethally irradiated C57BL/6 mice. Four weeks after bone marrow transplantation, spinal cord injury was produced by a static load (20 g, 5 min) at T8 level. G-CSF (200 microg/kg/day) was injected subcutaneously for 5 days. Immunohistochemistry for GFP and cell lineage markers was performed to evaluate G-CSF-mediated mobilization of bone marrow-derived cells into injured spinal cord. Hind limb locomotor recovery was assessed for 6 weeks. Immunohistochemistry revealed that G-CSF increased the number of GFP-positive cells in injured spinal cord, indicating that bone marrow-derived cells were mobilized and migrated into injured spinal cord. The numbers of double positive cells for GFP and glial markers were larger in the G-CSF treated mice than in the control mice. Luxol Fast Blue staining revealed that G-CSF promoted white matter sparing. G-CSF treated mice showed significant recovery of hind limb function compared to that of the control mice. In conclusion, G-CSF showed efficacy for spinal cord injury treatment through mobilization of bone marrow-derived cells.
Collapse
Affiliation(s)
- Masao Koda
- Department of Orthopaedic Surgery, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Samadikuchaksaraei A. An overview of tissue engineering approaches for management of spinal cord injuries. J Neuroeng Rehabil 2007; 4:15. [PMID: 17501987 PMCID: PMC1876804 DOI: 10.1186/1743-0003-4-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/14/2007] [Indexed: 01/09/2023] Open
Abstract
Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed.
Collapse
Affiliation(s)
- Ali Samadikuchaksaraei
- Department of Biotechnology, Faculty of Allied Medicine and Cellular and Molecular Research Center, Iran University of Medical Sciences, Iran.
| |
Collapse
|
66
|
Gupta DK, Sharma S, Venugopal P, Kumar L, Mohanty S, Dattagupta S. Stem Cells as a Therapeutic Modality in Pediatric Malformations. Transplant Proc 2007; 39:700-2. [PMID: 17445576 DOI: 10.1016/j.transproceed.2007.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to explore stem cell use in congenital anomalies. PATIENTS AND METHODS During July 2005 through July 2006, autologous stem cells were used in 29 patients: 12 with liver cirrhosis and 17 with meningomyelocele. Stem cells were injected into the hepatic artery and the portal vein or into the hepatobiliary radicals for liver cirrhosis, or into the spinal cord and caudal space for meningomyelocele. Preoperative status served as the control condition. OBSERVATIONS AND RESULTS The ages of patients with liver cirrhosis ranged between 1.5 and 9 months (mean, 4.12 months). The etiology was extra hepatic biliary atresia (EHBA) versus neonatal cholestasis and choledochal cyst in 8; 2 and 2 patients, respectively. Five patients died due to ongoing cirrhosis. Follow-up at 3 to 12 months (N = 7) showed absence of cholangitis (4/7), yellow stools (5/7), decreased liver firmness (3/7), improved liver function (6/7), and better appetite (6/7). Hepatobiliary scan was excretory in 6 of 7 with improved uptake in 4 of 7. Histopathology demonstrated comparative improvement in fibrosis among 3 patients. Meningomyelocele patients were between 0 and 1 month, 1-5 months, and 1-4 years in 5, 8, and 2 cases respectively. Five had a history of rupture. Three had undergone meningocele repair in the past with neurological deficits. Redo surgery for a tethered cord was performed in 1 patient. Follow-up at 3 to 11 months in 14 cases showed improved power in 7 with dramatic recovery in 3 (22%) and status quo in 7 (50%). CONCLUSION Initial stem cell use in liver cirrhosis and meningomyelocele has suggested beneficial results. However, long-term evaluation in randomized controlled trials is essential to draw further conclusions.
Collapse
Affiliation(s)
- D K Gupta
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease of the CNS in which an unrelenting attack from the innate and adaptive arms of the immune system results in extensive demyelination, loss of oligodendrocytes and axonal degeneration. This review summarizes advances in the understanding of the cellular and molecular pathways involved in neurodegeneration following autoimmune-mediated inflammation in the CNS. The mechanisms underlying myelin and axonal destruction and the equally important interaction between degenerative and repair mechanisms are discussed. Recent studies have revealed that the failure of CNS regeneration may be in part a result of the presence of myelin-associated growth inhibitory molecules in MS lesions. Successful therapeutic intervention in MS is likely to require suppression of the inflammatory response, in concert with blockade of growth inhibitory molecules and possibly the mobilization or transplantation of stem cells for regeneration.
Collapse
Affiliation(s)
- Jonathan L McQualter
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
68
|
Abstract
In spite of the commonly held belief that ‘the brain does not regenerate’, it is now accepted that postnatal neurogenesis does occur. Thus, one wonders whether cellular-replacement therapy might be used to heal the brain in diseases caused by neuronal cell loss. The existence of neural stem cells has been demonstrated by many scientists and is now generally accepted. The exact role of these cells, how their numbers are regulated and how they participate in CNS and spinal cord regeneration in postnatal life are still not well known. There are many reviews summarizing work on these cells; consequently, I will focus instead on other cells that may participate in postnatal neurogenesis: bone marrow-derived stem cells. The possibility that bone marrow-derived stem cells populate the CNS and differentiate into various neural elements is certainly not universally accepted.
Collapse
Affiliation(s)
- Eva Mezey
- CSDB, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
69
|
Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S, Harada H, Okawa A, Moriya H, Yamazaki M. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine 2006; 5:424-433. [PMID: 17120892 DOI: 10.3171/spi.2006.5.5.424] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The use of human umbilical cord blood (HUCB) cells has been reported to improve functional recovery in cases of central nervous system injuries such as stroke, traumatic brain injury, and spinal cord injury (SCI). The authors investigated the effects of hemopoietic stem cells that were derived from HUCB and transplanted into the injured spinal cords of rats. METHODS One week after injury, an HUCB fraction enriched in CD34-positive cells was transplanted into the experimental group. In control animals, vehicle (Matrigel) was transplanted. Recovery of motor functions was assessed using the Basso-Beattie-Bresnahan Locomotor Scale, and immunohistochemical examinations were performed. Cells from HUCB that were CD34 positive improved functional recovery, reduced the area of the cystic cavity at the site of injury, increased the volume of residual white matter, and promoted the regeneration or sparing of axons in the injured spinal cord. Immunohistochemical examination revealed that transplanted CD34-positive cells survived in the host spinal cord for at least 3 weeks after transplantation but had disappeared by 5 weeks. The transplanted cells were not positive for neural markers, but they were positive for hemopoietic markers. There was no evidence of an immune reaction at the site of injury in either group. CONCLUSIONS These results suggest that transplantation of a CD34-positive fraction from HUCB may have therapeutic effects for SCI. The results of this study provide important preclinical data regarding HUCB stem cell-based therapy for SCI.
Collapse
Affiliation(s)
- Yutaka Nishio
- Department of Orthopaedic Surgery, Chiba University Graduate School of dicine, Tougane Chiba Prefecture Hospital, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Spinal cord injury (SCI) can lead to paraplegia or quadriplegia. Although there are no fully restorative treatments for SCI, various rehabilitative, cellular and molecular therapies have been tested in animal models. Many of these have reached, or are approaching, clinical trials. Here, we review these potential therapies, with an emphasis on the need for reproducible evidence of safety and efficacy. Individual therapies are unlikely to provide a panacea. Rather, we predict that combinations of strategies will lead to improvements in outcome after SCI. Basic scientific research should provide a rational basis for tailoring specific combinations of clinical therapies to different types of SCI.
Collapse
Affiliation(s)
- Sandrine Thuret
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, P.O. Box 39, 1-2 WW Ground, Denmark Hill, London SE5 8AF, UK
| | | | | |
Collapse
|
71
|
Enzmann GU, Benton RL, Talbott JF, Cao Q, Whittemore SR. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 2006; 23:479-95. [PMID: 16629631 DOI: 10.1089/neu.2006.23.479] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells hold great promise for therapeutic repair after spinal cord injury (SCI). This review compares the current experimental approaches taken towards a stem cell-based therapy for SCI. It critically evaluates stem cell sources, injury paradigms, and functional measurements applied to detect behavioral changes after transplantation into the spinal cord. Many of the documented improvements do not exclusively depend on lineage-specific cellular differentiation. In most of the studies, the functional tests used cannot unequivocally demonstrate how differentiation of the transplanted cells contributes to the observed effects. Standardized cell isolation and transplantation protocols could facilitate the assessment of the true contribution of various experimental parameters on recovery. We conclude that at present embryonic stem (ES)-derived cells hold the most promise for therapeutic utility, but that non-neural cells may ultimately be optimal if the mechanism of possible transdifferentiation can be elucidated.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
72
|
Wang Q, Yu JH, Zhai HH, Zhao QT, Chen JW, Shu L, Li DQ, Liu DY, Dong C, Ding Y. Temporal expression of estrogen receptor alpha in rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2006; 347:117-23. [PMID: 16806066 DOI: 10.1016/j.bbrc.2006.06.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 06/11/2006] [Indexed: 11/29/2022]
Abstract
Estrogen responsiveness of bone formation is mediated by the estrogen receptor alpha (ERalpha) in osteoblastic lineage. As osteoblasts arise from the multipotent bone marrow stromal (mesenchymal) cells, this study was undertaken to observe the ERalpha in primary female adult rat bone marrow mesenchymal stem cells (BMSCs). The ERalpha was localized using immunocytochemical analysis in identified primary BMSCs. Then, using real-time PCR analysis, we measured the expression of ERalpha messenger RNA (mRNA) in BMSCs. ERalpha transcripts showed different trends between untreated cultures (control group) and osteogenic-induced cultures (treated group). In the control group, ERalpha mRNA climbed at peak levels at a confluence stage and decreased until day 20, whereas, in the treated group, the ERalpha mRNA kept climbing from a low level until day 20. Thus, the observed developmental expression of ERalpha mRNA correlates with progressive BMSCs growth and osteogenic differentiation and BMSCs may be a primary target cell for estrogen in maintaining bone formation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|