51
|
Khaleque MA, Kim JH, Tanvir MAH, Park JB, Kim YY. Significance of Necroptosis in Cartilage Degeneration. Biomolecules 2024; 14:1192. [PMID: 39334958 PMCID: PMC11429838 DOI: 10.3390/biom14091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cartilage, a critical tissue for joint function, often degenerates due to osteoarthritis (OA), rheumatoid arthritis (RA), and trauma. Recent research underscores necroptosis, a regulated form of necrosis, as a key player in cartilage degradation. Unlike apoptosis, necroptosis triggers robust inflammatory responses, exacerbating tissue damage. Key mediators such as receptor-interacting serine/threonine-protein kinase-1 (RIPK1), receptor-interacting serine/threonine-protein kinase-3(RIPK3), and mixed lineage kinase domain-like (MLKL) are pivotal in this process. Studies reveal necroptosis contributes significantly to OA and RA pathophysiology, where elevated RIPK3 and associated proteins drive cartilage degradation. Targeting necroptotic pathways shows promise; inhibitors like Necrostatin-1 (Nec-1), GSK'872, and Necrosulfonamide (NSA) reduce necroptotic cell death, offering potential therapeutic avenues. Additionally, autophagy's role in mitigating necroptosis-induced damage highlights the need for comprehensive strategies addressing multiple pathways. Despite these insights, further research is essential to fully understand necroptosis' mechanisms and develop effective treatments. This review synthesizes current knowledge on necroptosis in cartilage degeneration, aiming to inform novel therapeutic approaches for OA, RA, and trauma.
Collapse
Affiliation(s)
- Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jea-Hoon Kim
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
52
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
53
|
Wang L, Shao T, Liu C, Han Z, Zhang S, Dong Y, Han T, Cheng B, Ren W. Liensinine inhibits IL-1β-stimulated inflammatory response in chondrocytes and attenuates papain-induced osteoarthritis in rats. Int Immunopharmacol 2024; 138:112601. [PMID: 38971106 DOI: 10.1016/j.intimp.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease caused by inflammation of cartilage and synovial tissue. Suppressing the process of inflammatory reaction and the generation of oxidative stress is an effective strategy to alleviate the progression of OA. Liensinine is one of the main components of lotus seeds, which has anti-hypertensive and anti-arrhythmia activities. In this study, we aimed to determine the anti-inflammatory effect of liensinine in an OA. Here, we found that liensinine significantly inhibited the inflammatory response of SW1353 cells and primary chondrocytes by inhibiting the release of inflammatory cytokines and oxidative stress. Moreover, we showed that liensinine was able to inhibit the activation of the NF-κB signaling pathway in IL-1β-induced SW1353 cells. Lastly, we found that liensinine significantly ameliorated cartilage damage and inflammatory response in papain-induced rats. Our study demonstrated a significant protective effect of liensinine against OA, which might be by inhibiting the activation of the NF-κB signaling pathway, and provide a new insight for the treatment of OA using liensinine.
Collapse
Affiliation(s)
- Lei Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tianci Shao
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chen Liu
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ziyu Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shenghui Zhang
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuqian Dong
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Binfeng Cheng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
54
|
Pasztorek M, Fischer J, Otahal A, de Luna A, Nehrer S, Rosser J. Exploring Osteoarthritis Dynamics: Patient-Specific Cartilage Samples in an Organ-on-a-Chip Model. Cartilage 2024:19476035241277654. [PMID: 39235338 PMCID: PMC11569566 DOI: 10.1177/19476035241277654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE This study aims to tackle the existing challenges associated with the prediction and optimization of pharmaceutical interventions for osteoarthritis (OA). The primary objective is to develop an innovative tool that provides objective and patient-specific information regarding the most affected tissue in OA, articular cartilage. DESIGN We employed an organ-on-a-chip (OoC) approach to replicate the 3D structure of cartilage in an in vitro setup. The study focused on assessing the individual drug responses of common medications using this innovative platform. Additionally, we conducted a biomarker analysis to gain insights into the variability of drug responses across patients. RESULTS Our findings reveal that OA articular cartilage demonstrates an individualized response to pharmaceutical interventions. Despite the diverse nature of patient responses, our study indicates that Triamcinolone, a standard-of-care medication, consistently exhibits a robust anti-inflammatory response across patient tests. However, as seen in clinical studies, Triamcinolone was concurrently associated with degeneration. The biomarker analysis further underscores the importance of considering individual drug responses in developing effective treatment plans. CONCLUSION In conclusion, this study introduces a valuable tool that not only mimics the 3D structure of cartilage but also provides crucial insights into the individualized responses of patients to various OA treatments. The application of an OoC approach may allow for a more accurate assessment of treatment efficacy. This objective biomarker analysis on patient-specific tissue offers clinicians a means to tailor treatment plans, thereby minimizing joint damage and advancing toward a more personalized approach in OA management.
Collapse
Affiliation(s)
| | | | - Alexander Otahal
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems an der Donau, Austria
| | - Andrea de Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems an der Donau, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems an der Donau, Austria
| | | |
Collapse
|
55
|
Cao ZM, Fu S, Dong C, Yang TY, Liu XK, Zhang CL, Li DZ. DSCR1-1 attenuates osteoarthritis-associated chondrocyte injury by regulating the CREB1/ALDH2/Wnt/β-catenin axis: An in vitro and in vivo study. Cell Signal 2024; 121:111287. [PMID: 38969191 DOI: 10.1016/j.cellsig.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The progression of osteoarthritis (OA) includes the initial inflammation, subsequent degradation of the extracellular matrix (ECM), and chondrocyte apoptosis. Down syndrome candidate region 1 (DSCR1) is a stress-responsive gene and expresses in varied types of cells, including chondrocytes. Bioinformatics analysis of GSE103416 and GSE104739 datasets showed higher DSCR1 expression in the inflamed cartilage tissues and chondrocytes of OA. DSCR1 had two major isoforms, isoform 1 (DSCR1-1) and isoform 4 (DSCR1-4). We found that DSCR1-1 had a faster (in vitro) and higher expression (in vivo) response to OA compared to DSCR1-4. IL-1β-induced apoptosis, inflammation, and ECM degradation in chondrocytes were attenuated by DSCR1-1 overexpression. DSCR1-1 triggered the phosphorylation of cAMP response element-binding 1 (CREB1) at 133 serine sites by decreasing calcineurin activity. Moreover, activated CREB1 moved into the cell nucleus and combined in the promoter regions of aldehyde dehydrogenase 2 (ALDH2), thus enhancing its gene transcription. ALDH2 could recover Wnt/β-catenin signaling transduction by enhancing phosphorylation of β-catenin at 33/37 serine sites and inhibiting the migration of β-catenin protein from the cellular matrix to the nucleus. In vivo, adenoviruses (1 × 108 PFU) overexpressing DSCR1-1 were injected into the articular cavity of C57BL/6 mice with medial meniscus surgery-induced OA, and it showed that DSCR1-1 overexpression ameliorated cartilage injury. Collectively, our study demonstrates that DSCR1-1 may be a potential therapeutic target of OA.
Collapse
Affiliation(s)
- Zheng-Ming Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Su Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chao Dong
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Teng-Yue Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Xiao-Kang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chun-Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Dong-Zhe Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
56
|
Wolfgart JM, Grötzner LC, Hemayatkar-Fink S, Schwitalle M, Bonnaire FC, Feierabend M, Danalache M, Hofmann UK. Biomarkers for hypertrophic chondrocyte differentiation are associated with spatial cellular organisation and suggest endochondral ossification-like processes in osteoarthritic cartilage: An exploratory study. J Orthop Translat 2024; 48:232-243. [PMID: 39314759 PMCID: PMC11417340 DOI: 10.1016/j.jot.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background In healthy articular cartilage, chondrocytes are found along arcades of collagen fibers as Single Strings. With onset of cartilage degeneration this pattern changes to Double Strings. In the course of osteoarthritis Small Clusters, and finally Big Clusters form. In highly degenerated articular cartilage, another poorly understood pattern is found where chondrocyte morphology differs considerably, and the distribution of cells is diffuse. Progression of osteoarthritis is accompanied by key processes such as chondrocyte proliferation, apoptosis, hypertrophic differentiation, inflammation, and angiogenesis. The aim of this exploratory study was to identify biomarkers for these processes in the context of spatial cellular organizational changes in articular cartilage. Methods Cartilage explants (n = 166 patients) were sorted according to their predominant cellular pattern. Quantitative or semi-quantitative analysis of 39 biomarkers were performed by multiplex assay (31) or ELISA (8), and qualitative analysis on 12 immunohistochemical markers. Results Hypertrophic differentiation (e.g. type-X collagen, osteopontin, osteocalcin and interleukin-6) and angiogenesis were associated with changes in chondrocyte organisation. First changes take place already at the transition from Single Strings to Double Strings. Drastic changes in the appearance of numerous biomarkers are found at the transition from Big Clusters to Diffuse. Conclusion Key processes in osteoarthritis and their biomarkers seem to depend on the spatial distribution of chondrocytes in articular cartilage. Abrupt changes in biomarker occurrence were observed between Big Clusters and Diffuse insinuating that the Diffuse pattern is composed of a different cell population or at least a different form of chondrocyte morphology. The Translational Potential of this Article In situ identification of the different spatial chondrocyte patterns by fluorescence microscopy has already been established in the recent past. Analysing human in-situ cartilage explants rather than isolated OA chondrocytes closes the gap between in vitro and in vivo studies and as such, stretches a big step towards translation of the observed findings. The direct association between tissue biomarker profile and cellular arrangements representing different states of OA sheds new light on the molecular and cellular physiopathology, especially in the context of larger processes such as angiogenesis, cellular proliferation, differentiation, and apoptosis. This also opens an interesting perspective for future investigation of such biomarkers and processes in clinical studies.
Collapse
Affiliation(s)
- Julius Michael Wolfgart
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, Division of Arthroplasty, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074, Aachen, Germany
| | - Lea Cathrine Grötzner
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
- Medical Faculty of the University of Tübingen, D-72076, Tübingen, Germany
| | - Sascha Hemayatkar-Fink
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
- Department of Trauma and Orthopaedic Surgery and Sports Medicine, Kreiskliniken Reutlingen, Steinenbergstraße 31, D-72764, Reutlingen, Germany
| | - Maik Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108, Rottenburg am Neckar, Germany
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
- Institute for Diagnostic and Interventional Radiology, Kreiskliniken Reutlingen, Steinenbergstraße 31, D-72764, Reutlingen, Germany
| | - Martina Feierabend
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
- Metabolic Reconstruction and Flux Modelling, Institue for Plant Sciences, University of Cologne, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, D-72072, Tübingen, Germany
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, Division of Arthroplasty, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074, Aachen, Germany
| |
Collapse
|
57
|
Shahbaz A, Alzarooni A, Veeranagari VR, Patel K, Mohammed C, Kuruba V, Rajkumar N, Mirza BA, Rauf M, Maldonado Ramirez JG, Siddiqui HF. Efficacy of Platelet-Rich Plasma Intra-articular Injections in Hip and Knee Osteoarthritis. Cureus 2024; 16:e69656. [PMID: 39429381 PMCID: PMC11488654 DOI: 10.7759/cureus.69656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disorder that causes significant pain and functional limitations. Platelet-rich plasma (PRP) therapy has gained considerable attention in recent years in the treatment of musculoskeletal injuries. In this narrative review, we aim to investigate the role of intra-articular PRP injections in the treatment of knee and hip OA. The review also discusses different classifications of PRP based on composition. Furthermore, this narrative review also identified various limitations of PRP therapy in OA. PRP is classified into different types based on cell content and fibrin architecture, including pure platelet-rich plasma (P-PRP), leukocyte- and platelet-rich plasma (L-PRP), pure platelet-rich fibrin (P-PRF), and leukocyte- and platelet-rich fibrin (L-PRF). Various clinical trials have shown that PRP is an effective option for the treatment of knee and hip OA. However, the superiority of PRP over hyaluronic acid has been reported inconsistently. This variability can be attributed to PRP preparation techniques. The safety profiles of PRP are generally favorable and the adverse effects are generally mild in nature. Although there is sufficient evidence in support of PRP in the treatment of OA, the long-term effects of PRP have not been reported. Further studies should focus on longer follow-up periods to identify the efficacy and safety of PRP in treating knee OA. There is also a need for standardization of PRP preparations in OA management.
Collapse
Affiliation(s)
- Aaisha Shahbaz
- Trauma and Orthopaedic Surgery, University Hospitals Birmingham, Birmingham, GBR
| | | | | | - Kishan Patel
- Family Medicine, Saba University School of Medicine, The Bottom, NLD
| | - Cara Mohammed
- Orthopaedic Surgery, Sangre Grande Hospital, Sangre Grande, TTO
| | - Venkataramana Kuruba
- Orthopaedics, All India Institute of Medical Sciences, Mangalagiri, Mangalagiri, IND
| | - Nirmal Rajkumar
- Orthopaedics and Trauma, Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry University, Puducherry, IND
| | - Bakhtawar A Mirza
- Medicine, Shifa Tameer-E-Millat University Shifa College of Medicine, Islamabad, PAK
| | - Momina Rauf
- Internal Medicine, Islamic International Medical College, Islamabad, PAK
| | | | - Humza F Siddiqui
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
58
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
59
|
Song K, Hu J, Yang M, Xia Y, He C, Yang Y, Zhu S. Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway. J Transl Med 2024; 22:741. [PMID: 39107784 PMCID: PMC11301989 DOI: 10.1186/s12967-024-05470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Pulsed electromagnetic fields (PEMFs) show promise as a treatment for knee osteoarthritis (KOA) by reducing inflammation and promoting chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). PURPOSE To identify the efficacy window of PEMFs to induce BMSCs chondrogenic differentiation and explore the cellular mechanism under chondrogenesis of BMSCs in regular and inflammatory microenvironments. METHODS BMSCs were exposed to PEMFs (75 Hz, 1.6/2/3/3.8 mT) for 7 and 14 days. The histology, proliferation, migration and chondrogenesis of BMSCs were assessed to identify the optimal parameters. Using these optimal parameters, transcriptome analysis was performed to identify target genes and signaling pathways, validated through immunohistochemical assays, western blotting, and qRT-PCR, with or without the presence of IL-1β. The therapeutic effects of PEMFs and the effective cellular signaling pathways were evaluated in vivo. RESULTS BMSCs treated with 3 mT PEMFs showed the optimal chondrogenesis on day 7, indicated by increased expression of ACAN, COL2A, and SOX9, and decreased levels of MMP3 and MMP13 at both transcriptional and protein levels. The advantages of 3 mT PEMFs diminished in the 14-day culture groups. Transcriptome analysis identified sFRP3 as a key molecule targeted by PEMF treatment, which competitively inhibited Wnt/β-catenin signaling, regardless of IL-1β presence or duration of exposure. This inhibition of the Wnt/β-catenin pathway was also confirmed in a KOA mouse model following PEMF exposure. CONCLUSIONS PEMFs at 75 Hz and 3 mT are optimal in inducing early-stage chondrogenic differentiation of BMSCs. The induction and chondroprotective effects of PEMFs are mediated by sFRP3 and Wnt/β-catenin signaling, irrespective of inflammatory conditions.
Collapse
Affiliation(s)
- Kangping Song
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jing Hu
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Yong Xia
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonghong Yang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
| | - Siyi Zhu
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
60
|
Lee H, Jang H, Heo D, Eom JI, Han CH, Kim SM, Shin YS, Pan CH, Yang S. Tisochrysis lutea Fucoxanthin Suppresses NF-κB, JNK, and p38-Associated MMP Expression in Arthritis Pathogenesis via Antioxidant Activity. Antioxidants (Basel) 2024; 13:941. [PMID: 39199188 PMCID: PMC11351224 DOI: 10.3390/antiox13080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Tisochrysis lutea is a highly nutritious marine microalga that has various applications in aquaculture and biotechnology. However, the effects of T. lutea extract (TLE) on osteoarthritis (OA) pathogenesis remain unexplored. In this study, we aimed to determine the effects of TLE on OA development. We found that TLE inhibits the expression of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity in an OA mouse model generated by the destabilization of the medial meniscus (DMM) surgery. In vivo assays of the OA model mice demonstrated that TLE has a protective effect against cartilage destruction by inhibiting MMP3 and MMP13 expression. To enable the medical use of TLE, the components of TLE were characterized using high-performance liquid chromatography (HPLC) analysis. Interestingly, we found that Fucoxanthin accounts for 41.2% of TLE and showed anti-catabolic and antioxidant effects under IL-1β-treated in vitro conditions. RNA sequencing analysis showed that fucoxanthin decreased p38, NF-κB, and JNK signaling pathway gene expression, all of which are activated by IL-1β. Furthermore, in vivo analysis showed that fucoxanthin inhibited the IL-1β-stimulated phosphorylation of p65, JNK, and p38. These results highlight new possibilities for the use of TLE as a source of fucoxanthin, an antioxidant, for OA treatment.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| | - Dahyoon Heo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| | - Jae-In Eom
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Cheol-Ho Han
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Se-Min Kim
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Yoo-Seob Shin
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Cheol-Ho Pan
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| |
Collapse
|
61
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
62
|
Zhang X, Jiang J, Xu J, Chen J, Gu Y, Wu G. Liraglutide, a glucagon-like peptide-1 receptor agonist, ameliorates inflammation and apoptosis via inhibition of receptor for advanced glycation end products signaling in AGEs induced chondrocytes. BMC Musculoskelet Disord 2024; 25:601. [PMID: 39080620 PMCID: PMC11287913 DOI: 10.1186/s12891-024-07640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND This study aimed to investigate functions of GLP-1R agonist by liraglutide (LIRA) and revealing the mechanism related to AGEs/RAGE in chondrocytes. METHODS To illustrate potential effect of GLP-1R agonist on AGEs induced chondrocytes, chondrocytes were administrated by AGEs with LIRA and GLP-1R inhibitor exendin. Inflammatory factors were assessed using ELISA. Real-time PCR was used to evaluate the catabolic activity MMPs and ADAMTS mRNA level, as well as anabolic activity (aggrecan and collagen II). RAGE expression was investigated by Western blotting. TUNEL, caspase3 activity and immunofluorescence were performed to test the apoptotic activity. RESULTS Our results showed that treatment with LIRA at > 100 nM attenuated the AGE-induced chondrocyte viability. Western bolt demonstrated that GLP-1R activation by LIRA treatment reduced RAGE protein expression compared with the AGEs groups. ELISA showed that LIRA hindered the AGEs-induced production of inflammatory cytokines (IL-6, IL-12 and TNF-α) in primary chondrocytes. AGEs induced catabolism levels (MMP-1, -3, -13 and ADAMTS-4, 5) are also attenuated by LIRA, causing the retention of more extracellular matrix (Aggrecan and Collagen II). TUNEL, caspase3 activity and immunofluorescence results indicated that LIRA inhibited the AGEs-induced production of inflammatory cytokines in primary chondrocytes and attenuated the caspase 3 level, leading to the reduced apoptotic activity. All the protective effects are reversed by exendin (GLP-1R blockers). CONCLUSIONS The present study demonstrates for the first time that LIRA, an agonist for GLP-1R which is commonly used in type 2 diabetes reverses AGEs induced chondrocyte inflammation and apoptosis through suppressing RAGE signaling, contributing to reduced catabolism and retention of more extracellular matrix. The above results indicate the possible effect of GLP-1R agonist on treating OA.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Jian Jiang
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Jiajia Xu
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Jian Chen
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Yuntao Gu
- Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Dadao, Longhua District, Haikou, Hainan, 570216, China.
| | - Guobao Wu
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China.
| |
Collapse
|
63
|
Ding H, Chen H, Dou L, Li Y. CircRELL1 promotes osteoarthritis progression by regulating miR-200c-3p. Heliyon 2024; 10:e34251. [PMID: 39130448 PMCID: PMC11315196 DOI: 10.1016/j.heliyon.2024.e34251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Background There is a growing body of evidence indicating a potential association between circular RNA and the pathogenesis of human osteoarthritis (OA). Nevertheless, the precise extent of their involvement in OA remains largely unexplored. Hence, the objective of this investigation is to elucidate the function of Circular (Circ) RELL1 in the context of OA. Methods 24 OA tissue samples and 11 normal tissue samples were collected. The inflammatory OA-like conditions were established by Destabilized Medial Meniscus (DMM) operation in mice and LPS-induced C28/I2 cells. OA severity and articular cartilage degradation were assessed by Safranin-O staining, hematoxylin-eosin (H&E) staining, and International Society for Osteoarthritis Research (OARSI) criteria. CircRELL1, miR-200c-3p, and TCF4 were measured by RT-qPCR and Immunoblot. The cell viability and apoptosis rate were measured by MTT and flow cytometry, respectively. The levels of cytokines interleukin (IL)-1β, IL-6, and TNF-α were determined by ELISA. Apoptosis-associated proteins (cleaved caspase-3, Bax, and Bcl-2) and extracellular matrix (ECM) degradation-associated proteins (MMP13, collagen II, and Aggrecan) were detected by Immunoblot. The interaction between miR-200c-3p and circRELL1 or TCF4 was verified by dual luciferase reporter assay and RIP assay. Results CircRELL1 expression was upregulated in OA patients, and the results were consistent in DMM mice and LPS-treated C28/I2 cells. Silencing circRELL1 improved cartilage injury caused by DMM and contributed to a lower OARSI score. Silencing CircRELL1 increased the activity of OA chondrocytes in vivo and in vitro and inhibited cellular inflammatory responses and ECM degradation. In terms of mechanism, circRELL1 functioned by targeting miR-200c-3p, leading to the suppression of inflammatory factor production, cell apoptosis, and ECM degradation, thus inhibiting the progression of OA. Conclusion CircRELL1 may promote the progression of OA by regulating the miR-200c-3p.
Collapse
Affiliation(s)
- HongZhi Ding
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, Shanghai, 201699, China
| | - HaiJu Chen
- Department of Orthopedic, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - LianRong Dou
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, Shanghai, 201699, China
| | - Yang Li
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, Shanghai, 201699, China
| |
Collapse
|
64
|
Majeed A, Majeed S, Satish G, Manjunatha R, Rabbani SN, Patil NVP, Mundkur L. A standardized Boswellia serrata extract shows improvements in knee osteoarthritis within five days-a double-blind, randomized, three-arm, parallel-group, multi-center, placebo-controlled trial. Front Pharmacol 2024; 15:1428440. [PMID: 39092235 PMCID: PMC11291344 DOI: 10.3389/fphar.2024.1428440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Background Boswellin® Super is a standardized extract of Boswellia serrata Roxb gum resin, standardized to contain 30% 3-acetyl-11-keto-β-boswellic acid along with other β-boswellic acids (BSE). A randomized, double-blind, placebo-controlled clinical trial was conducted at two doses of BSE to understand its safety and efficacy in supporting joint health and improving mobility and symptoms of osteoarthritis (OA) of the knee. Methods Based on the inclusion/exclusion criteria, 105 newly diagnosed participants with degenerative hypertrophy OA were recruited and randomized into Placebo, BSE-150 mg or BSE-300 mg (n = 35 in each group) to receive either 150 mg or 300 mg BSE or a placebo tablet twice a day for 90 days. All the participants were evaluated for pain and physical function using the standard tools including the Visual Analog Scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Lequesne Functional Index (LFI), EuroQol- 5 Dimension (EQ-5D) quality of life, 6-min walk test at day 0, days 5, 30, 60 and 90 of treatment. Additionally, the circulating levels of inflammatory biomarkers, tumor necrosis factor-α (TNFα), high-sensitive C-reactive protein (hs-CRP), and interleukin-6 (IL-6) were evaluated. Safety was evaluated by blood biochemical, hematological analysis, urinary analyses and by monitoring adverse events throughout the study. Results Ninety-eight subjects completed the study. Improvements in pain scores were observed as early as 5 days after the start of the supplement in the BSE-150 and BSE-300 groups. By 90 days, the VAS pain score reduced by 45.3% and 61.9%, WOMAC- total score improved by 68.5% and 73.6% in the BSE-150 and BSE-300 groups respectively. WOMAC pain (70.2%, 73.9%, WOMAC stiffness (65.6%,68.9%), WOMAC function (68.8%,74.2%), LFI severity (50%,53.3%), decreased and EQ5D (56.9%, 62.9%) and distance walked in 6 minutes (21.2%, 21.9%) improved in the BSE-150 and BSE-300 groups in 90 days. Further, the levels of TNFα, hs-CRP, and IL-6 were found to decrease in the serum in BSE-supplemented participants. No significant adverse events were recorded during the study. Conclusion The study confirms that Boswellin® Super can be used as a safe and effective supplement to support joint health and mobility in the management of osteoarthritis. Clinical Trial Registration https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=NzU2Nzc=&Enc=&userName=CTRI, identifier CTRI/2022/11/047397.
Collapse
Affiliation(s)
- Anju Majeed
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| | | | - G. Satish
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| | - R. Manjunatha
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| | | | - Neelanagowda V. P. Patil
- KR Hospital, Department of Orthopedics, Mysore Medical College and Research Institute K R Hospital, Mysore, Karnataka, India
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| |
Collapse
|
65
|
Navratilova P, Vejvodova M, Vaculovic T, Slaninova I, Emmer J, Tomas T, Ryba L, Burda J, Pavkova Goldbergova M. Cytotoxic effects and comparative analysis of Ni ion uptake by osteoarthritic and physiological osteoblasts. Sci Rep 2024; 14:16133. [PMID: 38997414 PMCID: PMC11245524 DOI: 10.1038/s41598-024-67157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time. For these purposes, one of the most suitable models for studying the effects induced by metal implants was used-the patient's osteoarthritic cells. Thanks to this it was possible to simulate the pathophysiological conditions in the patient's body, as well as to evaluate the response of the cells which come into direct contact with the material after the implantation of the joint replacement. The largest differences in cell viability, proliferation and cell cycle changes occurred between Ni 0.5 mM and 1 mM concentrations. Time-dependent localization of Ni in cells showed that there is a continuous transport of Ni ions between the nucleus and the cytoplasm, as well as between the cell and the environment. Moreover, osteoarthritic osteoblasts showed faster changes in concentration and ability to accumulate more Ni, especially in the nucleus, than physiological osteoblasts. The differences in Ni accumulation process explains the higher sensitivity of patient osteoblasts to Ni and may be crucial in further studies of implant-derived cytotoxic effects.
Collapse
Affiliation(s)
- Polina Navratilova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Marketa Vejvodova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic.
| | - Iva Slaninova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500, Brno, Czech Republic
| | - Jan Emmer
- 1st Department of Orthopaedics, St. Anne`S University Hospital, Pekarska 53, Brno, Czech Republic
| | - Tomas Tomas
- 1st Department of Orthopaedics, St. Anne`S University Hospital, Pekarska 53, Brno, Czech Republic
| | - Ludek Ryba
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Jan Burda
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Monika Pavkova Goldbergova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic.
| |
Collapse
|
66
|
Wu MF, Zhou WC, Lin JS, Shen S. Role of Trace Cadmium Exposure on the Development of Occlusal Traumatic Temporomandibular Arthritis. J Craniofac Surg 2024:00001665-990000000-01760. [PMID: 38990042 DOI: 10.1097/scs.0000000000010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE To investigate whether heavy metal cadmium acts as a risk factor for temporomandibular joint disorder disease and to study its pathogenic mechanism. METHODS A total of 57 rats were allocated into 6 distinct groups, distinguished by 2 interventions: occlusal elevation and cadmium water gavage. These groups included a blank control group, occlusal elevation group, occlusal elevation + 0.42 mg/mL cadmium water gavage group, occlusal elevation + 4.2 mg/mL cadmium water gavage group, no occlusal elevation + 0.42 mg/mL cadmium water gavage group, and no occlusal elevation + 4.2 mg/mL cadmium water gavage group. The impact of cadmium exposure on cartilage oxidative stress was evaluated through the assessment of SOD, CAT, GST, and GSH-Px enzyme activities. In addition, the influence of cadmium exposure on alterations in the extracellular matrix and inflammatory mediators was examined by analyzing the expression levels of type II collagen, protein aggregation polysaccharide, glycosaminoglycan, IL1β, IL-6, and TNF-α. Histologic examination of the condylar process cartilage of rats in the occlusal elevation + cadmium water gavage group was conducted to ascertain the occurrence of osteoarthritis. RESULTS The variance in the expression levels of inflammatory factors did not demonstrate statistical significance between the occlusal elevation group and the blank control group; however, statistical significance was observed between the occlusal elevation + cadmium water gavage group and both the control and occlusal elevation groups. CONCLUSION The severity of inflammation and condylar lesions correlates directly with the concentration of cadmium.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Department of Stomatology, Sixth People's Hospital, Panyu District, Guangdong Province
| | - Wen-Cheng Zhou
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Hubei Province
| | | | - Shan Shen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangdong Province, China
| |
Collapse
|
67
|
Lou C, Fang Y, Mei Y, Hu W, Sun L, Jin C, Chen H, Zheng W. Cucurbitacin B attenuates osteoarthritis development by inhibiting NLRP3 inflammasome activation and pyroptosis through activating Nrf2/HO-1 pathway. Phytother Res 2024; 38:3352-3369. [PMID: 38642047 DOI: 10.1002/ptr.8209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Osteoarthritis (OA) is a complicated joint disorder characterized by inflammation that causes joint destruction. Cucurbitacin B (CuB) is a naturally occurring triterpenoid compound derived from plants in the Cucurbitaceae family. The aim of this study is to investigate the potential role and mechanisms of CuB in a mouse model of OA. This study identified the key targets and potential pathways of CuB through network pharmacology analysis. In vivo and in vitro studies confirmed the potential mechanisms of CuB in OA. Through network pharmacology, 54 potential targets for CuB in treating OA were identified. The therapeutic potential of CuB is associated with the nod-like receptor pyrin domain 3 (NLRP3) inflammasome and pyroptosis. Molecular docking results indicate a strong binding affinity of CuB to nuclear factor erythroid 2-related factor 2 (Nrf2) and p65. In vitro experiments demonstrate that CuB effectively inhibits the expression of pro-inflammatory factors induced by interleukin-1β (IL-1β), including cyclooxygenase-2, inducible nitric oxide synthase, IL-1β, and IL-18. CuB inhibits the degradation of type II collagen and aggrecan in the extracellular matrix (ECM), as well as the expression of matrix metalloproteinase-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5. CuB protects cells by activating the Nrf2/hemeoxygenase-1 (HO-1) pathway and inhibiting nuclear factor-κB (NF-κB)/NLRP3 inflammasome-mediated pyroptosis. Moreover, in vivo experiments show that CuB can slow down cartilage degradation in an OA mouse model. CuB effectively prevents the progression of OA by inhibiting inflammation in chondrocytes and ECM degradation. This action is further mediated through the activation of the Nrf2/HO-1 pathway to inhibit NF-κB/NLRP3 inflammasome activation. Thus, CuB is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yifan Mei
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
68
|
Kalairaj MS, Pradhan R, Saleem W, Smith MM, Gaharwar AK. Intra-Articular Injectable Biomaterials for Cartilage Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303794. [PMID: 38324655 PMCID: PMC11468459 DOI: 10.1002/adhm.202303794] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Osteoarthritis is a degenerative joint disease characterized by cartilage deterioration and subsequent inflammatory changes in the underlying bone. Injectable hydrogels have emerged as a promising approach for controlled drug delivery in cartilage therapies. This review focuses on the latest developments in utilizing injectable hydrogels as vehicles for targeted drug delivery to promote cartilage repair and regeneration. The pathogenesis of osteoarthritis is discussed to provide a comprehensive understanding of the disease progression. Subsequently, the various types of injectable hydrogels used for intra-articular delivery are discussed. Specifically, physically and chemically crosslinked injectable hydrogels are critically analyzed, with an emphasis on their fabrication strategies and their capacity to encapsulate and release therapeutic agents in a controlled manner. Furthermore, the potential of incorporating growth factors, anti-inflammatory drugs, and cells within these injectable hydrogels are discussed. Overall, this review offers a comprehensive guide to navigating the landscape of hydrogel-based therapeutics in osteoarthritis.
Collapse
Affiliation(s)
| | - Ridhi Pradhan
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Waqas Saleem
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Morgan M. Smith
- Department of Veterinary Integrative BiosciencesSchool of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Genetics and Genomics Interdisciplinary ProgramTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
69
|
Takahata K, Lin YY, Osipov B, Arakawa K, Enomoto S, Christiansen BA, Kokubun T. Concurrent Joint Contact in Anterior Cruciate Ligament Injury induces cartilage micro-injury and subchondral bone sclerosis, resulting in knee osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593114. [PMID: 38766109 PMCID: PMC11100711 DOI: 10.1101/2024.05.08.593114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objective Anterior Cruciate Ligament (ACL) injury initiates post-traumatic osteoarthritis (PTOA) via two distinct processes: initial direct contact injury of the cartilage surface during ACL injury, and secondary joint instability due to the ACL deficiency. Using the well-established Compression-induced ACL rupture method (ACL-R) and a novel Non-Compression ACL-R model, we aimed to reveal the individual effects of cartilage compression and joint instability on PTOA progression after ACL injury in mice. Design Twelve-week-old C57BL/6J male were randomly divided to three experimental groups: Compression ACL-R, Non-Compression ACL-R, and Intact. Following ACL injury, we performed joint laxity testing and microscopic analysis of the articular cartilage surface at 0 days, in vivo optical imaging of matrix-metalloproteinase (MMP) activity at 3 and 7 days, and histological and microCT analysis at 0, 7, 14, and 28 days. Results The Compression ACL-R group exhibited a significant increase of cartilage roughness immediately after injury compared with the Non-Compression group. At 7 days, the Compression group exhibited increased MMP-induced fluorescence intensity and MMP-13 positive cell ratio of chondrocytes. Moreover, histological cartilage degeneration was observable in the Compression group at the same time point. Sclerosis of tibial subchondral bone in the Compression group was more significantly developed than in the Non-Compression group at 28 days. Conclusions Both Compression and Non-Compression ACL injury initiated PTOA progression due to joint instability. However, joint contact during ACL rupture also caused initial micro-damage on the cartilage surface and initiated early MMP activity, which could accelerate PTOA progression compared to ACL injury without concurrent joint contact.
Collapse
|
70
|
Huang J, Ren Q, Jiao L, Niu S, Liu C, Zhou J, Wu L, Yang Y. TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Exp Ther Med 2024; 28:283. [PMID: 38800044 PMCID: PMC11117099 DOI: 10.3892/etm.2024.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt-related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'-tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shuo Niu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chenghong Liu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Juan Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yadong Yang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
71
|
Zhang W, Wei C, Wang L. Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis. Mol Biotechnol 2024; 66:1660-1672. [PMID: 37382793 DOI: 10.1007/s12033-023-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that adversely affects the quality of life of patients. Identification of novel diagnostic biomarkers is pivotal for the early detection and prevention of OA. Dataset GSE185059 was selected from Gene Expression Omnibus database to obtain differentially expressed lncRNAs (DE-lncRNAs), mRNAs (DE-mRNAs), and circRNAs (DE-circRNAs) between OA and normal samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses as well as protein-protein interaction (PPI) network construction of DE-mRNAs were conducted. Hub genes were identified from PPI networks and validated by RT-qPCR. starBase database was utilized for predicting miRNAs binding with hub genes, selected DE-lncRNAs and DE-circRNAs, respectively. The competing endogenous RNA (ceRNA) networks were constructed. A total of 818 DE-mRNAs, 191 DE-lncRNAs, and 2053 DE-circRNAs were identified. The DE-mRNAs were significantly enriched in several inflammation-related GO terms and KEGG pathways such as positive regulation of cell-cell adhesion, TNF-alpha signaling pathway and NF-kappa B signaling pathway. Thirteen hub genes were identified, which were CFTR, GART, SMAD2, NCK1, TJP1, UBE2D1, EFTUD2, PRKACB, IL10, SNRPG, CHD4, RPS24, and SRSF6. OA-related DE-lncRNA/circRNA-miRNA-hub gene networks were constructed. We identified 13 hub genes and constructed the ceRNA networks related to OA, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China
| | - Chun Wei
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China
| | - Ling Wang
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China.
| |
Collapse
|
72
|
Ye Z, Ge Z, Yang S, Hu T, Ye Q, Chen H. Scutellarein alleviates osteoarthritis progression through the PI3K/Akt/NF-kappaB signaling pathway: In vitro and in vivo studies. Phytother Res 2024; 38:3509-3524. [PMID: 38695125 DOI: 10.1002/ptr.8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 07/12/2024]
Abstract
Osteoarthritis (OA), a joint disease that is associated with inflammatory processes is involved in joint destruction. Scutellarein (Scu), a component of the medicinal herbs Scutellaria barbata D. Don and Erigeron breviscapus (vant) Hand Mass, has anti-inflammatory effects. We explored the role of Scu in the development of OA and the underlying mechanisms. CCK-8 assays, Calcein-AM/PI and EdU staining were used to determine chondrocyte viability after Scu exposure. Western blot, qPCR, as well as ELISA were utilized to measure extracellular matrix (ECM) degradation and inflammation. Immunofluorescence (IF), western blot and luciferase assays were used to examine the NF-kappaB (NF-κB) pathway. Scu interacting proteins were predicted using network pharmacology analysis and molecular docking. X-ray, H&E, Safranin O-Fast Green(S-O), toluidine blue, and immunohistochemistry analysis were used to examine the therapeutic effects of Scu in OA using destabilization of medial meniscus (DMM) models. Scu demonstrated inhibitory effects on ECM degradation and pro-inflammatory factor levels in chondrocytes treated with IL-1β. Mechanistically, Scu inhibited the IL-1β-induced activation of the PI3K/Akt/ NF-κB signaling pathway cascades. Furthermore, Scu has been shown to have significant binding capacities to PI3K. Additionally, Scu ameliorated the OA progression in DMM models. Our findings suggest that Scu may contribute to the amelioration of OA progression by targeting the PI3K/Akt/NF-κB signaling pathway, implying Scu possesses promising therapeutic potential for the treatment of OA.
Collapse
Affiliation(s)
- Ziyang Ye
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Zhihan Ge
- Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Hu
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Qiong Ye
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Hui Chen
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| |
Collapse
|
73
|
Feng K, Wang F, Chen H, Zhang R, Liu J, Li X, Xie X, Kang Q. Cartilage progenitor cells derived extracellular vesicles-based cell-free strategy for osteoarthritis treatment by efficient inflammation inhibition and extracellular matrix homeostasis restoration. J Nanobiotechnology 2024; 22:345. [PMID: 38890638 PMCID: PMC11186174 DOI: 10.1186/s12951-024-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease which currently lacks of effective agents. It is therefore urgent and necessary to seek an effective approach that can inhibit inflammation and promote cartilage matrix homeostasis. Cartilage progenitor cells (CPCs) are identified as a cell population of superficial zone in articular cartilage which possess strong migration ability, proliferative capacity, and chondrogenic potential. Recently, the application of CPCs may represent a novel cell therapy strategy for OA treatment. There is growing evidence that extracellular vesicles (EVs) are primary mediators of the benefits of stem cell-based therapy. In this study, we explored the protective effects of CPCs-derived EVs (CPCs-EVs) on IL-1β-induced chondrocytes. We found CPCs-EVs exhibited chondro-protective effects in vitro. Furthermore, our study demonstrated that CPCs-EVs promoted matrix anabolism and inhibited inflammatory response at least partially via blocking STAT3 activation. In addition, liquid chromatography-tandem mass spectrometry analysis identified 991 proteins encapsulated in CPCs-EVs. By bioinformatics analysis, we showed that STAT3 regulatory proteins were enriched in CPCs-EVs and could be transported to chondrocytes. To promoting the protective function of CPCs-EVs in vivo, CPCs-EVs were modified with cationic peptide ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD) for surface charge reverse. In posttraumatic OA mice, our results showed PPD modified CPCs-EVs (PPD-EVs) effectively inhibited extracellular matrix catabolism and attenuated cartilage degeneration. Moreover, PPD-EVs down-regulated inflammatory factors expressions and reduced OA-related pain in OA mice. In ex-vivo cultured OA cartilage explants, PPD-EVs successfully promoted matrix anabolism and inhibited inflammation. Collectively, CPCs-EVs-based cell-free therapy is a promising strategy for OA treatment.
Collapse
Affiliation(s)
- Kai Feng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hongfang Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Rui Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiashuo Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaodong Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
74
|
Varela L, van de Lest CH, van Weeren PR, Wauben MH. Synovial fluid extracellular vesicles as arthritis biomarkers: the added value of lipid-profiling and integrated omics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:276-296. [PMID: 39698533 PMCID: PMC11648409 DOI: 10.20517/evcna.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 12/20/2024]
Abstract
Arthritis, a diverse group of inflammatory joint disorders, poses great challenges in early diagnosis and targeted treatment. Timely intervention is imperative, yet conventional diagnostic methods are not able to detect subtle early symptoms. Hence, there is an urgent need for specific biomarkers that discriminate between different arthritis forms and for early diagnosis. The pursuit of such precise diagnostic tools has prompted a growing interest in extracellular vesicles (EVs). EVs, released by cells in a regulated fashion, are detectable in body fluids, including synovial fluid (SF), which fills the joint space. They provide insights into the intricate molecular landscapes of arthritis, and this has stimulated the search for minimally invasive EV-based diagnostics. As such, the analysis of EVs in SF has become a focus for identifying EV-based biomarkers for joint disease endotyping, prognosis, and progression. EVs are composed of a lipid bilayer and a wide variety of different cargo types, of which proteins and RNAs are widely investigated. In contrast, membrane lipids of EVs, especially the abundance, presence, or absence of specific lipids and their contribution to the biological activity of EVs, are largely overlooked in EV research. Furthermore, the identification of specific combinations of different EV components acting in concert in EVs can fuel the definition of composite biomarkers. We here provide a state-of-the-art overview of the knowledge on SF-derived EVs with emphasis on lipid analysis and we give an example of the added value of integrated proteomics and lipidomics analysis in the search for composite EV-associated biomarkers.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - Chris H.A. van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - P. René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - Marca H.M. Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| |
Collapse
|
75
|
Kennedy MI, Olson CP, DePhillipo NN, Tagliero AJ, LaPrade RF, Kennedy NI. Inflammatory biomarkers and state of the tibiofemoral joint in the osteoarthritic knee: a narrative review. ANNALS OF JOINT 2024; 9:27. [PMID: 39114418 PMCID: PMC11304101 DOI: 10.21037/aoj-23-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/02/2024] [Indexed: 08/10/2024]
Abstract
Background The healing process is initiated by injurious stimuli in response to cellular damage. Upon recruiting proinflammatory biomarkers to the tissue site of injury, the release of additional biomarkers occurs, including the likes of cytokines, matrix molecules, macrophages, neutrophils, and others. This influx of immune system mediators can occur for chronic periods, and though its intention is for healing the original injurious stimuli, it is also suspected of causing long term cartilage impairment following internal structure damage. The objective of this narrative review is to identify which inflammatory factors have the leading roles in the progression of osteoarthritis (OA) following knee injuries and how they fluctuate throughout the healing process, both acutely and chronically. Methods This narrative review was performed following a computerized search of the electronic database on PubMed in May 2023. Abstracts related to the inflammatory biomarkers of the post-traumatic knee were included for review. Key Content and Findings The chronic low-level inflammation that leads to OA leads to the destruction of the cartilage extracellular matrix, which new and developing orthopedic research is still attempting to find resolve for. Some of this damage is attributed to the biomechanical alterations that occurs following injury, though with most procedures capable of joint biomechanical restoration, focus has rather been shifted toward the environment of inflammatory biomarkers. Conclusions Future studies will be aiming to improve the diagnostics of OA, focusing on a consistent correlation of inflammatory biomarkers with imaging. Additionally, biochemical treatments will need to focus on validating reproducible modulation of signaling molecules, in attempts to lessen the chronic elevations of destructive biomarkers.
Collapse
Affiliation(s)
| | - Conner P. Olson
- University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Adam J. Tagliero
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
76
|
Khomeijani-Farahani M, Karami J, Farhadi E, Soltani S, Delbandi AA, Shekarabi M, Tahmasebi MN, Vaziri AS, Jamshidi A, Mahmoudi M, Akhlaghi M. TAK-242 (Resatorvid) inhibits proinflammatory cytokine production through the inhibition of NF-κB signaling pathway in fibroblast-like synoviocytes in osteoarthritis patients. Adv Rheumatol 2024; 64:46. [PMID: 38849923 DOI: 10.1186/s42358-024-00385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLSs) are involved in osteoarthritis (OA) pathogenesis through pro-inflammatory cytokine production. TAK-242, a TLR4 blocker, has been found to have a significant impact on the gene expression profile of pro-inflammatory cytokines such as IL1-β, IL-6, TNF-α, and TLR4, as well as the phosphorylation of Ikβα, a regulator of the NF-κB signaling pathway, in OA-FLSs. This study aims to investigate this effect because TLR4 plays a crucial role in inflammatory responses. MATERIALS AND METHODS Ten OA patients' synovial tissues were acquired, and isolated FLSs were cultured in DMEM in order to assess the effectiveness of TAK-242. The treated FLSs with TAK-242 and Lipopolysaccharides (LPS) were analyzed for the mRNA expression level of IL1-β, IL-6, TNF-α, and TLR4 levels by Real-Time PCR. Besides, we used western blot to assess the protein levels of Ikβα and pIkβα. RESULTS The results represented that TAK-242 effectively suppressed the gene expression of inflammatory cytokines IL1-β, IL-6, TNF-α, and TLR4 which were overexpressed upon LPS treatment. Additionally, TAK-242 inhibited the phosphorylation of Ikβα which was increased by LPS treatment. CONCLUSION According to our results, TAK-242 shows promising inhibitory effects on TLR4-mediated inflammatory responses in OA-FLSs by targeting the NF-κB pathway. TLR4 inhibitors, such as TAK-242, may be useful therapeutic agents to reduce inflammation and its associated complications in OA patients, since traditional and biological treatments may not be adequate for all of them.
Collapse
Affiliation(s)
- Mohammadreza Khomeijani-Farahani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
- Rheumatology Research Center, Shariati Hospital, Kargar Ave., Tehran, Iran.
| |
Collapse
|
77
|
Wang H, Li Z, Li Q, Sommer S, Chen T, Sun Y, Wei H, Yan F, Lu Y. Comparing the Effect of Mechanical Loading on Deep and Superficial Cartilage Using Quantitative UTE MRI. J Magn Reson Imaging 2024; 59:2048-2057. [PMID: 37728325 DOI: 10.1002/jmri.28980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The biomechanical properties of deep and superficial cartilage may be different, yet in vivo MRI validation is required. PURPOSE To compare the effect of mechanical loading on deep and superficial cartilage in young healthy adults using ultrashort echo time (UTE)-T2* mapping. STUDY TYPE Prospective, intervention. SUBJECTS Thirty-one healthy adults (54.8% females, median age = 23 years). FIELD STRENGTH/SEQUENCE 3-T, PD-FS, and UTE sequences with four echo times (TEs = 0.1, 0.5, 2.8, and 4.0 msec; 0.6 mm isotropic spatial resolution) of the left knee, acquired before and after loading exercise. ASSESSMENT Quantitative UTE-T2* maps of the entire knee were generated using UTE images of four TEs. In deep and superficial cartilage of patella, medial and lateral femur, medial and lateral tibia cartilage (PC, MFC, LFC, MTC, and LTC), which were segmented manually, cartilage thickness and T2* values before and after loading were measured, extracted, taken averages of, and compared. Scan-rescan repeatability was evaluated. Body weight and body mass index (BMI) data were collected. Physical activity levels were evaluated using International Physical Activity Questionnaire. STATISTICAL TESTS Paired sample t-tests, paired Wilcoxon Mann-Whitney tests, Pearson and Spearman correlation analyses, Kruskal-Wallis tests with post-hoc Bonferroni correction. A P-value <0.05 was considered statistically significant. RESULTS The scan-rescan repeatability was good (RMSA-CV < 10%). After exercise, deep cartilage exhibited no significant differences in cartilage thickness (PPC = 0.576, PMTC = 0.991, PMFC = 0.899, PLTC = 0.861, PLFC = 0.290) and T2* values (PPC = 0.914, PMTC = 0.780, PMFC = 0.754, PLTC = 0.327, PLFC = 0.811), which both significantly decreased in superficial PC, MFC, LFC, and MTC. The T2* values of superficial MTC and deep MFC were moderately correlated with higher body weight (ρ = 0.431) and lower BMI (ρ = -0.499), respectively. DATA CONCLUSION Deep and superficial cartilage may respond differently to mechanical loading as assessed by UTE-T2*. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hanqi Wang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihui Li
- Department of Radiology, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Stefan Sommer
- Siemens Healthineers International AG, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland
- Advanced Clinical Imaging Technology (ACIT), Siemens Healthineers International AG, Lausanne, Switzerland
| | - Tongtong Chen
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Sun
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Radiology, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
78
|
Qin H, Liu X, Ding Q, Liu H, Ma C, Wei Y, Lv Y, Wang S, Ren Y. Astaxanthin reduces inflammation and promotes a chondrogenic phenotype by upregulating SIRT1 in osteoarthritis. Knee 2024; 48:83-93. [PMID: 38555717 DOI: 10.1016/j.knee.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE To investigate the effects of astaxanthin (AST) on mouse osteoarthritis (OA) and lipopolysaccharide (LPS)-induced ATDC5 cell damage and to explore whether SIRT1 protein plays a role. METHODS In this study, some mouse OA models were constructed by anterior cruciate ligament transection (ACLT). Imaging, molecular biology and histopathology methods were used to study the effect of AST administration on traumatic OA in mice. In addition, LPS was used to stimulate ATDC5 cells to mimic the inflammatory response of OA. The effects of AST on the cell activity, inflammatory cytokines, matrix metalloproteinases and collagen type II levels were studied by CCK8 activity assay, reverse transcription polymerase chain reaction and protein imprinting. The role of SIRT1 protein was also detected. RESULTS In the mouse OA model, the articular surface collapsed, the articular cartilage thickness and cartilage matrix protein abundance were significantly decreased, while the expression of inflammatory cytokines and matrix metalloproteinases was increased; but AST treatment reversed these effects. Meanwhile, AST pretreatment could partially reverse LPS-induced ATDC5 cell damage and upregulate SIRT1 expression, but this protective effect of AST was attenuated by concurrent administration of the SIRT1 inhibitor Ex527. CONCLUSION AST can protect against the early stages of OA by affecting SIRT1 signalling, suggesting that AST might be a potential therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Haonan Qin
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Xingjing Liu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qirui Ding
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Huan Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Cheng Ma
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yifan Wei
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - You Lv
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Yongxin Ren
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
79
|
Wang X, Tao J, Zhou J, Shu Y, Xu J. Excessive load promotes temporomandibular joint chondrocyte apoptosis via Piezo1/endoplasmic reticulum stress pathway. J Cell Mol Med 2024; 28:e18472. [PMID: 38842129 PMCID: PMC11154833 DOI: 10.1111/jcmm.18472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Junli Tao
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Jianping Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Yi Shu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Jie Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
80
|
Wu X, Sun AR, Crawford R, Xiao Y, Wang Y, Prasadam I, Mao X. Inhibition of Leukotriene A 4 Hydrolase Suppressed Cartilage Degradation and Synovial Inflammation in a Mouse Model of Experimental Osteoarthritis. Cartilage 2024; 15:184-194. [PMID: 37086004 PMCID: PMC11368897 DOI: 10.1177/19476035231169940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Chronic inflammation plays an important role in the osteoarthritis (OA) pathology but how this influence OA disease progression is unclear. Leukotriene B4 (LTB4) is a potent proinflammatory lipid mediator generated from arachidonic acid through the sequential activities of 5-lipoxygenase, 5-lipoxygenase-activating protein, Leukotriene A4 hydrolase (LTA4H) and its downstream product LTB4. The aim of this study is to investigate the involvement and the potential therapeutic target of the LTB4 pathway in OA disease progression. DESIGN Both clinical human cartilage samples (n = 7) and mice experimental OA models (n = 6) were used. The levels of LTA4H and leukotriene B4 receptor 1 were first examined using immunostaining in human OA/non-OA cartilage and mice experimental OA models. We also determined whether the LTA4H pathway was associated with cartilage degeneration and synovitis inflammation in OA mice models and human articular chondrocytes. RESULTS We found that both LTA4H and LTB4 receptor (BLT1) were highly expressed in human and mice OA cartilage. Inhibition of LTA4H suppressed cartilage degeneration and synovitis in OA mice model. Furthermore, inhibition of LTA4H promoted cartilage regeneration by upregulating chondrogenic genes expression such as aggrecan (ACAN), collagen 2A1 (COL2A1), and SRY-Box transcription factor 9 (SOX9). CONCLUSIONS Our results indicate that the LTA4H pathway is a crucial regulator of OA pathogenesis and suggest that LTA4H could be a therapeutic target in combat OA.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Orthopaedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yanping Wang
- Health Management Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
81
|
Lei T, Wang Y, Li M, Hua L. Clinical efficacy of multiple intra-articular injection for hip osteoarthritis. Bone Joint J 2024; 106-B:532-539. [PMID: 38821500 DOI: 10.1302/0301-620x.106b6.bjj-2023-1272.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Aims Intra-articular (IA) injection may be used when treating hip osteoarthritis (OA). Common injections include steroids, hyaluronic acid (HA), local anaesthetic, and platelet-rich plasma (PRP). Network meta-analysis allows for comparisons between two or more treatment groups and uses direct and indirect comparisons between interventions. This network meta-analysis aims to compare the efficacy of various IA injections used in the management of hip OA with a follow-up of up to six months. Methods This systematic review and network meta-analysis used a Bayesian random-effects model to evaluate the direct and indirect comparisons among all treatment options. PubMed, Web of Science, Clinicaltrial.gov, EMBASE, MEDLINE, and the Cochrane Library were searched from inception to February 2023. Randomized controlled trials (RCTs) which evaluate the efficacy of HA, PRP, local anaesthetic, steroid, steroid+anaesthetic, HA+PRP, and physiological saline injection as a placebo, for patients with hip OA were included. Results In this meta-analysis of 16 RCTs with a total of 1,735 participants, steroid injection was found to be significantly more effective than placebo injection on reported pain at three months, but no significant difference was observed at six months. Furthermore, steroid injection was considerably more effective than placebo injection for functional outcomes at three months, while the combination of HA+PRP injection was substantially more effective at six months. Conclusion Evidence suggests that steroid injection is more effective than saline injection for the treatment of hip joint pain, and restoration of functional outcomes.
Collapse
Affiliation(s)
- Ting Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Yiyi Wang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Mingqing Li
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Long Hua
- Orthopedic Department, The First Affiliated Hospital, Key Laboratory of High Incidence Disease Research in Xinjiang, Ministry of Education, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
82
|
Gundogdu K, Gundogdu G, Demirkaya Miloglu F, Demirci T, Tascı SY, Abd El-Aty AM. Anti-Inflammatory Effects of Boric Acid in Treating Knee Osteoarthritis: Biochemical and Histopathological Evaluation in Rat Model. Biol Trace Elem Res 2024; 202:2744-2754. [PMID: 37770671 DOI: 10.1007/s12011-023-03872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
This study aimed to examine the anti-inflammatory properties of boric acid (BA) in treating knee osteoarthritis (KOA) in rats, evaluating its biochemical and histopathological therapeutic effects. A KOA rat model was induced by injecting monosodium iodoacetate into the knee joint. Random assignment was performed for the experimental groups as follows: group-1(control), group-2(KOA control), group-3 (BA:4 mg/kg, orally), group-4(BA:10 mg/kg, orally), group-5(BA:4 mg/kg, intra-articularly), and group-6(BA:10 mg/kg, intra-articularly). The rats received 100 µL of BA intra-articularly on days 1, 7, 14, and 21 or 1 mL orally once a day (5 days/week) for 4 weeks. Serum levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and activity of matrix metalloproteinase-13 (MMP-13) were measured. Histopathological and immunohistochemical analyses were performed on knee joint samples using specific antibodies for IL-1β, TNF-α, MMP-13, and nitric oxide synthase-2 (NOS-2). Group-2 exhibited higher serum IL-1β and TNF-α levels and MMP-13 activity than group-1 (P < 0.05). However, IL-1β and TNF-α levels and MMP-13 activity were lower in all treatment groups than in group-2, with statistically significant reductions observed in groups-4, 5, and 6. Histopathologically, group-2 displayed joint space narrowing, cartilage degeneration, and deep fissures. Groups-5 and 6 demonstrated significant joint space enlargement, articular cartilage tissue regeneration, and immunostaining patterns similar to those in group-1. Immunohistochemically, group-2 showed significant increases in IL-1β, TNF-α, MMP-13, and NOS-2 expression. However, all treatment groups exhibited reductions in these expression levels compared to group-2, with statistically significant decreases observed in groups-5 and 6 (P < 0.01). BA shows potential efficacy in reducing inflammation in experimental KOA model in rats. It may be a promising therapeutic agent for KOA, warranting further clinical studies for validation.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Fatma Demirkaya Miloglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Tuba Demirci
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Seymanur Yılmaz Tascı
- Department of Physiology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
83
|
Ragni E, De Luca P, Landoni S, Valli F, Mortati L, Palombella S, Talò G, Moretti M, de Girolamo L. High efficiency protocol for platelet derived fibrin gel loaded with mesenchymal stromal cells extracellular vesicles. Regen Ther 2024; 26:442-457. [PMID: 39070124 PMCID: PMC11276930 DOI: 10.1016/j.reth.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Extracellular vesicles from mesenchymal stromal cells (MSC-EVs) are potent stimulators of naïve cartilage and their injection is studied in clinical trials for cartilage lesions, since often cartilage repaired with conventional approaches is incomplete or less performant leading to joint degeneration. The main pitfall of these innovative approaches is the high EVs dispersion into the joint cavity and consequent low concentration at lesion site. Thus, biological scaffolds for concentration of EVs where needed might be a promising option. This work aimed at producing an enhanced platelet-derived fibrin gel loaded with adipose-derived MSCs (ASCs)-EVs. Methods EVs' embedment efficiency in platelet gel, their release and incorporation in OA chondrocytes and cartilage explants were monitored by flow cytometry, microfluidic approaches, scansion electron microscopy and real-time quantitative multimodal nonlinear optics imaging. The effect of released EVs was tested in OA chondrocytes by gene expression studies. Results A protocol ensuring high incorporation EVs efficiency in platelet gels was defined, relying on a one-step modification of the standard procedure used in current clinical practice. Trapped EVs were released continuously for up to 4 weeks and uptaken in pathologic chondrocytes and cartilage explants. The release of the EVs-loaded platelet gel had stronger and synergic anti-inflammatory/matrix remodelling effects with respect to both EVs per se and unloaded gel released products. Conclusions These results suggest the feasibility of producing a platelet gel loaded with MSC-EVs at high efficiency that can be used as an enhanced tool to foster chondrocyte homeostasis, a key requisite for proper cartilage healing.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Simona Landoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Federico Valli
- IRCCS Istituto Ortopedico Galeazzi, Chirurgia Articolare Sostitutiva e Chirurgia Ortopedica (C.A.S.C.O.), Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
84
|
Fu Y, Zhang C, Yang Y, Zhou B, Yang M, Zhu G, Zhu Y. Effect of umbilical cord blood-mononuclear cells on knee osteoarthritis in rabbits. J Orthop Surg Res 2024; 19:323. [PMID: 38811966 PMCID: PMC11138004 DOI: 10.1186/s13018-024-04815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND To investigate the effect and underlying mechanism of umbilical cord blood-mononuclear cells (UCB-MNCs) in treating knee osteoarthritis (KOA) in rabbits. METHODS A rabbit KOA model was prepared by anterior cruciate ligament transection (ACLT). Fifty New Zealand white rabbits were randomly divided into the control group, model group, sodium hyaluronate (SH) group, platelet-rich plasma (PRP) group and UCB-MNC group. Knee injections were performed once a week for five consecutive weeks. The gross view of the knee joint, morphology of knee cartilage and structural changes in the knee joint were observed on CT scans, and graded by the Lequesne MG behavioral score and the Mankin score. TNF-α and IL-1β levels in the synovial fluid of the knee were measured by the enzyme-linked immunosorbent assay (ELISA). Expression levels of MMP-13 and COL-II in the knee cartilage were detected by Western blotting and qRT-PCR. RESULTS The Lequesne MG behavioral score and the Mankin score were significantly higher in the model group than those in the control group (P < 0.05). Rabbits in the SH, PRP and UCB-MNC groups had sequentially lower scores than those in the model group. Imaging features of KOA were more pronounced in the model group than in the remaining groups. CB-MNC significantly relieved KOA, compared to SH and PRP. Significantly higher levels of TNF-α and IL-1β in the synovial fluid of the knee, and up-regulated MMP-13 and down-regulated COL-II in the knee cartilage were detected in the model group than in the control group. These changes were significantly reversed by the treatment with SH, PRP and UCB-MNCs, especially UCB-MNCs. CONCLUSION Injections of UCB-MNCs into knees protect the articular cartilage and hinder the progression of KOA in rabbits by improving the local microenvironment at knee joints.
Collapse
Affiliation(s)
- Yuhang Fu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, 264199, Shandong Province, China
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199, Shandong Province, China
| | - Chi Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199, Shandong Province, China
| | - Yong Yang
- Yantai City Yantai Mountain Hospital, Yantai, 264008, Shandong Province, China
| | - Baisui Zhou
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199, Shandong Province, China
| | - Meng Yang
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, 264199, Shandong Province, China
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199, Shandong Province, China
| | - Guoshuai Zhu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199, Shandong Province, China
| | - Yonglin Zhu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199, Shandong Province, China.
| |
Collapse
|
85
|
Xie Y, Shao F, Ji Y, Feng D, Wang L, Huang Z, Wu S, Sun F, Jiang H, Miyamoto A, Wang H, Zhang C. Network Analysis of Osteoarthritis Progression Using a Steiner Minimal Tree Algorithm. J Inflamm Res 2024; 17:3201-3209. [PMID: 38779430 PMCID: PMC11110812 DOI: 10.2147/jir.s438407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/09/2023] [Indexed: 05/25/2024] Open
Abstract
Purpose To provide a comprehensive analysis of associated genes with osteoarthritis (OA). Here, we reported a network analysis of OA progression by using a Steiner minimal tree algorithm. Methods We collected the OA-related genes through screening the publications in MEDLINE. We performed functional analysis to analyze the associated biochemical pathways of the OA-related genes. Pathway crosstalk analysis was constructed to explore interactions of the enriched pathways. Steiner minimal tree algorithm was used to analyze molecular pathway networks. The average clustering coefficient was compared with the corresponding values of the Osteoarthritis-specific network. The new finding RNA was compared with former single-cell RNA-seq analysis results. Results A gene set with 177 members reported to be significantly associated with Osteoarthritis was collected from 187 studies. Functional enrichment analysis revealed a specific related-OA gene including skeletal system development, cytokine-mediated signaling pathway, inflammatory response, cartilage development, and extracellular matrix organization. We performed a pathway crosstalk analysis among the 72 significantly enriched pathways. A total of 151 of the 177 genes in the Osteoarthritis gene set were included in the human interactome network. There were 31 genes in the former single-cell RNA-seq analysis results. The CLU, ENO1, SRRM1, UBC, HMGB1, NR3C1, NOTCH2NL, and CBX5 have significantly increased expression in seven molecularly defined populations of OA cartilage. Conclusion The Steiner tree-based approach finds new biological molecules associated with OA genes.
Collapse
Affiliation(s)
- Yujie Xie
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fanglin Shao
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuxiu Ji
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Dechao Feng
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ling Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, Sichuan, People’s Republic of China
| | - Zonghai Huang
- School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, Sichuan, People’s Republic of China
| | - Shengjian Wu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Jiang
- Rehabilitation Medicine Department, Xichong County People’s hospital, Nanchong, Sichuan, People’s Republic of China
| | - Akira Miyamoto
- Faculty of Rehabilitation, Nishikyushu University, Kansaitama, Japan
| | - Haiming Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Chi Zhang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
86
|
Nguyen M, Battistoni CM, Babiak PM, Liu JC, Panitch A. Chondroitin Sulfate/Hyaluronic Acid-Blended Hydrogels Suppress Chondrocyte Inflammation under Pro-Inflammatory Conditions. ACS Biomater Sci Eng 2024; 10:3242-3254. [PMID: 38632852 PMCID: PMC11094685 DOI: 10.1021/acsbiomaterials.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.
Collapse
Affiliation(s)
- Michael Nguyen
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Carly M. Battistoni
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M. Babiak
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C. Liu
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
87
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
88
|
Fang Y, Lou C, Lv J, Zhang C, Zhu Z, Hu W, Chen H, Sun L, Zheng W. Sipeimine ameliorates osteoarthritis progression by suppression of NLRP3 inflammasome-mediated pyroptosis through inhibition of PI3K/AKT/NF-κB pathway: An in vitro and in vivo study. J Orthop Translat 2024; 46:1-17. [PMID: 38765604 PMCID: PMC11099199 DOI: 10.1016/j.jot.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Background Osteoarthritis (OA) is a chronic and degenerative condition that persists and progresses over time. Sipeimine (Sip), a steroidal alkaloid derived from Fritillariae Cirrhosae Bulbus, has attracted considerable attention due to its exceptional anti-inflammatory, analgesic, antioxidant, and anti-cancer characteristics. However, Sip's effects on OA and its mechanism still need further research. Methods This study utilized network pharmacology to identify initial targets for Sip. Functional associations of Sip in OA were clarified through Gene Ontology (GO) enrichment analysis, bioinformatically analyzing a list of targets. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis assessed pathways linked to Sip's therapeutic efficacy in OA. Molecular docking techniques explored Sip's binding affinity with key targets. In vitro experiments assessed Sip's impact on lipopolysaccharide (LPS)-induced pro-inflammatory factors and its protective effects on collagen-II and aggrecan degradation within the extracellular matrix (ECM). Western blotting and fluorescence analyses were conducted to determine Sip-mediated signaling pathways. Moreover, in vivo experiments using a mouse OA model validated Sip's therapeutic efficacy. Results The results from network pharmacology revealed a total of 57 candidate targets for Sip in OA treatment. GO enrichment analysis demonstrated a robust correlation between Sip and inflammatory response, response to LPS and NF-κB-inducing kinase activity in OA. KEGG enrichment analysis highlighted the significance of NF-κB and PI3K-AKT pathways in Sip's therapeutic potential for OA. Furthermore, molecular docking results demonstrated Sip's robust binding affinity with p65 and PI3K. In vitro experiments demonstrated Sip's effectively suppressed the expression of pro-inflammatory factors induced by LPS, such as COX-2, iNOS, IL-1β, and IL-18. Besides, Sip counteracted the degradation of collagen-II and aggrecan within the ECM and the expression of MMP-13 and ADAMTS-5 mediated by LPS. The safeguarding effects of Sip were ascribed to its inhibition of PI3K/AKT/NF-κB pathway and NLRP3 inflammasome mediated pyroptosis. Additionally, in vivo experiments revealed that Sip could alleviate the subchondral remodeling, cartilage degeneration, synovitis as well as ECM degradation a mouse model of OA. Conclusion Sip exhibited potential in attenuating OA progression by suppressing the PI3K/AKT/NF-κB pathway, consequently inhibiting the activation of NLRP3 inflammasome and pyroptosis. The translational potential statement The translational potential of this articleThis study provides a biological rationale for the use of Sip as a potential candidate for OA treatment, provide a new concept for the cartilage targeted application of natural compounds.
Collapse
Affiliation(s)
- Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ziteng Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
89
|
Zhang S, Zhang B, Liao Z, Chen Y, Guo W, Wu J, Liu H, Weng R, Su D, Chen G, Zhang Z, Li C, Long J, Xiao Y, Ma Y, Zhou T, Xu C, Su P. Hnrnpk protects against osteoarthritis through targeting WWC1 mRNA and inhibiting Hippo signaling pathway. Mol Ther 2024; 32:1461-1478. [PMID: 38414246 PMCID: PMC11081807 DOI: 10.1016/j.ymthe.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baolin Zhang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuyu Chen
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weimin Guo
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Hengyu Liu
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ricong Weng
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Deying Su
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gengjia Chen
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenzhen Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chuan Li
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahui Long
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Xiao
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Ma
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Xinjiang Urumqi 830002, China
| | - Taifeng Zhou
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
90
|
Antoinette AY, Ziemian SN, Brown AR, Hudson EB, Chlebek C, Wright TM, Goldring SR, Goldring MB, Otero M, van der Meulen MC. PTH treatment before cyclic joint loading improves cartilage health and attenuates load-induced osteoarthritis development in mice. SCIENCE ADVANCES 2024; 10:eadk8402. [PMID: 38640238 PMCID: PMC11029811 DOI: 10.1126/sciadv.adk8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
91
|
Yue Y, Dai W, Wei Y, Cao S, Liao S, Li A, Liu P, Lin J, Zeng H. Unlocking the potential of exosomes: a breakthrough in the theranosis of degenerative orthopaedic diseases. Front Bioeng Biotechnol 2024; 12:1377142. [PMID: 38699435 PMCID: PMC11064847 DOI: 10.3389/fbioe.2024.1377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Degenerative orthopaedic diseases pose a notable worldwide public health issue attributable to the global aging population. Conventional medical approaches, encompassing physical therapy, pharmaceutical interventions, and surgical methods, face obstacles in halting or reversing the degenerative process. In recent times, exosome-based therapy has gained widespread acceptance and popularity as an effective treatment for degenerative orthopaedic diseases. This therapeutic approach holds the potential for "cell-free" tissue regeneration. Exosomes, membranous vesicles resulting from the fusion of intracellular multivesicles with the cell membrane, are released into the extracellular matrix. Addressing challenges such as the rapid elimination of natural exosomes in vivo and the limitation of drug concentration can be effectively achieved through various strategies, including engineering modification, gene overexpression modification, and biomaterial binding. This review provides a concise overview of the source, classification, and preparation methods of exosomes, followed by an in-depth analysis of their functions and potential applications. Furthermore, the review explores various strategies for utilizing exosomes in the treatment of degenerative orthopaedic diseases, encompassing engineering modification, gene overexpression, and biomaterial binding. The primary objective is to provide a fresh viewpoint on the utilization of exosomes in addressing bone degenerative conditions and to support the practical application of exosomes in the theranosis of degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Yaohang Yue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Dai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Siyang Cao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianjing Lin
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
92
|
Lee YM, Kim DS. Analgesic, Anti-Inflammatory, and Chondroprotective Activities of Siraitia grosvenorii Residual Extract. Int J Mol Sci 2024; 25:4268. [PMID: 38673854 PMCID: PMC11050058 DOI: 10.3390/ijms25084268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation is crucial to osteoarthritis (OA) pathogenesis. The aim of this study was to evaluate Siraitia grosvenorii residue extract (NHGRE) obtained by extracting S. grosvenorii fruits with water as a potential food supplement for treating arthritis based on its analgesic, anti-inflammatory, and chondroprotective effects and the remaining residue with 70% ethanol. We observed the analgesic activity of NHGRE based on the acetic acid-induced writhing response in mice, examined its anti-inflammatory efficacy against carrageenan-induced paw oedema in mice, and investigated its effect on inflammatory cytokine expression in interleukin (IL)-1β-induced SW1353 cells. Furthermore, we determined its effects on cartilage protection in interleukin-1β (IL-1β)-treated SW1353 cells. NHGRE at 200 mg/kg significantly reduced the acetic acid-induced writhing response and prevented oedema formation in the carrageenan-induced paw oedema model. In IL-1β-induced SW1353 cells, NHGRE at 400 µg/mL reduced the expression of inflammation mediators such as tumour necrosis factor (TNF)-α (55.3%), IL-6 (35.4%), and prostaglandin E2 (PGE2) (36.9%) and down-regulated the expression of matrix metalloproteinase (MMP)-1 (38.6%), MMP-3 (29.3%), and MMP-13 (44.8%). Additionally, it restored degraded collagen II levels in chondrocytes. NHGRE plays a protective role in chondrocytes by regulating Nuclear factor kappa B (NF-κB) activation. Overall, NHGRE may be a useful therapeutic agent for OA by controlling pain, oedema formation, and inflammation-related mechanisms.
Collapse
Affiliation(s)
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| |
Collapse
|
93
|
Law L, Heerey JL, Devlin BL, Brukner P, Kemp JL, Attanayake A, Hulett MD, De Livera A, Mosler AB, Morris HG, White NP, Culvenor AG. Effectiveness of an anti-inflammatory diet versus low-fat diet for knee osteoarthritis: the FEAST randomised controlled trial protocol. BMJ Open 2024; 14:e079374. [PMID: 38569708 PMCID: PMC10989185 DOI: 10.1136/bmjopen-2023-079374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Chronic inflammation plays a key role in knee osteoarthritis pathophysiology and increases risk of comorbidities, yet most interventions do not typically target inflammation. Our study will investigate if an anti-inflammatory dietary programme is superior to a standard care low-fat dietary programme for improving knee pain, function and quality-of-life in people with knee osteoarthritis. METHODS AND ANALYSIS The eFEct of an Anti-inflammatory diet for knee oSTeoarthritis study is a parallel-group, assessor-blinded, superiority randomised controlled trial. Following baseline assessment, 144 participants aged 45-85 years with symptomatic knee osteoarthritis will be randomly allocated to one of two treatment groups (1:1 ratio). Participants randomised to the anti-inflammatory dietary programme will receive six dietary consultations over 12 weeks (two in-person and four phone/videoconference) and additional educational and behaviour change resources. The consultations and resources emphasise nutrient-dense minimally processed anti-inflammatory foods and discourage proinflammatory processed foods. Participants randomised to the standard care low-fat dietary programme will receive three dietary consultations over 12 weeks (two in-person and one phone/videoconference) consisting of healthy eating advice and education based on the Australian Dietary Guidelines, reflecting usual care in Australia. Adherence will be assessed with 3-day food diaries. Outcomes are assessed at 12 weeks and 6 months. The primary outcome will be change from baseline to 12 weeks in the mean score on four Knee injury and Osteoarthritis Outcome Score (KOOS4) subscales: knee pain, symptoms, function in daily activities and knee-related quality of life. Secondary outcomes include change in individual KOOS subscale scores, patient-perceived improvement, health-related quality of life, body mass and composition using dual-energy X-ray absorptiometry, inflammatory (high-sensitivity C reactive protein, interleukins, tumour necrosis factor-α) and metabolic blood biomarkers (glucose, glycated haemoglobin (HbA1c), insulin, liver function, lipids), lower-limb function and physical activity. ETHICS AND DISSEMINATION The study has received ethics approval from La Trobe University Human Ethics Committee. Results will be presented in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER ACTRN12622000440729.
Collapse
Affiliation(s)
- Lynette Law
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Joshua L Heerey
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Brooke L Devlin
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Peter Brukner
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Joanne L Kemp
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Amanda Attanayake
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Alysha De Livera
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea B Mosler
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | | | | | - Adam G Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
94
|
Walvekar P, Lulinski P, Kumar P, Aminabhavi TM, Choonara YE. A review of hyaluronic acid-based therapeutics for the treatment and management of arthritis. Int J Biol Macromol 2024; 264:130645. [PMID: 38460633 DOI: 10.1016/j.ijbiomac.2024.130645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Hyaluronic acid (HA), a biodegradable, biocompatible and non-immunogenic therapeutic polymer is a key component of the cartilage extracellular matrix (ECM) and has been widely used to manage two major types of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA). OA joints are characterized by lower concentrations of depolymerized (low molecular weight) HA, resulting in reduced physiological viscoelasticity, while in RA, the associated immune cells are over-expressed with various cell surface receptors such as CD44. Due to HA's inherent viscoelastic property and its ability to target CD44, there has been a surge of interest in developing HA-based systems to deliver various bioactives (drugs and biologics) and manage arthritis. Considering therapeutic benefits of HA in arthritis management and potential advantages of novel delivery systems, bioactive delivery through HA-based systems is beginning to display improved outcomes over bioactive only treatment. The benefits include enhanced bioactive uptake due to receptor-mediated targeting, prolonged retention of bioactives in the synovium, reduced expressions of proinflammatory mediators, enhanced cartilage regeneration, reduced drug toxicity due to sustained release, and improved and cost-effective treatment. This review provides an underlying rationale to prepare and use HA-based bioactive delivery systems for arthritis applications. With special emphasis given to preclinical/clinical results, this article reviews various bioactive-loaded HA-based particulate carriers (organic and inorganic), gels, scaffolds and polymer-drug conjugates that have been reported to treat and manage OA and RA. Furthermore, the review identifies several key challenges and provides valuable suggestions to address them. Various developments, strategies and suggestions described in this review may guide the formulation scientists to optimize HA-based bioactive delivery systems as an effective approach to manage and treat arthritis effectively.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; Department of Pharmaceutics, SET's College of Pharmacy, Dharwad 580 002, Karnataka, India
| | - Piotr Lulinski
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
95
|
Yao Z, Gan F, Zeng Y, Ren L, Zeng Y. Elucidating Cyathula Officinals' mechanism in osteoarthritis treatment: Network pharmacology and empirical evidence on anti-inflammatory actions. Heliyon 2024; 10:e27999. [PMID: 38524622 PMCID: PMC10958415 DOI: 10.1016/j.heliyon.2024.e27999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, we explored the therapeutic potential of Cyathula Officinals (CNX) in Knee Osteoarthritis (KOA) treatment. Utilizing network pharmacology and in vitro experiments, we identified active ingredients, action targets and pathways in CNX. Our analysis, integrating databases like TCMSP, SwissTarget Prediction, Genecards, CTD, STRING, and DAVID, highlighted 396 action targets and 283 disease targets, pinpointing 64 intersection genes linked to KOA. The significant involvement of the MAPK and NF-κB pathways in CNX's anti-inflammatory action was validated through qPCR, which might underlie CNX's efficacy in inhibiting chondrocyte apoptosis and IL-6 expression. These findings suggest CNX's potential in KOA management, offering insights for its clinical application.
Collapse
Affiliation(s)
- Zhicheng Yao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Fengping Gan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Yuqing Zeng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Litong Ren
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Yirong Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Department of Orthopedics, China
| |
Collapse
|
96
|
Kondreddy V, Banerjee R, Devi BLAP, Muralidharan K, Piramanayagam S. Inhibition of the MALT1-LPCAT3 axis protects cartilage degeneration and osteoarthritis. Cell Commun Signal 2024; 22:189. [PMID: 38519981 PMCID: PMC10960471 DOI: 10.1186/s12964-024-01547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1β-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1β-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1β-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
| | - Rajkumar Banerjee
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - B L A Prabhavathi Devi
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Kathirvel Muralidharan
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Selvakumar Piramanayagam
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| |
Collapse
|
97
|
Hong X, Liu X, Li B, Shi S, Xiao K, Xu T, Nie Y, Dai M, Zhu M. Glaucocalyxin A delays the progression of OA by inhibiting NF-κB and MAPK signaling pathways. J Orthop Surg Res 2024; 19:188. [PMID: 38500177 PMCID: PMC10949665 DOI: 10.1186/s13018-024-04640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint condition marked by inflammation and cartilage breakdown. Currently, there is a dearth of treatment medications that can clearly slow the course of OA. Glaucocalyxin A (GLA) is a diterpene chemical identified and extracted from Rabdosia japonica with antithrombotic, anticoagulant, anti-tumor, anti-inflammatory, anti-oxidant, and other pharmacological properties. Previous research has linked inflammation to abnormalities in the homeostasis of the extracellular matrix (ECM). Although GLA has been shown to have anti-inflammatory qualities, its effects on the progression of OA are unknown. As a result, the goal of this study was to see if GLA could slow the course of OA. METHODS ATDC5 cells were stimulated by IL-1β to create an inflammatory chondrocyte damage model. Quantitative polymerase chain reaction, Western Blot, high-density culture, and immunofluorescence were used to detect the expression levels of associated gene phenotypes. We also created a mouse model of OA induced by destabilization of the medial meniscus (DMM) instability, and GLA was administered intraperitoneally once every two days for eight weeks. Mice knee specimens were stained with hematoxylin-eosin, Safranin O/fast green, and immunohistochemical, and the Osteoarthritis Research Society International grade system and Mankin's score were used to assess the protective effect of GLA on cartilage. RESULTS In vitro and in vivo, we explored the effects and molecular processes of GLA as a therapy for OA. The findings demonstrated that GLA might reduce the expression of associated inflammatory mediators and protect the ECM by inhibiting the NF-κB and MAPK signaling pathways. Animal research revealed that GLA could protect against the DMM-induced OA model mice by stabilizing ECM. CONCLUSION Taken together, our findings show that GLA has a protective impact on cartilage throughout OA progression, implying that GLA could be employed as a possible therapeutic agent for OA, thus giving a new therapeutic method for the treatment of OA.
Collapse
Affiliation(s)
- Xin Hong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China
| | - Bo Li
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China
| | - Shoujie Shi
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China
| | - Kai Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China
| | - Tiantian Xu
- Department of Pharmacy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yaoyang Nie
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China
| | - Min Dai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China.
| | - Meisong Zhu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province's Artificial Joints Engineering and Technology Research Center, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
98
|
Castro-Viñuelas R, Viudes-Sarrión N, Rojo-García AV, Monteagudo S, Lories RJ, Jonkers I. Mechanical loading rescues mechanoresponsiveness in a human osteoarthritis explant model despite Wnt activation. Osteoarthritis Cartilage 2024:S1063-4584(24)01015-X. [PMID: 38494072 DOI: 10.1016/j.joca.2024.02.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Optimizing rehabilitation strategies for osteoarthritis necessitates a comprehensive understanding of chondrocytes' mechanoresponse in both health and disease, especially in the context of the interplay between loading and key pathways involved in osteoarthritis (OA) development, like canonical Wnt signaling. This study aims to elucidate the role of Wnt signaling in the mechanoresponsiveness of healthy and osteoarthritic human cartilage. METHODS We used an ex-vivo model involving short-term physiological mechanical loading of human cartilage explants. First, the loading protocol for subsequent experiments was determined. Next, loading was applied to non-OA-explants with or without Wnt activation with CHIR99021. Molecular read-outs of anabolic, pericellular matrix and matrix remodeling markers were used to assess the effect of Wnt on cartilage mechanoresponse. Finally, the same set-up was used to study the effect of loading in cartilage from patients with established OA. RESULTS Our results confirm that physiological loading maintains expression of anabolic genes in non-OA cartilage, and indicate a deleterious effect of Wnt activation in the chondrocyte mechanoresponsiveness. This suggests that loading-induced regulation of chondrocyte markers occurs downstream of canonical Wnt signaling. Interestingly, our study highlighted contrasting mechanoresponsiveness in the model of Wnt activation and the established OA samples, with established OA cartilage maintaining its mechanoresponsiveness, and mechanical loading rescuing the chondrogenic phenotype. CONCLUSION This study provides insights into the mechanoresponsiveness of human cartilage in both non-OA and OA conditions. These findings hold the potential to contribute to the development of strategies that optimize the effect of dynamic compression by correcting OA pathological cell signaling.
Collapse
Affiliation(s)
- R Castro-Viñuelas
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium.
| | - N Viudes-Sarrión
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - A V Rojo-García
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - S Monteagudo
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - R J Lories
- Department of Development and Regeneration, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - I Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| |
Collapse
|
99
|
Huang Y, Huang H, Chen Q, Luo Y, Feng J, Deng Y, Li G, Li M, Sun J. Efficacy and immune-inflammatory mechanism of acupuncture-related therapy in animal models of knee osteoarthritis: a preclinical systematic review and network meta-analysis. J Orthop Surg Res 2024; 19:177. [PMID: 38459553 PMCID: PMC10924386 DOI: 10.1186/s13018-024-04660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Many KOA patients have not reached indications for surgery, thus we need to find effective non-surgical treatments. Acupuncture is thought to have the potential to modulate inflammation and cytokines in KOA through the immune system. However, the mechanisms have not been elucidated, and there is no network Meta-analysis of acupuncture on KOA animals. So we evaluate the effect and mechanism of acupuncture-related therapy in KOA animals. METHODS A comprehensive search was conducted in multiple databases including PubMed, Web of Science, Embase, CBM, CNKI, WanFang, and VIP Database to identify relevant animal studies focusing on acupuncture therapy for KOA. The included studies were assessed for risk of bias using SYRCLE's Risk of Bias tool. Subsequently, pair-wise meta-analysis and network meta-analysis were performed using Stata 15.0 software, evaluating outcomes such as Lequesne index scale, Mankin score, IL-1β, TNF-α, MMP3, and MMP13. RESULTS 56 RCTs with 2394 animals were included. Meta-analysis showed that among the 6 outcomes, there were significant differences between acupuncture and model group; the overall results of network meta-analysis showed that the normal group or sham operation group performed the best, followed by the acupotomy, acupuncture, and medicine group, and the model group had the worst effect, and there were significant differences between 6 interventions. CONCLUSIONS Acupuncture-related therapy can be a possible treatment for KOA. The mechanism involves many immune-inflammatory pathways, which may be mediated by DAMPs/TLR/NF-κB/MAPK,PI3K/Akt/NF-κB pathway, or IFN-γ/JAK-STAT pathway. It needs to be further confirmed by more high-quality animal experiments or meta-analysis. SYSTEMATIC REVIEW REGISTRATION PROSPERO identifier: CRD42023377228.
Collapse
Affiliation(s)
- Yingjie Huang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqi Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yantong Luo
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuexia Deng
- Southern Theater General Hospital, Guangzhou, China
| | - Guangyao Li
- Department of traditional Chinese medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Min Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jian Sun
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
100
|
Cai C, Sun P, Chen Z, Sun C, Tian L. Catalpol protects mouse ATDC5 chondrocytes against interleukin-1β-induced catabolism. Histol Histopathol 2024; 39:333-344. [PMID: 36598130 DOI: 10.14670/hh-18-575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalpol is a natural product with promising anti-inflammatory effects, however, its effects on chondrocytes and osteoarthritis (OA) have not been well investigated. OA is a painful and debilitating joint disease that affects people worldwide. Traditional Chinese Medicine has been sought to treat OA, including the Rehmannia extract, Catalpol. Here, we examined the effects of Catalpol, a plant derivative used in traditional Chinese medicine, on ATDC5 chondrocytes originating from mouse teratocarcinoma cells stimulated with interleukin-1β (IL-1β) to mimic the OA cellular environment. Catalpol significantly reduced matrix metalloproteinase-1, -3, -13 (MMP-1, -3, -13), a disintegrin and metalloproteinase with thrombospondin motifs -4, -5 (ADAMTS-4, -5) against IL-1β, demonstrating a likely anti-cartilage degradation activity. We also found that Catalpol exerted a significant anti-oxidative stress effect by downregulating the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO), reactive oxygen species (ROS), and malondialdehyde (MDA). Catalpol treatment significantly reduced the levels of several key inflammatory factors, including Prostaglandin E₂ (PGE₂), cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). We further demonstrate that the effects of Catalpol were mediated by the nuclear factor -κB (NF-κB) pathway via downregulation of the phosphorylation of inhibitor of nuclear factor κB-α (IκBα). This was confirmed by measuring p38 and p65 protein levels as well as the luciferase activity of NF-κB. Altogether, we demonstrate the potential of Catalpol as a novel treatment agent against cartilage matrix degradation, oxidative stress, and inflammation in OA.
Collapse
Affiliation(s)
- Chengkui Cai
- Department of Orthopedics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Pengcheng Sun
- Department of Orthopedics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Zhihui Chen
- Department of Orthopedics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Chao Sun
- Department of Orthopedics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Liying Tian
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi' an, Shaanxi, PR China.
| |
Collapse
|