51
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
52
|
|
53
|
Niu J, Jiang C, Li C, Liu L, Li K, Jian Z, Gao T. Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother 2011; 60:1109-18. [PMID: 21547596 PMCID: PMC11028752 DOI: 10.1007/s00262-011-1025-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/19/2011] [Indexed: 12/12/2022]
Abstract
The forkhead transcription factor Foxp3 is the only definitive marker of CD4(+)CD25(+) regulatory T cells (Tregs) and has been identified as a key regulator in the development and function of Tregs. Foxp3 expression has been reported in a variety of solid tumors, including melanoma. In this study, we validated Foxp3 expression in both tumor-infiltrating Tregs and melanoma cells by performing immunohistochemical analysis of human melanoma tissue sections. Further, we assessed Foxp3 expression in melanoma cell lines by performing flow cytometry, confocal microscopic analysis, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Inhibition of Foxp3 expression in melanoma cells using small interfering RNA (siRNA) resulted in downregulation of B7-H1 and transforming growth factor (TGF)-β expression; in contrast, Foxp3 overexpression resulted in the upregulation of the expression of these proteins. Coculture of Foxp3-expressing melanoma cells with naive CD4(+)CD25(-) T cells resulted in strong inhibition of T-cell proliferation. This antiproliferative effect was partially abrogated by specific inhibition of Foxp3 expression and was effectively enhanced by overexpression of Foxp3. We observed an attenuated antiproliferative effect even when melanoma cells and T cells in the coculture were separated using Transwell inserts. These findings indicated that melanoma cells could have Foxp3-dependent Treg-like suppressive effects on T cells and suggested that the mimicking of Treg function by melanoma cells may represent a possible mechanism of tumor resistance to immune destruction in the melanoma tumor microenvironment.
Collapse
Affiliation(s)
- Junzhou Niu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an, China
| | - Changli Jiang
- Biotechnology Center of the Pharmacy, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 710032 Xi’an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032 Xi’an, China
| |
Collapse
|
54
|
di Pietro A, Tosti G, Ferrucci PF, Testori A. The immunological era in melanoma treatment: new challenges for heat shock protein-based vaccine in the advanced disease. Expert Opin Biol Ther 2011; 11:1395-407. [PMID: 21801084 DOI: 10.1517/14712598.2011.605353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tumor-derived heat shock protein (HSP)-peptide complexes (HSPPCs) induced immunity against malignancies in preclinical trials, working across tumor types and bypassing the need to identify single immunogenic peptides. These results paved the way for the use of human gp96 obtained from autologous tumor samples as an anti-cancer vaccine. AREAS COVERED Autologous tumor-derived HSP gp96 peptide complex (HSPPC-96) vaccine is emerging as a tumor- and patient-specific cancer vaccine, with confirmed activity in several malignancies. It has been tested in Phase III clinical trials in advanced melanoma and kidney cancer with evidence for efficacy in patients with earlier stage disease. HSPPC-96-based vaccine demonstrated an excellent safety profile, thus emerging as a novel therapeutic approach with a suggestive role in cancer therapy. This review summarizes work on the use of HSPPC-96 as an autologous anti-tumor vaccine in advanced melanoma. Data were retrieved by PubMed and Medline research and using the authors' personal experience. EXPERT OPINION Further investigations are needed to understand the biological basis of immune functions in order to improve the clinical outcome of HSP-based cancer therapy. In the near future, the combination of HSP-based vaccines with other biological compounds might represent a successful strategy in the therapy of advanced melanoma.
Collapse
Affiliation(s)
- Alessandra di Pietro
- IEO, European Institute of Oncology, Melanoma Division, Via G. Ripamonti 435, 20141 Milan, Italy
| | | | | | | |
Collapse
|
55
|
McColgan P, Sharma P, Bentley P. Stem Cell Tracking in Human Trials: A Meta-Regression. Stem Cell Rev Rep 2011; 7:1031-40. [DOI: 10.1007/s12015-011-9260-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
56
|
Abstract
The lack of effective conventional therapies for the treatment of advanced stage melanoma has stimulated interest in the development of novel strategies for the management of patients with malignant melanoma. Among them, immunotherapy has attracted much attention because of the potential role played by immunological events in the clinical course of melanoma. For many years, T cell-based immunotherapy has been emphasized in part because of the disappointing results of the monoclonal antibody (mAb)-based clinical trials conducted in the early 1980s and in part because of the postulated major role played by T cells in tumor growth control. More recently, mAb-based therapies have gained in popularity given their clinical and commercial success for a variety of malignant diseases. As a result, there has been increased interest in identifying and characterizing antibody-defined melanoma antigens. Among them, the chondroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA) or melanoma chondroitin sulfate proteoglycan (MCSP), has attracted much attention in recent years because of the growing experimental evidence that it fulfills two requirements for immunotherapy to be therapeutically effective: (1) targeting of cancer stem cells (CSC) and (2) development of combinatorial therapies to counteract the escape mechanisms driven by the genetic instability of tumor cells. With this in mind, in this chapter, we have reviewed recent information related to the distribution of CSPG4 on various types of tumors, including CSC, its expression on pericytes in the tumor microenvironment, its recognition by T cells, its role in cell biology as well as the potential mechanisms underlying the ability of CSPG4-specific immunity to control malignant cell growth.
Collapse
|
57
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Abstract
For in-transit melanoma confined to the extremities, regional chemotherapy in the form of hyperthermic isolated limb perfusion and isolated limb infusion are effective treatment modalities carrying superior response rates to current standard systemic therapy. Despite high response rates, most patients will eventually recur, supporting the role for novel research aimed at improving durable responses and minimizing toxicity. Although the standard cytotoxic agent for regional chemotherapy is melphalan, alternative agents such as temozolomide are currently being tested, with promising preliminary results. Current strategies for improving chemosensitivity to regional chemotherapy are aimed at overcoming classic resistance mechanisms such as drug metabolism and DNA repair, increasing drug delivery, inhibiting tumor-specific angiogenesis, and decreasing the apoptotic threshold of melanoma cells. Concurrent with development and testing of these agents, genomic profiling and biomolecular analysis of acquired tumor tissue may define patterns of tumor resistance and sensitivity from which personalized treatment may be tailored to optimize efficacy. In this article rational strategies for treatment of in-transit melanoma are outlined, with special emphasis on current translational and clinical research efforts.
Collapse
Affiliation(s)
- Ryan S. Turley
- Duke University, Department of Surgery, DUMC 3443, Durham, NC 27710,
| | | | - Douglas S. Tyler
- Professor of Surgery, Duke University, Department of Surgery, DUMC 3118, Durham, NC 27710,
| |
Collapse
|
59
|
Decoding melanoma metastasis. Cancers (Basel) 2010; 3:126-63. [PMID: 24212610 PMCID: PMC3756353 DOI: 10.3390/cancers3010126] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of morbidity and mortality associated with melanoma. Evidence suggests melanoma has a predilection for metastasis to particular organs. Experimental analyses have begun to shed light on the mechanisms regulating melanoma metastasis and organ specificity, but these analyses are complicated by observations of metastatic dormancy and dissemination of melanocytes that are not yet fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the site of the primary tumor and the site of metastasis, play important roles in mediating the metastatic process. As metastasis research moves forward, paradigms explaining melanoma metastasis as a step-wise process must also reflect the temporal complexity and heterogeneity in progression of this disease. Genetic drivers of melanoma as well as extrinsic regulators of disease spread, particularly those that mediate metastasis to specific organs, must also be incorporated into newer models of melanoma metastasis.
Collapse
|
60
|
Ko JM, Fisher DE. A new era: melanoma genetics and therapeutics. J Pathol 2010; 223:241-50. [PMID: 21125678 DOI: 10.1002/path.2804] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
We have recently witnessed an explosion in our understanding of melanoma. Knowledge of the molecular basis of melanoma and the successes of targeted therapies have pushed melanoma care to the precipice of a new era. Identification of significant pathways and oncogenes has translated to the development of targeted therapies, some of which have produced major clinical responses. In this review, we provide an overview of selected key pathways and melanoma oncogenes as well as the targeted agents and therapeutic approaches whose successes suggest the promise of a new era in melanoma and cancer therapy. Despite these advances, the conversion of transient remissions to stable cures remains a vital challenge. Continued progress towards a better understanding about the complexity and redundancy responsible for melanoma progression may provide direction for anti-cancer drug development.
Collapse
Affiliation(s)
- Justin M Ko
- Department of Dermatology, Harvard Medical School; Boston, MA 02114, USA
| | | |
Collapse
|