51
|
Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr Biol 2021; 31:1893-1902.e5. [PMID: 33705720 DOI: 10.1016/j.cub.2021.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
Although general anesthesia (GA) enables patients to undergo surgery without consciousness, the precise neural mechanisms underlying this phenomenon have yet to be identified. In addition to many studies over the past two decades implicating the thalamus, cortex, brainstem, and conventional sleep-wake circuits in GA-induced loss of consciousness (LOC), some recent studies have begun to highlight the importance of other brain areas as well. Here, we found that population activities of neurons expressing dopamine D1 receptor (D1R) in the nucleus accumbens (NAc), a critical interface between the basal ganglia and limbic system, began to decrease before sevoflurane-induced LOC and gradually returned after recovery of consciousness (ROC). Chemogenetic activation of NAcD1R neurons delayed induction of and accelerated emergence from sevoflurane GA, whereas chemogenetic inhibition of NAcD1R neurons exerted opposite effects. Moreover, transient activation of NAcD1R neurons induced significant cortical activation and behavioral emergence during continuous steady-state GA with sevoflurane or deep anesthesia state with constant and stable burst-suppression oscillations. Taken together, our findings uncover that NAcD1R neurons modulated states of consciousness associated with sevoflurane GA and may represent an area for targeting GA-induced changes in consciousness and ameliorating related adverse effects.
Collapse
|
52
|
Zhao X, Wang Y, Zhang Y, Wang H, Ren J, Yan F, Song D, Du R, Wang Q, Huang L. Propofol-Induced Anesthesia Alters Corticocortical Functional Connectivity in the Human Brain: An EEG Source Space Analysis. Neurosci Bull 2021; 37:563-568. [PMID: 33687648 DOI: 10.1007/s12264-021-00633-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xue Zhao
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Haidong Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Junchan Ren
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Fei Yan
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dawei Song
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruini Du
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
53
|
Basso MA, Frey S, Guerriero KA, Jarraya B, Kastner S, Koyano KW, Leopold DA, Murphy K, Poirier C, Pope W, Silva AC, Tansey G, Uhrig L. Using non-invasive neuroimaging to enhance the care, well-being and experimental outcomes of laboratory non-human primates (monkeys). Neuroimage 2021; 228:117667. [PMID: 33359353 PMCID: PMC8005297 DOI: 10.1016/j.neuroimage.2020.117667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 10-20 years, neuroscience witnessed an explosion in the use of non-invasive imaging methods, particularly magnetic resonance imaging (MRI), to study brain structure and function. Simultaneously, with access to MRI in many research institutions, MRI has become an indispensable tool for researchers and veterinarians to guide improvements in surgical procedures and implants and thus, experimental as well as clinical outcomes, given that access to MRI also allows for improved diagnosis and monitoring for brain disease. As part of the PRIMEatE Data Exchange, we gathered expert scientists, veterinarians, and clinicians who treat humans, to provide an overview of the use of non-invasive imaging tools, primarily MRI, to enhance experimental and welfare outcomes for laboratory non-human primates engaged in neuroscientific experiments. We aimed to provide guidance for other researchers, scientists and veterinarians in the use of this powerful imaging technology as well as to foster a larger conversation and community of scientists and veterinarians with a shared goal of improving the well-being and experimental outcomes for laboratory animals.
Collapse
Affiliation(s)
- M A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences UCLA Los Angeles CA 90095 USA
| | - S Frey
- Rogue Research, Inc. Montreal, QC, Canada
| | - K A Guerriero
- Washington National Primate Research Center University of Washington Seattle, WA USA
| | - B Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, NeuroSpin center, 91191 Gif/Yvette, France; Université Paris-Saclay, UVSQ, Foch hospital, Paris, France
| | - S Kastner
- Princeton Neuroscience Institute & Department of Psychology Princeton University Princeton, NJ USA
| | - K W Koyano
- National Institute of Mental Health NIH Bethesda MD 20892 USA
| | - D A Leopold
- National Institute of Mental Health NIH Bethesda MD 20892 USA
| | - K Murphy
- Biosciences Institute and Centre for Behaviour and Evolution, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH United Kingdom UK
| | - C Poirier
- Biosciences Institute and Centre for Behaviour and Evolution, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH United Kingdom UK
| | - W Pope
- Department of Radiology UCLA Los Angeles, CA 90095 USA
| | - A C Silva
- Department of Neurobiology University of Pittsburgh, Pittsburgh PA 15261 USA
| | - G Tansey
- National Eye Institute NIH Bethesda MD 20892 USA
| | - L Uhrig
- Cognitive Neuroimaging Unit, INSERM, CEA, NeuroSpin center, 91191 Gif/Yvette, France
| |
Collapse
|
54
|
Leung A, Cohen D, van Swinderen B, Tsuchiya N. Integrated information structure collapses with anesthetic loss of conscious arousal in Drosophila melanogaster. PLoS Comput Biol 2021; 17:e1008722. [PMID: 33635858 PMCID: PMC7946294 DOI: 10.1371/journal.pcbi.1008722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/10/2021] [Accepted: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
The physical basis of consciousness remains one of the most elusive concepts in current science. One influential conjecture is that consciousness is to do with some form of causality, measurable through information. The integrated information theory of consciousness (IIT) proposes that conscious experience, filled with rich and specific content, corresponds directly to a hierarchically organised, irreducible pattern of causal interactions; i.e. an integrated informational structure among elements of a system. Here, we tested this conjecture in a simple biological system (fruit flies), estimating the information structure of the system during wakefulness and general anesthesia. Consistent with this conjecture, we found that integrated interactions among populations of neurons during wakefulness collapsed to isolated clusters of interactions during anesthesia. We used classification analysis to quantify the accuracy of discrimination between wakeful and anesthetised states, and found that informational structures inferred conscious states with greater accuracy than a scalar summary of the structure, a measure which is generally championed as the main measure of IIT. In stark contrast to a view which assumes feedforward architecture for insect brains, especially fly visual systems, we found rich information structures, which cannot arise from purely feedforward systems, occurred across the fly brain. Further, these information structures collapsed uniformly across the brain during anesthesia. Our results speak to the potential utility of the novel concept of an “informational structure” as a measure for level of consciousness, above and beyond simple scalar values. The physical basis of consciousness remains elusive. Efforts to measure consciousness have generally been restricted to simple, scalar quantities which summarise the complexity of a system, inspired by integrated information theory, which links a multi-dimensional, informational structure to the contents of experience in a system. Due to the complexity of the definition of the structure, assessment of its utility as a measure of conscious arousal in a system has largely been ignored. In this manuscript we evaluate the utility of such an information structure in measuring the level of arousal in the fruit fly. Our results indicate that this structure can be more informative about the level of arousal in a system than even the single-value summary proposed by the theory itself. These results may push consciousness research towards the notion of multi-dimensional informational structures, instead of traditional scalar summaries.
Collapse
Affiliation(s)
- Angus Leung
- School of Psychological Sciences, Monash University, Melbourne, Australia
- * E-mail: (AL); (NT)
| | - Dror Cohen
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Monash Institute of Cognitive and Clinical Neuroscience (MICCN), Monash University, Melbourne, Australia
- Advanced Telecommunications Research Computational Neuroscience Laboratories, Kyoto, Japan
- * E-mail: (AL); (NT)
| |
Collapse
|
55
|
Brain network motifs are markers of loss and recovery of consciousness. Sci Rep 2021; 11:3892. [PMID: 33594110 PMCID: PMC7887248 DOI: 10.1038/s41598-021-83482-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Motifs are patterns of inter-connections between nodes of a network, and have been investigated as building blocks of directed networks. This study explored the re-organization of 3-node motifs during loss and recovery of consciousness. Nine healthy subjects underwent a 3-h anesthetic protocol while 128-channel electroencephalography (EEG) was recorded. In the alpha (8-13 Hz) band, 5-min epochs of EEG were extracted for: Baseline; Induction; Unconscious; 30-, 10- and 5-min pre-recovery of responsiveness; 30- and 180-min post-recovery of responsiveness. We constructed a functional brain network using the weighted and directed phase lag index, on which we calculated the frequency and topology of 3-node motifs. Three motifs (motifs 1, 2 and 5) were significantly present across participants and epochs, when compared to random networks (p < 0.05). The topology of motifs 1 and 5 changed significantly between responsive and unresponsive epochs (p-values < 0.01; Kendall's W = 0.664 (motif 1) and 0.529 (motif 5)). Motif 1 was constituted of long-range chain-like connections, while motif 5 was constituted of short-range, loop-like connections. Our results suggest that anesthetic-induced unconsciousness is associated with a topological re-organization of network motifs. As motif topological re-organization may precede (motif 5) or accompany (motif 1) the return of responsiveness, motifs could contribute to the understanding of the neural correlates of consciousness.
Collapse
|
56
|
Schwerin S, Kopp C, Pircher E, Schneider G, Kreuzer M, Haseneder R, Kratzer S. Attenuation of Native Hyperpolarization-Activated, Cyclic Nucleotide-Gated Channel Function by the Volatile Anesthetic Sevoflurane in Mouse Thalamocortical Relay Neurons. Front Cell Neurosci 2021; 14:606687. [PMID: 33551750 PMCID: PMC7858256 DOI: 10.3389/fncel.2020.606687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
As thalamocortical relay neurons are ascribed a crucial role in signal propagation and information processing, they have attracted considerable attention as potential targets for anesthetic modulation. In this study, we analyzed the effects of different concentrations of sevoflurane on the excitability of thalamocortical relay neurons and hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels, which play a decisive role in regulating membrane properties and rhythmic oscillatory activity. The effects of sevoflurane on single-cell excitability and native HCN channels were investigated in acutely prepared brain slices from adult wild-type mice with the whole-cell patch-clamp technique, using voltage-clamp and current-clamp protocols. Sevoflurane dose-dependently depressed membrane biophysics and HCN-mediated parameters of neuronal excitability. Respective half-maximal inhibitory and effective concentrations ranged between 0.30 (95% CI, 0.18–0.50) mM and 0.88 (95% CI, 0.40–2.20) mM. We witnessed a pronounced reduction of HCN dependent Ih current amplitude starting at a concentration of 0.45 mM [relative change at −133 mV; 0.45 mM sevoflurane: 0.85 (interquartile range, 0.79–0.92), n = 12, p = 0.011; 1.47 mM sevoflurane: 0.37 (interquartile range, 0.34–0.62), n = 5, p < 0.001] with a half-maximal inhibitory concentration of 0.88 (95% CI, 0.40–2.20) mM. In contrast, effects on voltage-dependent channel gating were modest with significant changes only occurring at 1.47 mM [absolute change of half-maximal activation potential; 1.47 mM: −7.2 (interquartile range, −10.3 to −5.8) mV, n = 5, p = 0.020]. In this study, we demonstrate that sevoflurane inhibits the excitability of thalamocortical relay neurons in a concentration-dependent manner within a clinically relevant range. Especially concerning its effects on native HCN channel function, our findings indicate substance-specific differences in comparison to other anesthetic agents. Considering the importance of HCN channels, the observed effects might mechanistically contribute to the hypnotic properties of sevoflurane.
Collapse
Affiliation(s)
- Stefan Schwerin
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Claudia Kopp
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Elisabeth Pircher
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Rainer Haseneder
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Stephan Kratzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| |
Collapse
|
57
|
Foundations of Human Consciousness: Imaging the Twilight Zone. J Neurosci 2020; 41:1769-1778. [PMID: 33372062 PMCID: PMC8115882 DOI: 10.1523/jneurosci.0775-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
What happens in the brain when conscious awareness of the surrounding world fades? We manipulated consciousness in two experiments in a group of healthy males and measured brain activity with positron emission tomography. Measurements were made during wakefulness, escalating and constant levels of two anesthetic agents (experiment 1, n = 39), and during sleep-deprived wakefulness and non-rapid eye movement sleep (experiment 2, n = 37). In experiment 1, the subjects were randomized to receive either propofol or dexmedetomidine until unresponsiveness. In both experiments, forced awakenings were applied to achieve rapid recovery from an unresponsive to a responsive state, followed by immediate and detailed interviews of subjective experiences during the preceding unresponsive condition. Unresponsiveness rarely denoted unconsciousness, as the majority of the subjects had internally generated experiences. Unresponsive anesthetic states and verified sleep stages, where a subsequent report of mental content included no signs of awareness of the surrounding world, indicated a disconnected state. Functional brain imaging comparing responsive and connected versus unresponsive and disconnected states of consciousness during constant anesthetic exposure revealed that activity of the thalamus, cingulate cortices, and angular gyri are fundamental for human consciousness. These brain structures were affected independent from the pharmacologic agent, drug concentration, and direction of change in the state of consciousness. Analogous findings were obtained when consciousness was regulated by physiological sleep. State-specific findings were distinct and separable from the overall effects of the interventions, which included widespread depression of brain activity across cortical areas. These findings identify a central core brain network critical for human consciousness. SIGNIFICANCE STATEMENT Trying to understand the biological basis of human consciousness is currently one of the greatest challenges of neuroscience. While the loss and return of consciousness regulated by anesthetic drugs and physiological sleep are used as model systems in experimental studies on consciousness, previous research results have been confounded by drug effects, by confusing behavioral “unresponsiveness” and internally generated consciousness, and by comparing brain activity levels across states that differ in several other respects than only consciousness. Here, we present carefully designed studies that overcome many previous confounders and for the first time reveal the neural mechanisms underlying human consciousness and its disconnection from behavioral responsiveness, both during anesthesia and during normal sleep, and in the same study subjects.
Collapse
|
58
|
Signorelli CM, Uhrig L, Kringelbach M, Jarraya B, Deco G. Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. Neuroimage 2020; 227:117618. [PMID: 33307225 DOI: 10.1016/j.neuroimage.2020.117618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Anesthesia induces a reconfiguration of the repertoire of functional brain states leading to a high function-structure similarity. However, it is unclear how these functional changes lead to loss of consciousness. Here we suggest that the mechanism of conscious access is related to a general dynamical rearrangement of the intrinsic hierarchical organization of the cortex. To measure cortical hierarchy, we applied the Intrinsic Ignition analysis to resting-state fMRI data acquired in awake and anesthetized macaques. Our results reveal the existence of spatial and temporal hierarchical differences of neural activity within the macaque cortex, with a strong modulation by the depth of anesthesia and the employed anesthetic agent. Higher values of Intrinsic Ignition correspond to rich and flexible brain dynamics whereas lower values correspond to poor and rigid, structurally driven brain dynamics. Moreover, spatial and temporal hierarchical dimensions are disrupted in a different manner, involving different hierarchical brain networks. All together suggest that disruption of brain hierarchy is a new signature of consciousness loss.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, UK; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Spain.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale, NeuroSpin Center, France; Department of Anesthesiology and Critical Care, Necker Hospital, University Paris Descartes, France; Department of Anesthesiology and Critical Care, Sainte-Anne Hospital, University Paris Descartes, France
| | - Morten Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale, NeuroSpin Center, France; Neurosurgery Department, Foch Hospital, Suresnes, France; University of Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, France.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| |
Collapse
|
59
|
Pullon RM, Yan L, Sleigh JW, Warnaby CE. Granger Causality of the Electroencephalogram Reveals Abrupt Global Loss of Cortical Information Flow during Propofol-induced Loss of Responsiveness. Anesthesiology 2020; 133:774-786. [PMID: 32930729 PMCID: PMC7495984 DOI: 10.1097/aln.0000000000003398] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is a commonly held view that information flow between widely separated regions of the cerebral cortex is a necessary component in the generation of wakefulness (also termed “connected” consciousness). This study therefore hypothesized that loss of wakefulness caused by propofol anesthesia should be associated with loss of information flow, as estimated by the effective connectivity in the scalp electroencephalogram (EEG) signal. In healthy adult volunteers, propofol anesthesia–induced loss of consciousness was associated with an abrupt, substantial, and global decrease in connectivity. These changes are comparably reversed at regain of consciousness. These observations suggest that information flow is an important indicator of wakefulness. Supplemental Digital Content is available in the text.
Collapse
|
60
|
Detection of Electrophysiological Activity of Amygdala during Anesthesia Using Stereo-EEG: A Preliminary Research in Anesthetized Epileptic Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6932035. [PMID: 33102588 PMCID: PMC7568817 DOI: 10.1155/2020/6932035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022]
Abstract
Recent studies of anesthesia mechanisms have focused on neuronal network and functional connectivity. The stereo-electroencephalography (SEEG) recordings provide appropriate temporal and spatial resolution to study whole-brain dynamics; however, the feasibility to detect subcortical signals during anesthesia still needs to be studied with clinical evidence. Here, we focus on the amygdala to investigate if SEEG can be used to detect cortical and subcortical electrophysiological activity in anesthetized epileptic patients. Therefore, we present direct evidence in humans that SEEG indeed can be used to record cortical and subcortical electrophysiological activity during anesthesia. The study was carried out in propofol-anesthetized five epileptic patients. The electrophysiology activity of the amygdala and other cortical areas from anesthesia to the recovery of consciousness was investigated using stereo-EEG (SEEG). Results indicated that with the decrease of propofol concentration, power spectral density (PSD) in the delta band of the amygdala significantly decreased. When it was close to recovery, the correlation between the amygdala and ipsilateral temporal lobe significantly decreased followed by a considerable increase when awake. The findings of the current study suggest SEEG as an effective tool for providing direct evidence of the anesthesia mechanism.
Collapse
|
61
|
Abstract
General anesthesia serves a critically important function in the clinical care of human patients. However, the anesthetized state has foundational implications for biology because anesthetic drugs are effective in organisms ranging from paramecia, to plants, to primates. Although unconsciousness is typically considered the cardinal feature of general anesthesia, this endpoint is only strictly applicable to a select subset of organisms that are susceptible to being anesthetized. We review the behavioral endpoints of general anesthetics across species and propose the isolation of an organism from its environment - both in terms of the afferent arm of sensation and the efferent arm of action - as a generalizable definition. We also consider the various targets and putative mechanisms of general anesthetics across biology and identify key substrates that are conserved, including cytoskeletal elements, ion channels, mitochondria, and functionally coupled electrical or neural activity. We conclude with a unifying framework related to network function and suggest that general anesthetics - from single cells to complex brains - create inefficiency and enhance modularity, leading to the dissociation of functions both within an organism and between the organism and its surroundings. Collectively, we demonstrate that general anesthesia is not restricted to the domain of modern medicine but has broad biological relevance with wide-ranging implications for a diverse array of species.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Translational Research Laboratories, 125 S. 31st St., Philadelphia, PA 19104-3403, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
62
|
Kallionpää RE, Valli K, Scheinin A, Långsjö J, Maksimow A, Vahlberg T, Revonsuo A, Scheinin H, Mashour GA, Li D. Alpha band frontal connectivity is a state-specific electroencephalographic correlate of unresponsiveness during exposure to dexmedetomidine and propofol. Br J Anaesth 2020; 125:518-528. [PMID: 32773216 DOI: 10.1016/j.bja.2020.05.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coherent alpha electroencephalogram (EEG) rhythms in the frontal cortex have been correlated with the hypnotic effects of propofol and dexmedetomidine, but less is known about frontal connectivity as a state-specific correlate of unresponsiveness as compared with long-range connectivity. We aimed to distinguish dose- and state-dependent effects of dexmedetomidine and propofol on EEG connectivity. METHODS Forty-seven healthy males received either dexmedetomidine (n=23) or propofol (n=24) as target-controlled infusion with stepwise increments until loss of responsiveness (LOR). We attempted to arouse participants during constant dosing (return of responsiveness [ROR]), and the target concentration was then increased 50% to achieve presumed loss of consciousness. We collected 64-channel EEG data and prefrontal-frontal and anterior-posterior functional connectivity in the alpha band (8-14 Hz) was measured using coherence and weighted phase lag index (wPLI). Directed connectivity was measured with directed phase lag index (dPLI). RESULTS Prefrontal-frontal EEG-based connectivity discriminated the states at the different drug concentrations. At ROR, prefrontal-frontal connectivity reversed to the level observed before LOR, indicating that connectivity changes were related to unresponsiveness rather than drug concentration. Unresponsiveness was associated with emergence of frontal-to-prefrontal dominance (dPLI: -0.13 to -0.40) in contrast to baseline (dPLI: 0.01-0.02). Coherence, wPLI, and dPLI had similar capability to discriminate the states that differed in terms of responsiveness and drug concentration. In contrast, anterior-posterior connectivity in the alpha band did not differentiate LOR and ROR. CONCLUSIONS Local prefrontal-frontal EEG-based connectivity reflects unresponsiveness induced by propofol or dexmedetomidine, suggesting its utility in monitoring the anaesthetised state with these agents. CLINICAL TRIAL REGISTRATION NCT01889004.
Collapse
Affiliation(s)
- Roosa E Kallionpää
- Department of Psychology and Speech-Language Pathology, and Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland.
| | - Katja Valli
- Department of Psychology and Speech-Language Pathology, and Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Annalotta Scheinin
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaakko Långsjö
- Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Anu Maksimow
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Revonsuo
- Department of Psychology and Speech-Language Pathology, and Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Harry Scheinin
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - George A Mashour
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Duan Li
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
63
|
Aldana E, Álvarez López-Herrero N, Benito H, Colomina MJ, Fernández-Candil J, García-Orellana M, Guzmán B, Ingelmo I, Iturri F, Martín Huerta B, León A, Pérez-Lorensu PJ, Valencia L, Valverde JL. Consensus document for multimodal intraoperatory neurophisiological monitoring in neurosurgical procedures. Basic fundamentals. ACTA ACUST UNITED AC 2020; 68:82-98. [PMID: 32624233 DOI: 10.1016/j.redar.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 01/27/2023]
Abstract
The present work aims to establish a guide to action, agreed by anaesthesiologists and neurophysiologists alike, to perform effective intraoperative neurophysiological monitoring for procedures presenting a risk of functional neurological injury, and neurosurgical procedures. The first section discusses the main techniques currently used for intraoperative neurophysiological monitoring. The second exposes the anaesthetic and non-anaesthetic factors that are likely to affect the electrical records of the nervous system structures. This section is followed by an analysis detailing the adverse effects associated with the most common techniques and their use. Finally, the last section describes a series of guidelines to be followed upon the various intraoperative clinical events.
Collapse
Affiliation(s)
- E Aldana
- Anestesiología y Reanimación, Hospital Vithas Xanit Internacional, Benalmádena, Málaga, España
| | - N Álvarez López-Herrero
- Neurofisiología, Servicio de Neurocirugía, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - H Benito
- Anestesiología y Reanimación, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - M J Colomina
- Anestesiología y Reanimación, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, España
| | | | - M García-Orellana
- Anestesiología y Reanimación, Hospital Clínic de Barcelona, Barcelona, España
| | - B Guzmán
- Neurofisiología clínica, Hospital Clínico Universitario Lozano de Blesa, Zaragoza, España
| | - I Ingelmo
- Anestesiología y Reanimación, Hospital Universitario Ramón y Cajal, Madrid, España
| | - F Iturri
- Anestesiología y Reanimación, Hospital Universitario de Cruces, Baracaldo, Vizcaya, España
| | - B Martín Huerta
- Anestesiología y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - A León
- Neurofisiología, Servicio de Neurología, Parc de Salut Mar, Barcelona, España
| | - P J Pérez-Lorensu
- Neurofisiología Clínica, Unidad de Monitorización Neurofisiológica Intraoperatoria, Hospital Universitario de Canarias, Tenerife, España
| | - L Valencia
- Anestesiología y Reanimación, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, España
| | - J L Valverde
- Anestesiología y Reanimación, Hospital Vithas Xanit Internacional, Benalmádena, Málaga, España
| |
Collapse
|
64
|
Vertes RP, Linley SB. No cognitive processing in the unconscious,
anesthetic‐like
, state of sleep. J Comp Neurol 2020; 529:524-538. [DOI: 10.1002/cne.24963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
65
|
Crone JS, Lutkenhoff ES, Vespa PM, Monti MM. A systematic investigation of the association between network dynamics in the human brain and the state of consciousness. Neurosci Conscious 2020; 2020:niaa008. [PMID: 32551138 PMCID: PMC7293819 DOI: 10.1093/nc/niaa008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
An increasing amount of studies suggest that brain dynamics measured with resting-state functional magnetic resonance imaging (fMRI) are related to the state of consciousness. However, the challenge of investigating neuronal correlates of consciousness is the confounding interference between (recovery of) consciousness and behavioral responsiveness. To address this issue, and validate the interpretation of prior work linking brain dynamics and consciousness, we performed a longitudinal fMRI study in patients recovering from coma. Patients were assessed twice, 6 months apart, and assigned to one of two groups. One group included patients who were unconscious at the first assessment but regained consciousness and improved behavioral responsiveness by the second assessment. The other group included patients who were already conscious and improved only behavioral responsiveness. While the two groups were matched in terms of the average increase in behavioral responsiveness, only one group experienced a categorical change in their state of consciousness allowing us to partially dissociate consciousness and behavioral responsiveness. We find the variance in network metrics to be systematically different across states of consciousness, both within and across groups. Specifically, at the first assessment, conscious patients exhibited significantly greater variance in network metrics than unconscious patients, a difference that disappeared once all patients had recovered consciousness. Furthermore, we find a significant increase in dynamics for patients who regained consciousness over time, but not for patients who only improved responsiveness. These findings suggest that changes in brain dynamics are indeed linked to the state of consciousness and not just to a general level of behavioral responsiveness.
Collapse
Affiliation(s)
- Julia S Crone
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Evan S Lutkenhoff
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul M Vespa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
66
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
67
|
Changes in Whole Brain Dynamics and Connectivity Patterns during Sevoflurane- and Propofol-induced Unconsciousness Identified by Functional Magnetic Resonance Imaging. Anesthesiology 2020; 130:898-911. [PMID: 31045899 DOI: 10.1097/aln.0000000000002704] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND A key feature of the human brain is its capability to adapt flexibly to changing external stimuli. This capability can be eliminated by general anesthesia, a state characterized by unresponsiveness, amnesia, and (most likely) unconsciousness. Previous studies demonstrated decreased connectivity within the thalamus, frontoparietal, and default mode networks during general anesthesia. We hypothesized that these alterations within specific brain networks lead to a change of communication between networks and their temporal dynamics. METHODS We conducted a pooled spatial independent component analysis of resting-state functional magnetic resonance imaging data obtained from 16 volunteers during propofol and 14 volunteers during sevoflurane general anesthesia that have been previously published. Similar to previous studies, mean z-scores of the resulting spatial maps served as a measure of the activity within a network. Additionally, correlations of associated time courses served as a measure of the connectivity between networks. To analyze the temporal dynamics of between-network connectivity, we computed the correlation matrices during sliding windows of 1 min and applied k-means clustering to the matrices during both general anesthesia and wakefulness. RESULTS Within-network activity was decreased in the default mode, attentional, and salience networks during general anesthesia (P < 0.001, range of median changes: -0.34, -0.13). Average between-network connectivity was reduced during general anesthesia (P < 0.001, median change: -0.031). Distinct between-network connectivity patterns for both wakefulness and general anesthesia were observed irrespective of the anesthetic agent (P < 0.001), and there were fewer transitions in between-network connectivity patterns during general anesthesia (P < 0.001, median number of transitions during wakefulness: 4 and during general anesthesia: 0). CONCLUSIONS These results suggest that (1) higher-order brain regions play a crucial role in the generation of specific between-network connectivity patterns and their dynamics, and (2) the capability to interact with external stimuli is represented by complex between-network connectivity patterns.
Collapse
|
68
|
Abstract
BACKGROUND Functional connectivity across the cortex has been posited to be important for consciousness and anesthesia, but functional connectivity patterns during the course of surgery and general anesthesia are unknown. The authors tested the hypothesis that disrupted cortical connectivity patterns would correlate with surgical anesthesia. METHODS Surgical patients (n = 53) were recruited for study participation. Whole-scalp (16-channel) wireless electroencephalographic data were prospectively collected throughout the perioperative period. Functional connectivity was assessed using weighted phase lag index. During anesthetic maintenance, the temporal dynamics of connectivity states were characterized via Markov chain analysis, and state transition probabilities were quantified. RESULTS Compared to baseline (weighted phase lag index, 0.163, ± 0.091), alpha frontal-parietal connectivity was not significantly different across the remaining anesthetic and perioperative epochs, ranging from 0.100 (± 0.041) to 0.218 (± 0.136) (P > 0.05 for all time periods). In contrast, there were significant increases in alpha prefrontal-frontal connectivity (peak = 0.201 [0.154, 0.248]; P < 0.001), theta prefrontal-frontal connectivity (peak = 0.137 [0.091, 0.182]; P < 0.001), and theta frontal-parietal connectivity (peak = 0.128 [0.084, 0.173]; P < 0.001) during anesthetic maintenance. Additionally, shifts occurred between states of high prefrontal-frontal connectivity (alpha, beta) with suppressed frontal-parietal connectivity, and high frontal-parietal connectivity (alpha, theta) with reduced prefrontal-frontal connectivity. These shifts occurred in a nonrandom manner (P < 0.05 compared to random transitions), suggesting structured transitions of connectivity during general anesthesia. CONCLUSIONS Functional connectivity patterns dynamically shift during surgery and general anesthesia but do so in a structured way. Thus, a single measure of functional connectivity will likely not be a reliable correlate of surgical anesthesia.
Collapse
|
69
|
Propofol Anesthesia Increases Long-range Frontoparietal Corticocortical Interaction in the Oculomotor Circuit in Macaque Monkeys. Anesthesiology 2020; 130:560-571. [PMID: 30807382 DOI: 10.1097/aln.0000000000002637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC A decrease in frontoparietal functional connectivity has been demonstrated with multiple anesthetic agents, and this decrease has been proposed as a final common functional pathway to produce anesthesia.Two alternative measures of long-range cortical interaction are coherence and phase-amplitude coupling. Although phase-amplitude coupling within frontal cortex changes with propofol administration, the effects of propofol on phase-amplitude coupling between different cortical areas have not previously been reported. WHAT THIS ARTICLE TELLS US THAT IS NEW Using a previously published monkey electrocorticography data set, it was found that propofol induced coherent slow oscillations in visual and oculomotor networks made up of cortical areas with strong anatomic projections.Frontal eye field within-area phase-amplitude coupling increased.Contrary to expectations from previous functional connectivity studies, interareal phase-amplitude coupling also increased with propofol. BACKGROUND Frontoparietal functional connectivity decreases with multiple anesthetics using electrophysiology and functional imaging. This decrease has been proposed as a final common functional pathway to produce anesthesia. Two alternative measures of long-range cortical interaction are coherence and phase-amplitude coupling. Although phase-amplitude coupling within frontal cortex changes with propofol administration, the effects of propofol on phase-amplitude coupling between different cortical areas have not previously been reported. Based on phase-amplitude coupling observed within frontal lobe during the anesthetized period, it was hypothesized that between-lead phase-amplitude coupling analysis should decrease between frontal and parietal leads during propofol anesthesia. METHODS A published monkey electrocorticography data set (N = 2 animals) was used to test for interactions in the cortical oculomotor circuit, which is robustly interconnected in primates, and in the visual system during propofol anesthesia using coherence and interarea phase-amplitude coupling. RESULTS Propofol induces coherent slow oscillations in visual and oculomotor networks made up of cortical areas with strong anatomic projections. Frontal eye field within-area phase-amplitude coupling increases with a time course consistent with a bolus response to intravenous propofol (modulation index increase of 12.6-fold). Contrary to the hypothesis, interareal phase-amplitude coupling also increases with propofol, with the largest increase in phase-amplitude coupling in frontal eye field low-frequency phase modulating lateral intraparietal area β-power (27-fold increase) and visual area 2 low-frequency phase altering visual area 1 β-power (19-fold increase). CONCLUSIONS Propofol anesthesia induces coherent oscillations and increases certain frontoparietal interactions in oculomotor cortices. Frontal eye field and lateral intraparietal area show increased coherence and phase-amplitude coupling. Visual areas 2 and 1, which have similar anatomic projection patterns, show similar increases in phase-amplitude coupling, suggesting higher order feedback increases in influence during propofol anesthesia relative to wakefulness. This suggests that functional connectivity between frontal and parietal areas is not uniformly decreased by anesthetics.
Collapse
|
70
|
Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron 2020; 105:776-798. [PMID: 32135090 PMCID: PMC8770991 DOI: 10.1016/j.neuron.2020.01.026] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
We review the central tenets and neuroanatomical basis of the global neuronal workspace (GNW) hypothesis, which attempts to account for the main scientific observations regarding the elementary mechanisms of conscious processing in the human brain. The GNW hypothesis proposes that, in the conscious state, a non-linear network ignition associated with recurrent processing amplifies and sustains a neural representation, allowing the corresponding information to be globally accessed by local processors. We examine this hypothesis in light of recent data that contrast brain activity evoked by either conscious or non-conscious contents, as well as during conscious or non-conscious states, particularly general anesthesia. We also discuss the relationship between the intertwined concepts of conscious processing, attention, and working memory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Neuroscience Graduate Program, and Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pieter Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA.
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| |
Collapse
|
71
|
Banks MI, Krause BM, Endemann CM, Campbell DI, Kovach CK, Dyken ME, Kawasaki H, Nourski KV. Cortical functional connectivity indexes arousal state during sleep and anesthesia. Neuroimage 2020; 211:116627. [PMID: 32045640 DOI: 10.1016/j.neuroimage.2020.116627] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is unclear. Both sleep and anesthesia comprise states of varying levels of arousal and consciousness, including states of largely maintained conscious experience (sleep: N1, REM; anesthesia: sedated but responsive) as well as states of substantially reduced conscious experience (sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical connectivity will exhibit clear changes when transitioning into states of reduced consciousness, and (2) these changes will be similar for arousal states of comparable levels of consciousness during sleep and anesthesia. Using intracranial recordings from five adult neurosurgical patients, we compared resting state cortical functional connectivity (as measured by weighted phase lag index, wPLI) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S), and unresponsive (U)]. Analysis of alpha-band connectivity indicated a transition boundary distinguishing states of maintained and reduced conscious experience in both sleep and anesthesia. In wake states WS and WA, alpha-band wPLI within the temporal lobe was dominant. This pattern was largely unchanged in N1, REM, and S. Transitions into states of reduced consciousness N2, N3, and U were characterized by dramatic changes in connectivity, with dominant connections shifting to prefrontal cortex. Secondary analyses indicated similarities in reorganization of cortical connectivity in sleep and anesthesia. Shifts from temporal to frontal cortical connectivity may reflect impaired sensory processing in states of reduced consciousness. The data indicate that functional connectivity can serve as a biomarker of arousal state and suggest common mechanisms of LOC in sleep and anesthesia.
Collapse
Affiliation(s)
- Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 52704, USA; Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 52704, USA
| | | | - Declan I Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 52704, USA
| | | | - Mark Eric Dyken
- Department of Neurology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
72
|
Level of Consciousness Is Dissociable from Electroencephalographic Measures of Cortical Connectivity, Slow Oscillations, and Complexity. J Neurosci 2019; 40:605-618. [PMID: 31776211 PMCID: PMC6961988 DOI: 10.1523/jneurosci.1910-19.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25–155 Hz), slow oscillations (0.5–1 Hz), and complexity (<175 Hz). We show that higher gamma (85–155 Hz) connectivity is decreased (p ≤ 0.02) during sevoflurane anesthesia, an expected finding, but was not restored during wakefulness induced by carbachol delivery to PFC. Conversely, for rats in which wakefulness was not restored, the functional gamma connectivity remained reduced, but there was a significant decrease (p < 0.001) in the power of slow oscillations and increase (p < 0.001) in cortical complexity, which was similar to that observed during wakefulness induced after carbachol delivery to PFC. We conclude that the level of consciousness can be dissociated from cortical connectivity, oscillations, and dynamics. SIGNIFICANCE STATEMENT Numerous theories of consciousness suggest that functional connectivity across the cortex is characteristic of the conscious state and is reduced during anesthesia. However, it is unknown whether the observed changes are state-related (conscious vs unconscious) or drug-related (drug vs no drug). We used a novel rat model in which cholinergic stimulation of PFC produced wakefulness despite continuous exposure to a general anesthetic. We demonstrate that, as expected, general anesthesia reduces connectivity. Surprisingly, the connectivity remains suppressed despite pharmacologically induced wakefulness in the presence of anesthetic, with restoration occurring only after the anesthetic is discontinued. Thus, whether an animal exhibits wakefulness or not can be dissociated from cortical connectivity, prompting a reevaluation of the role of connectivity in level of consciousness.
Collapse
|
73
|
Cohen D, Sasai S, Tsuchiya N, Oizumi M. A general spectral decomposition of causal influences applied to integrated information. J Neurosci Methods 2019; 330:108443. [PMID: 31732159 DOI: 10.1016/j.jneumeth.2019.108443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Quantifying interactions among many neurons is fundamental to understanding system-level phenomena such as attention, learning and even conscious experience. Causal influences in the brain, quantified as integrated information, are thought to support subjective conscious experience. Recent empirical work has shown that the spectral decomposition of causal influences, for example using Granger causality, can reveal frequency-specific influences that are not observed in the time domain. However, a spectral decomposition of integrated information has not been put forward, limiting its adoption for analyzing neural data. NEW METHOD We present a general and flexible framework for deriving the spectral decomposition of causal influences in autoregressive processes. RESULTS We use the framework to derive a spectral decomposition of integrated information. We show that other well-known measures, including Granger causality, can be derived using the same framework. Using simulations, we demonstrate a complex interplay between the spectral decomposition of integrated information and other measures that is not observed in the time domain. COMPARISON WITH EXISTING METHODS This paper provides a spectral decomposition of integrated information for the first time. Although a spectral decomposition of Granger causality has been derived, that approach is only applicable to uni-directional causal influences, not multi-directional causal influences as required for integrated information. CONCLUSIONS Our novel framework can be used to derive the spectral decomposition of uni- and multi-directional measures of causal influences. We use this framework to derive a spectral decomposition of integrated information, paving the way for better understanding how frequency-specific causal influences in the brain relate to cognition.
Collapse
Affiliation(s)
- Dror Cohen
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan; School of Psychological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia.
| | - Shuntaro Sasai
- University of Wisconsin - Madison, 6001 Research Park Blvd, Madison, WI 53719, United States
| | - Naotsugu Tsuchiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan; School of Psychological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Victoria 3800, Australia; ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Masafumi Oizumi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan; School of Psychological Sciences, Monash University, Clayton Campus, Victoria 3800, Australia; Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8092, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
74
|
|
75
|
Mashour GA. Role of cortical feedback signalling in consciousness and anaesthetic-induced unconsciousness. Br J Anaesth 2019; 123:404-405. [DOI: 10.1016/j.bja.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
|
76
|
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: The mechanism by which anesthetics induce a loss of consciousness remains a puzzling problem. We hypothesized that a cortical signature of anesthesia could be found in an increase in similarity between the matrix of resting-state functional correlations and the anatomical connectivity matrix of the brain, resulting in an increased function-structure similarity. METHODS We acquired resting-state functional magnetic resonance images in macaque monkeys during wakefulness (n = 3) or anesthesia with propofol (n = 3), ketamine (n = 3), or sevoflurane (n = 3). We used the k-means algorithm to cluster dynamic resting-state data into independent functional brain states. For each condition, we performed a regression analysis to quantify function-structure similarity and the repertoire of functional brain states. RESULTS Seven functional brain states were clustered and ranked according to their similarity to structural connectivity, with higher ranks corresponding to higher function-structure similarity and lower ranks corresponding to lower correlation between brain function and brain anatomy. Anesthesia shifted the brain state composition from a low rank (rounded rank [mean ± SD]) in the awake condition (awake rank = 4 [3.58 ± 1.03]) to high ranks in the different anesthetic conditions (ketamine rank = 6 [6.10 ± 0.32]; moderate propofol rank = 6 [6.15 ± 0.76]; deep propofol rank = 6 [6.16 ± 0.46]; moderate sevoflurane rank = 5 [5.10 ± 0.81]; deep sevoflurane rank = 6 [5.81 ± 1.11]; P < 0.0001). CONCLUSIONS Whatever the molecular mechanism, anesthesia led to a massive reconfiguration of the repertoire of functional brain states that became predominantly shaped by brain anatomy (high function-structure similarity), giving rise to a well-defined cortical signature of anesthesia-induced loss of consciousness.
Collapse
|
77
|
Bonhomme V, Staquet C, Montupil J, Defresne A, Kirsch M, Martial C, Vanhaudenhuyse A, Chatelle C, Larroque SK, Raimondo F, Demertzi A, Bodart O, Laureys S, Gosseries O. General Anesthesia: A Probe to Explore Consciousness. Front Syst Neurosci 2019; 13:36. [PMID: 31474839 PMCID: PMC6703193 DOI: 10.3389/fnsys.2019.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
General anesthesia reversibly alters consciousness, without shutting down the brain globally. Depending on the anesthetic agent and dose, it may produce different consciousness states including a complete absence of subjective experience (unconsciousness), a conscious experience without perception of the environment (disconnected consciousness, like during dreaming), or episodes of oriented consciousness with awareness of the environment (connected consciousness). Each consciousness state may potentially be followed by explicit or implicit memories after the procedure. In this respect, anesthesia can be considered as a proxy to explore consciousness. During the recent years, progress in the exploration of brain function has allowed a better understanding of the neural correlates of consciousness, and of their alterations during anesthesia. Several changes in functional and effective between-region brain connectivity, consciousness network topology, and spatio-temporal dynamics of between-region interactions have been evidenced during anesthesia. Despite a set of effects that are common to many anesthetic agents, it is still uneasy to draw a comprehensive picture of the precise cascades during general anesthesia. Several questions remain unsolved, including the exact identification of the neural substrate of consciousness and its components, the detection of specific consciousness states in unresponsive patients and their associated memory processes, the processing of sensory information during anesthesia, the pharmacodynamic interactions between anesthetic agents, the direction-dependent hysteresis phenomenon during the transitions between consciousness states, the mechanisms of cognitive alterations that follow an anesthetic procedure, the identification of an eventual unitary mechanism of anesthesia-induced alteration of consciousness, the relationship between network effects and the biochemical or sleep-wake cycle targets of anesthetic agents, as well as the vast between-studies variations in dose and administration mode, leading to difficulties in between-studies comparisons. In this narrative review, we draw the picture of the current state of knowledge in anesthesia-induced unconsciousness, from insights gathered on propofol, halogenated vapors, ketamine, dexmedetomidine, benzodiazepines and xenon. We also describe how anesthesia can help understanding consciousness, we develop the above-mentioned unresolved questions, and propose tracks for future research.
Collapse
Affiliation(s)
- Vincent Bonhomme
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Javier Montupil
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Aline Defresne
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Murielle Kirsch
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Sensation & Perception Research Group, GIGA-Consciousness, Department of Algology, GIGA Institute, University of Liege, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Camille Chatelle
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Olivier Bodart
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| |
Collapse
|
78
|
|
79
|
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Recent studies of anesthetic-induced unconsciousness in healthy volunteers have focused on functional brain connectivity patterns, but the protocols rarely parallel the depth and duration of surgical anesthesia. Furthermore, it is unknown whether there is a single functional connectivity pattern that correlates with general anesthesia for the duration of prolonged anesthetic exposure.
Methods
The authors analyzed electroencephalographic data in 30 healthy participants who underwent induction of anesthesia with propofol followed by 3 h of isoflurane anesthesia at age-adjusted 1.3 minimum alveolar concentration. Functional connectivity was assessed by frequency-resolved weighted phase lag index between frontal and parietal channels and between prefrontal and frontal channels, which were classified into a discrete set of states through k-means cluster analysis. Temporal dynamics were evaluated by the occurrence rate and dwell time distribution for each state as well as the transition probabilities between states.
Results
Burst suppression was present, with mean suppression ratio reducing from 44.8 ± 32.3% to 14.0 ± 20.2% (mean ± SD) during isoflurane anesthesia (P < 0.001). Aside from burst suppression, eight connectivity states were classified by optimizing the reproducibility of clustering solutions, with each characterized by distinct properties. The temporal progression of dominant states revealed a successive shifting trajectory from the state associated with alpha frontal-parietal connectivity to those associated with delta and alpha prefrontal-frontal connectivity during induction, which was reversed during emergence. Cortical connectivity was dynamic during maintenance period, and it was more probable to remain in the same state (82.0 ± 8.3%) than to switch to a different state (P < 0.001). However, transitions to other states were structured, i.e., occurred more frequently than expected by chance.
Conclusions
Anesthesia-induced alterations of functional connectivity are dynamic despite the stable and prolonged administration of isoflurane, in the absence of any noxious stimuli. Changes in connectivity over time will likely yield more information as a marker or mechanism of surgical anesthesia than any single pattern.
Collapse
|
80
|
Hemmings HC, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019; 40:464-481. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in the 21st century towards a comprehensive understanding of the mechanisms of action of general anesthetics, coincident with progress in structural biology and molecular, cellular, and systems neuroscience. This review summarizes important new findings that include target identification through structural determination of anesthetic binding sites, details of receptors and ion channels involved in neurotransmission, and the critical roles of neuronal networks in anesthetic effects on memory and consciousness. These recent developments provide a comprehensive basis for conceptualizing pharmacological control of amnesia, unconsciousness, and immobility.
Collapse
Affiliation(s)
- Hugh C Hemmings
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Paul M Riegelhaupt
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Ken Solt
- Department of Anaesthesia, Harvard Medical School, GRB 444, 55 Fruit St., Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Beverley A Orser
- Departments of Anesthesia and Physiology, Room 3318 Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter A Goldstein
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
81
|
Clinical signs and electroencephalographic patterns of emergence from sevoflurane anaesthesia in children: An observational study. Eur J Anaesthesiol 2019; 35:49-59. [PMID: 29120939 PMCID: PMC5728588 DOI: 10.1097/eja.0000000000000739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Few studies have systematically described relationships between clinical-behavioural signs, electroencephalographic (EEG) patterns and age during emergence from anaesthesia in young children. OBJECTIVE To identify the relationships between end-tidal sevoflurane (ETsevoflurane) concentration, age and frontal EEG spectral properties in predicting recovery of clinical-behavioural signs during emergence from sevoflurane in children 0 to 3 years of age, with and without exposure to nitrous oxide. The hypothesis was that clinical signs occur sequentially during emergence, and that for infants aged more than 3 months, changes in alpha EEG power are correlated with clinical-behavioural signs. DESIGN An observational study. SETTING A tertiary paediatric teaching hospital from December 2012 to August 2016. PATIENTS Ninety-five children aged 0 to 3 years who required surgery below the neck. OUTCOME MEASURES Time-course of, and ETsevoflurane concentrations at first gross body movement, first cough, first grimace, dysconjugate eye gaze, frontal (F7/F8) alpha EEG power (8 to 12 Hz), frontal beta EEG power (13 to 30 Hz), surgery-end. RESULTS Clinical signs of emergence followed an orderly sequence of events across all ages. Clinical signs occurred over a narrow ETsevoflurane, independent of age [movement: 0.4% (95% confidence interval (CI), 0.3 to 0.4), cough 0.3% (95% CI, 0.3 to 0.4), grimace 0.2% (95% CI, 0 to 0.3); P > 0.5 for age vs. ETsevoflurane]. Dysconjugate eye gaze was observed between ETsevoflurane 1 to 0%. In children more than 3 months old, frontal alpha EEG oscillations were present at ETsevoflurane 2.0% and disappeared at 0.5%. Movement occurred within 5 min of alpha oscillation disappearance in 99% of patients. Nitrous oxide had no effect on the time course or ETsevoflurane at which children showed body movement, grimace or cough. CONCLUSION Several clinical signs occur sequentially during emergence, and are independent of exposure to nitrous oxide. Eye position is poorly correlated with other clinical signs or ETsevoflurane. EEG spectral characteristics may aid prediction of clinical-behavioural signs in children more than 3 months.
Collapse
|
82
|
Sanz-García A, Pérez-Romero M, Pastor J, Sola RG, Vega-Zelaya L, Vega G, Monasterio F, Torrecilla C, Pulido P, Ortega GJ. Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach. J Neural Eng 2019; 16:026031. [PMID: 30703765 DOI: 10.1088/1741-2552/ab039f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. APPROACH We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. MAIN RESULTS More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. SIGNIFICANCE The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Instituto de Investigación Sanitaria, Hospital de la Princesa, Madrid, España
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Palanca BJA, Avidan MS, Mashour GA. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth 2019; 119:573-582. [PMID: 29121298 DOI: 10.1093/bja/aex244] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
Sevoflurane, a volatile anaesthetic agent well-tolerated for inhalation induction, provides a useful opportunity to elucidate the processes whereby halogenated ethers disrupt consciousness and cognition. Multiple molecular targets of sevoflurane have been identified, complementing imaging and electrophysiologic markers for the mechanistically obscure progression from wakefulness to unconsciousness. Recent investigations have more precisely detailed scalp EEG activity during this transition, with practical clinical implications. The relative timing of scalp potentials in frontal and parietal EEG signals suggests that sevoflurane might perturb the propagation of neural information between underlying cortical regions. Spatially distributed brain activity during general anaesthesia has been further investigated with positron emission tomography (PET) and resting-state functional magnetic resonance imaging (fMRI). Combined EEG and PET investigations have identified changes in cerebral blood flow and metabolic activity in frontal, parietal, and thalamic regions during sevoflurane-induced loss of consciousness. More recent fMRI investigations have revealed that sevoflurane weakens the signal correlations among brain regions that share functionality and specialization during wakefulness. In particular, two such resting-state networks have shown progressive breakdown in intracortical and thalamocortical connectivity with increasing anaesthetic concentrations: the Default Mode Network (introspection and episodic memory) and the Ventral Attention Network (orienting of attention to salient feature of the external world). These data support the hypotheses that perturbations in temporally correlated activity across brain regions contribute to the transition between states of sevoflurane sedation and general anaesthesia.
Collapse
Affiliation(s)
- B J A Palanca
- Division of Biology and Biomedical Sciences.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - M S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.,Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G A Mashour
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
84
|
Magrassi L, Zippo AG, Azzalin A, Bastianello S, Imberti R, Biella GEM. Single unit activities recorded in the thalamus and the overlying parietal cortex of subjects affected by disorders of consciousness. PLoS One 2018; 13:e0205967. [PMID: 30403761 PMCID: PMC6221278 DOI: 10.1371/journal.pone.0205967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/30/2018] [Indexed: 01/12/2023] Open
Abstract
The lack of direct neurophysiological recordings from the thalamus and the cortex hampers our understanding of vegetative state/unresponsive wakefulness syndrome and minimally conscious state in humans. We obtained microelectrode recordings from the thalami and the homolateral parietal cortex of two vegetative state/unresponsive wakefulness syndrome and one minimally conscious state patients during surgery for implantation of electrodes in both thalami for chronic deep brain stimulation. We found that activity of the thalamo-cortical networks differed among the two conditions. There were half the number of active neurons in the thalami of patients in vegetative state/unresponsive wakefulness syndrome than in minimally conscious state. Coupling of thalamic neuron discharge with EEG phases also differed in the two conditions and thalamo-cortical cross-frequency coupling was limited to the minimally conscious state patient. When consciousness is physiologically or pharmacologically reversibly suspended there is a significant increase in bursting activity of the thalamic neurons. By contrast, in the thalami of our patients in both conditions fewer than 17% of the recorded neurons showed bursting activity. This indicates that these conditions differ from physiological suspension of consciousness and that increased thalamic inhibition is not prominent. Our findings, albeit obtained in a limited number of patients, unveil the neurophysiology of these conditions at single unit resolution and might be relevant for inspiring novel therapeutic options.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurochirurgia, Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia—Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Istituto di Genetica Molecolare IGM-CNR, Pavia, Italy
- * E-mail:
| | - Antonio G. Zippo
- Istituto di Bioimmagini e Fisiologia Molecolare, CNR, LITA Bldg, Segrate, Italy
| | - Alberto Azzalin
- Neurochirurgia, Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia—Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Istituto di Genetica Molecolare IGM-CNR, Pavia, Italy
| | - Stefano Bastianello
- State University of Pavia, Dept. of Brain and Behavioral Sciences, Neuroradiology Department—C. Mondino National Neurological Institute, Pavia, Italy
| | - Roberto Imberti
- Phase I Clinical Trial Unit and Experimental Therapy, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | | |
Collapse
|
85
|
Eagleman SL, Drover DR. Calculations of consciousness: electroencephalography analyses to determine anesthetic depth. Curr Opin Anaesthesiol 2018; 31:431-438. [PMID: 29847364 DOI: 10.1097/aco.0000000000000618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Electroencephalography (EEG) was introduced into anesthesia practice in the 1990s as a tool to titrate anesthetic depth. However, limitations in current analysis techniques have called into question whether these techniques improve standard of care, or instead call for improved, more ubiquitously applicable measures to assess anesthetic transitions and depth. This review highlights emerging analytical approaches and techniques from neuroscience research that have the potential to better capture anesthetic transitions to provide better measurements of anesthetic depth. RECENT FINDINGS Since the introduction of electroencephalography, neuroscientists, engineers, mathematicians, and clinicians have all been developing new ways of analyzing continuous electrical signals. Collaborations between these fields have proliferated several analytical techniques that demonstrate how anesthetics affect brain dynamics and conscious transitions. Here, we review techniques in the following categories: network science, integration and information, nonlinear dynamics, and artificial intelligence. SUMMARY Up-and-coming techniques have the potential to better clinically define and characterize altered consciousness time points. Such new techniques used alongside traditional measures have the potential to improve depth of anesthesia measurements and enhance an understanding of how the brain is affected by anesthetic agents. However, new measures will be needed to be tested for robustness in real-world environments and on diverse experimental protocols.
Collapse
Affiliation(s)
- Sarah L Eagleman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, California, USA
| | | |
Collapse
|
86
|
Thiery T, Lajnef T, Combrisson E, Dehgan A, Rainville P, Mashour GA, Blain-Moraes S, Jerbi K. Long-range temporal correlations in the brain distinguish conscious wakefulness from induced unconsciousness. Neuroimage 2018; 179:30-39. [PMID: 29885482 DOI: 10.1016/j.neuroimage.2018.05.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Rhythmic neuronal synchronization across large-scale networks is thought to play a key role in the regulation of conscious states. Changes in neuronal oscillation amplitude across states of consciousness have been widely reported, but little is known about possible changes in the temporal dynamics of these oscillations. The temporal structure of brain oscillations may provide novel insights into the neural mechanisms underlying consciousness. To address this question, we examined long-range temporal correlations (LRTC) of EEG oscillation amplitudes recorded during both wakefulness and anesthetic-induced unconsciousness. Importantly, the time-varying EEG oscillation envelopes were assessed over the course of a sevoflurane sedation protocol during which the participants alternated between states of consciousness and unconsciousness. Both spectral power and LRTC in oscillation amplitude were computed across multiple frequency bands. State-dependent differences in these features were assessed using non-parametric tests and supervised machine learning. We found that periods of unconsciousness were associated with increases in LRTC in beta (15-30Hz) amplitude over frontocentral channels and with a suppression of alpha (8-13Hz) amplitude over occipitoparietal electrodes. Moreover, classifiers trained to predict states of consciousness on single epochs demonstrated that the combination of beta LRTC with alpha amplitude provided the highest classification accuracy (above 80%). These results suggest that loss of consciousness is accompanied by an augmentation of temporal persistence in neuronal oscillation amplitude, which may reflect an increase in regularity and a decrease in network repertoire compared to the brain's activity during resting-state consciousness.
Collapse
Affiliation(s)
- Thomas Thiery
- Psychology Department, University of Montreal, QC, Canada.
| | - Tarek Lajnef
- Psychology Department, University of Montreal, QC, Canada
| | - Etienne Combrisson
- Psychology Department, University of Montreal, QC, Canada; Center of Research and Innovation in Sport, Mental Processes and Motor Performance, University Claude Bernard Lyon I, University of Lyon, Villeurbanne, France; Brain Dynamics and Cognition, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University of Lyon, Villeurbanne, France
| | - Arthur Dehgan
- Psychology Department, University of Montreal, QC, Canada
| | | | - George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, USA
| | - Stefanie Blain-Moraes
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Karim Jerbi
- Psychology Department, University of Montreal, QC, Canada
| |
Collapse
|
87
|
Mincer JS, Baxter MG, McCormick PJ, Sano M, Schwartz AE, Brallier JW, Allore HG, Delman BN, Sewell MC, Kundu P, Tang CY, Sanchez A, Deiner SG. Delineating the Trajectory of Cognitive Recovery From General Anesthesia in Older Adults: Design and Rationale of the TORIE (Trajectory of Recovery in the Elderly) Project. Anesth Analg 2018; 126:1675-1683. [PMID: 28891911 PMCID: PMC5842096 DOI: 10.1213/ane.0000000000002427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mechanistic aspects of cognitive recovery after anesthesia and surgery are not yet well characterized, but may be vital to distinguishing the contributions of anesthesia and surgery in cognitive complications common in the elderly such as delirium and postoperative cognitive dysfunction. This article describes the aims and methodological approach to the ongoing study, Trajectory of Recovery in the Elderly (TORIE), which focuses on the trajectory of cognitive recovery from general anesthesia. METHODS The study design employs cognitive testing coupled with neuroimaging techniques such as functional magnetic resonance imaging, diffusion tensor imaging, and arterial spin labeling to characterize cognitive recovery from anesthesia and its biological correlates. Applying these techniques to a cohort of age-specified healthy volunteers 40-80 years of age, who are exposed to general anesthesia alone, in the absence of surgery, will assess cognitive and functional neural network recovery after anesthesia. Imaging data are acquired before, during, and immediately after anesthesia, as well as 1 and 7 days after. Detailed cognitive data are captured at the same time points as well as 30 days after anesthesia, and brief cognitive assessments are repeated at 6 and 12 months after anesthesia. RESULTS The study is underway. Our primary hypothesis is that older adults may require significantly longer to achieve cognitive recovery, measured by Postoperative Quality of Recovery Scale cognitive domain, than younger adults in the immediate postanesthesia period, but all will fully recover to baseline levels within 30 days of anesthesia exposure. Imaging data will address systems neuroscience correlates of cognitive recovery from general anesthesia. CONCLUSIONS The data acquired in this project will have both clinical and theoretical relevance regardless of the outcome by delineating the mechanism behind short-term recovery across the adult age lifespan, which will have major implications for our understanding of the effects of anesthetic drugs.
Collapse
Affiliation(s)
- Joshua S. Mincer
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029,James J. Peters VA Medical Center, Bronx, NY 10468
| | - Mark G. Baxter
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Patrick J. McCormick
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029,James J. Peters VA Medical Center, Bronx, NY 10468
| | - Arthur E. Schwartz
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jess W. Brallier
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Heather G. Allore
- Department of Internal Medicine and Biostatistics, Yale School of Medicine, New Haven, CT 06511
| | - Bradley N. Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Margaret C. Sewell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Prantik Kundu
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Cheuk Ying Tang
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Angela Sanchez
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Stacie G. Deiner
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
88
|
Abstract
Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1–5 Hz) mediated FB from the center to the periphery, while higher frequencies (10–45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB.
Collapse
|
89
|
Mashour GA, Hudetz AG. Neural Correlates of Unconsciousness in Large-Scale Brain Networks. Trends Neurosci 2018; 41:150-160. [PMID: 29409683 PMCID: PMC5835202 DOI: 10.1016/j.tins.2018.01.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/12/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
The biological basis of consciousness is one of the most challenging and fundamental questions in 21st century science. A related pursuit aims to identify the neural correlates and causes of unconsciousness. We review current trends in the investigation of physiological, pharmacological, and pathological states of unconsciousness at the level of large-scale functional brain networks. We focus on the roles of brain connectivity, repertoire, graph-theoretical techniques, and neural dynamics in understanding the functional brain disconnections and reduced complexity that appear to characterize these states. Persistent questions in the field, such as distinguishing true correlates, linking neural scales, and understanding differential recovery patterns, are also addressed.
Collapse
Affiliation(s)
- George A Mashour
- Neuroscience Graduate Program, Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Anthony G Hudetz
- Neuroscience Graduate Program, Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
90
|
Timescales of Intrinsic BOLD Signal Dynamics and Functional Connectivity in Pharmacologic and Neuropathologic States of Unconsciousness. J Neurosci 2018; 38:2304-2317. [PMID: 29386261 PMCID: PMC5830518 DOI: 10.1523/jneurosci.2545-17.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental events are processed on multiple timescales via hierarchical organization of temporal receptive windows (TRWs) in the brain. The dependence of neural timescales and TRWs on altered states of consciousness is unclear. States of reduced consciousness are marked by a shift toward slowing of neural dynamics (<1 Hz) in EEG/ECoG signals. We hypothesize that such prolongation of intrinsic timescales are also seen in blood-oxygen-level-dependent (BOLD) signals. To test this hypothesis, we measured the timescales of intrinsic BOLD signals using mean frequency (MF) and temporal autocorrelation (AC) in healthy volunteers (n = 23; male/female 14/9) during graded sedation with propofol. We further examined the relationship between the intrinsic timescales (local/voxel level) and its regional connectivity (across neighboring voxels; regional homogeneity, ReHo), global (whole-brain level) functional connectivity (GFC), and topographical similarity (Topo). Additional results were obtained from patients undergoing deep general anesthesia (n = 12; male/female: 5/7) and in patients with disorders of consciousness (DOC) (n = 21; male/female: 14/7). We found that MF, AC, and ReHo increased, whereas GFC and Topo decreased, during propofol sedation. The local alterations occur before changes of distant connectivity. Conversely, all of these parameters decreased in deep anesthesia and in patients with DOC. We conclude that propofol synchronizes local neuronal interactions and prolongs the timescales of intrinsic BOLD signals. These effects may impede communication among distant brain regions. Furthermore, the intrinsic timescales exhibit distinct dynamic signatures in sedation, deep anesthesia, and DOC. These results improve our understanding of the neural mechanisms of unconsciousness in pharmacologic and neuropathologic states. SIGNIFICANCE STATEMENT Information processing in the brain occurs through a hierarchy of temporal receptive windows (TRWs) in multiple timescales. Anesthetic drugs induce a reversible suppression of consciousness and thus offer a unique opportunity to investigate the state dependence of neural timescales. Here, we demonstrate for the first time that sedation with propofol is accompanied by the prolongation of the timescales of intrinsic BOLD signals presumably reflecting enlarged TRWs. We show that this is accomplished by an increase of local and regional signal synchronization, effects that may disrupt information exchange among distant brain regions. Furthermore, we show that the timescales of intrinsic BOLD signals exhibit distinct dynamic signatures in sedation, deep anesthesia, and disorders of consciousness.
Collapse
|
91
|
Venkatraghavan L, Bharadwaj S, Wourms V, Tan A, Jurkiewicz MT, Mikulis DJ, Crawley AP. Brain Resting-State Functional Connectivity Is Preserved Under Sevoflurane Anesthesia in Patients with Pervasive Developmental Disorders: A Pilot Study. Brain Connect 2018; 7:250-257. [PMID: 28443736 DOI: 10.1089/brain.2016.0448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional connectivity studies play a huge role in understanding the relationship between the network connections and the behavioral phenotype of patients with pervasive developmental disorders (PDD). Some patients with PDD may not be able to tolerate the imaging procedure while they are awake, and, hence, they often need general anesthesia. General anesthesia is a confounding factor in functional imaging studies due to its effect on the functional connectivity. The objective of this study is to look at the resting-state functional connectivity (RS-FC) under sevoflurane anesthesia in patients with PDDs. Thirteen adults with PDD scheduled for magnetic resonance imaging (MRI) of the brain under general anesthesia were recruited for the study. Resting-state functional MRI (fMRI) scans were acquired at 1 minimum alveolar concentration (MAC) of sevoflurane. Spontaneous blood oxygenation level-dependent fluctuations were measured, and a seed-voxel analysis was done to identify the resting-state networks. Subjects' data were compared with data from 16 nonanesthetized healthy controls. Six networks (default mode network [DMN], executive control network [ECN], salience network [SN], auditory, visual, and sensorimotor) were investigated. At 1 MAC sevoflurane anesthesia, RS-FC was preserved in all the networks. Secondary analysis of connectivity showed a decrease in connectivity within the thalamus and an increase in DMN-ECN and DMN-SN cross-network connectivity in the anesthetized patient group compared to healthy controls. Previous reports suggested that even mild levels of anesthesia could reduce overall fluctuation levels in the major brain. However, our results provide strong evidence that most networks can sustain detectable levels of activity in patients with PDDs even under deep levels of anesthesia.
Collapse
Affiliation(s)
- Lakshmikumar Venkatraghavan
- 1 Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto , Toronto, Canada
| | - Suparna Bharadwaj
- 1 Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto , Toronto, Canada
| | - Vincent Wourms
- 2 Department of Anesthesia, University of Manitoba , Winnipeg, Canada
| | - Audrey Tan
- 3 Department of Anesthesia, St. George's Hospital NHS Foundation Trust , London, United Kingdom
| | - Michael T Jurkiewicz
- 4 Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania , Philadelphia, Pennsylvania
| | - David J Mikulis
- 5 Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, University of Toronto , Toronto, Canada
| | - Adrian P Crawley
- 5 Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, University of Toronto , Toronto, Canada
| |
Collapse
|
92
|
Palanca BJA, Maybrier HR, Mickle AM, Farber NB, Hogan RE, Trammel ER, Spencer JW, Bohnenkamp DD, Wildes TS, Ching S, Lenze E, Basner M, Kelz MB, Avidan MS. Cognitive and Neurophysiological Recovery Following Electroconvulsive Therapy: A Study Protocol. Front Psychiatry 2018; 9:171. [PMID: 29867602 PMCID: PMC5960711 DOI: 10.3389/fpsyt.2018.00171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Electroconvulsive therapy (ECT) employs the elective induction of generalizes seizures as a potent treatment for severe psychiatric illness. As such, ECT provides an opportunity to rigorously study the recovery of consciousness, reconstitution of cognition, and electroencephalographic (EEG) activity following seizures. Fifteen patients with major depressive disorder refractory to pharmacologic therapy will be enrolled (Clinicaltrials.gov, NCT02761330). Adequate seizure duration will be confirmed following right unilateral ECT under etomidate anesthesia. Patients will then undergo randomization for the order in which they will receive three sequential treatments: etomidate + ECT, ketamine + ECT, and ketamine + sham ECT. Sessions will be repeated in the same sequence for a total of six treatments. Before each session, sensorimotor speed, working memory, and executive function will be assessed through a standardized cognitive test battery. After each treatment, the return of purposeful responsiveness to verbal command will be determined. At this point, serial cognitive assessments will begin using the same standardized test battery. The presence of delirium and changes in depression severity will also be ascertained. Sixty-four channel EEG will be acquired throughout baseline, ictal, and postictal epochs. Mixed-effects models will correlate the trajectories of cognitive recovery, clinical outcomes, and EEG metrics over time. This innovative research design will answer whether: (1) time to return of responsiveness will be prolonged with ketamine + ECT compared with ketamine + sham ECT; (2) time of restoration to baseline function in each cognitive domain will take longer after ketamine + ECT than after ketamine + sham ECT; (3) postictal delirium is associated with delayed restoration of baseline function in all cognitive domains; and (4) the sequence of reconstitution of cognitive domains following the three treatments in this study is similar to that occurring after an isoflurane general anesthetic (NCT01911195). Sub-studies will assess the relationships of cognitive recovery to the EEG preceding, concurrent, and following individual ECT sessions. Overall, this study will lead the development of biomarkers for tailoring the cogno-affective recovery of patients undergoing ECT.
Collapse
Affiliation(s)
- Ben J A Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States.,Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Hannah R Maybrier
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Angela M Mickle
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Emma R Trammel
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - J Wylie Spencer
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Donald D Bohnenkamp
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Troy S Wildes
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - ShiNung Ching
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St Louis, MO, United States.,Department of Electrical Systems and Engineering, Washington University, St Louis, MO, United States
| | - Eric Lenze
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Max B Kelz
- Department of Anesthesiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, MO, United States.,Department of Surgery, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| |
Collapse
|
93
|
|
94
|
Kratzer S, Mattusch C, Garcia PS, Schmid S, Kochs E, Rammes G, Schneider G, Kreuzer M, Haseneder R. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus. Front Comput Neurosci 2017; 11:109. [PMID: 29321737 PMCID: PMC5732174 DOI: 10.3389/fncom.2017.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro. We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.
Collapse
Affiliation(s)
- Stephan Kratzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Corinna Mattusch
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Paul S Garcia
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Sebastian Schmid
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Kochs
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
95
|
Neuronal Connectivity, General Anesthesia, and the Elderly. CURRENT ANESTHESIOLOGY REPORTS 2017. [DOI: 10.1007/s40140-017-0241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
96
|
Golkowski D, Merz K, Mlynarcik C, Kiel T, Schorr B, Lopez-Rolon A, Lukas M, Jordan D, Bender A, Ilg R. Simultaneous EEG–PET–fMRI measurements in disorders of consciousness: an exploratory study on diagnosis and prognosis. J Neurol 2017; 264:1986-1995. [DOI: 10.1007/s00415-017-8591-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022]
|
97
|
Golkowski D, Ranft A, Kiel T, Riedl V, Kohl P, Rohrer G, Pientka J, Berger S, Preibisch C, Zimmer C, Mashour GA, Schneider G, Kochs EF, Ilg R, Jordan D. Coherence of BOLD signal and electrical activity in the human brain during deep sevoflurane anesthesia. Brain Behav 2017; 7:e00679. [PMID: 28729926 PMCID: PMC5516594 DOI: 10.1002/brb3.679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/23/2016] [Accepted: 02/16/2017] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Changes in neural activity induce changes in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) signal. Commonly, increases in BOLD signal are ascribed to cellular excitation. OBJECTIVE The relationship between electrical activity and BOLD signal in the human brain was probed on the basis of burst suppression EEG. This condition includes two distinct states of high and low electrical activity. METHODS Resting-state simultaneous EEG and BOLD measurements were acquired during deep sevoflurane anesthesia with burst suppression EEG in nineteen healthy volunteers. Afterwards, fMRI volumes were assigned to one of the two states (burst or suppression) as defined by the EEG. RESULTS In the frontal, parietal and temporal lobes as well as in the basal ganglia, BOLD signal increased after burst onset in the EEG and decreased after onset of EEG suppression. In contrast, BOLD signal in the occipital lobe was anticorrelated to electrical activity. This finding was obtained consistently in a general linear model and in raw data. CONCLUSIONS In human brains exhibiting burst suppression EEG induced by sevoflurane, the positive correlation between BOLD signal and electrical brain activity could be confirmed in most gray matter. The exceptional behavior of the occipital lobe with an anticorrelation of BOLD signal and electrical activity might be due to specific neurovascular coupling mechanisms that are pronounced in the deeply anesthetized brain.
Collapse
Affiliation(s)
- Daniel Golkowski
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Andreas Ranft
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Tobias Kiel
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Valentin Riedl
- Department of Neuroradiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Philipp Kohl
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany.,Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Guido Rohrer
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany.,Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Joachim Pientka
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Sebastian Berger
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Christine Preibisch
- Department of Neuroradiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Claus Zimmer
- Department of Neuroradiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - George A Mashour
- Department of Anesthesiology University of Michigan Medical School Ann Arbor MI USA
| | - Gerhard Schneider
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Eberhard F Kochs
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Rüdiger Ilg
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany.,Department of Neurology Asklepios Kliniken Bad Tölz Germany
| | - Denis Jordan
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| |
Collapse
|
98
|
Blain-Moraes S, Tarnal V, Vanini G, Bel-Behar T, Janke E, Picton P, Golmirzaie G, Palanca BJA, Avidan MS, Kelz MB, Mashour GA. Network Efficiency and Posterior Alpha Patterns Are Markers of Recovery from General Anesthesia: A High-Density Electroencephalography Study in Healthy Volunteers. Front Hum Neurosci 2017; 11:328. [PMID: 28701933 PMCID: PMC5487412 DOI: 10.3389/fnhum.2017.00328] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies have investigated local oscillations, long-range connectivity, and global network patterns to identify neural changes associated with anesthetic-induced unconsciousness. These studies typically employ anesthetic protocols that either just cross the threshold of unconsciousness, or induce deep unconsciousness for a brief period of time-neither of which models general anesthesia for major surgery. To study neural patterns of unconsciousness and recovery in a clinically-relevant context, we used a realistic anesthetic regimen to induce and maintain unconsciousness in eight healthy participants for 3 h. High-density electroencephalogram (EEG) was acquired throughout and for another 3 h after emergence. Seven epochs of 5-min eyes-closed resting states were extracted from the data at baseline as well as 30, 60, 90, 120, 150, and 180-min post-emergence. Additionally, 5-min epochs were extracted during induction, unconsciousness, and immediately prior to recovery of consciousness, for a total of 10 analysis epochs. The EEG data in each epoch were analyzed using source-localized spectral analysis, phase-lag index, and graph theoretical techniques. Posterior alpha power was significantly depressed during unconsciousness, and gradually approached baseline levels over the 3 h recovery period. Phase-lag index did not distinguish between states of consciousness or stages of recovery. Network efficiency was significantly depressed and network clustering coefficient was significantly increased during unconsciousness; these graph theoretical measures returned to baseline during the 3 h recovery period. Posterior alpha power may be a potential biomarker for normal recovery of functional brain networks after general anesthesia.
Collapse
Affiliation(s)
- Stefanie Blain-Moraes
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University.,Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Vijay Tarnal
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Giancarlo Vanini
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Tarik Bel-Behar
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Ellen Janke
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Paul Picton
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Goodarz Golmirzaie
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Ben J A Palanca
- Department of Anesthesiology, Washington University School of MedicineSt. Louis, MO, United States
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of MedicineSt. Louis, MO, United States
| | - Max B Kelz
- Department of Anesthesiology, University of PennsylvaniaPhiladelphia, PA, United States
| | - George A Mashour
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|
99
|
Kreuzer M. EEG Based Monitoring of General Anesthesia: Taking the Next Steps. Front Comput Neurosci 2017; 11:56. [PMID: 28690510 PMCID: PMC5479908 DOI: 10.3389/fncom.2017.00056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/07/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Matthias Kreuzer
- Department of Anesthesiology, Emory University School of MedicineAtlanta, GA, United States.,Research Division, Atlanta VA Medical CenterAtlanta, GA, United States
| |
Collapse
|
100
|
Mashour GA, Hudetz AG. Bottom-Up and Top-Down Mechanisms of General Anesthetics Modulate Different Dimensions of Consciousness. Front Neural Circuits 2017; 11:44. [PMID: 28676745 PMCID: PMC5476707 DOI: 10.3389/fncir.2017.00044] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
There has been controversy regarding the precise mechanisms of anesthetic-induced unconsciousness, with two salient approaches that have emerged within systems neuroscience. One prominent approach is the “bottom up” paradigm, which argues that anesthetics suppress consciousness by modulating sleep-wake nuclei and neural circuits in the brainstem and diencephalon that have evolved to control arousal states. Another approach is the “top-down” paradigm, which argues that anesthetics suppress consciousness by modulating the cortical and thalamocortical circuits involved in the integration of neural information. In this article, we synthesize these approaches by mapping bottom-up and top-down mechanisms of general anesthetics to two distinct but inter-related dimensions of consciousness: level and content. We show how this explains certain empirical observations regarding the diversity of anesthetic drug effects. We conclude with a more nuanced discussion of how levels and contents of consciousness interact to generate subjective experience and what this implies for the mechanisms of anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of MichiganAnn Arbor, MI, United States.,Center of Consciousness Science, University of MichiganAnn Arbor, MI, United States.,Neuroscience Graduate Program, University of MichiganAnn Arbor, MI, United States
| | - Anthony G Hudetz
- Department of Anesthesiology, University of MichiganAnn Arbor, MI, United States.,Center of Consciousness Science, University of MichiganAnn Arbor, MI, United States.,Neuroscience Graduate Program, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|