51
|
Chen J, Xiao L, Chen Y, Li W, Liu Y, Yi F, Zhou Y, Tan H. Butylphthalide alleviates sleep deprivation-induced cognitive deficit by regulating Nrf2/HO-1 pathway. Sleep Med 2022; 100:427-433. [PMID: 36244317 DOI: 10.1016/j.sleep.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE The purpose of this study was to assess the effects of butylphthalide on cognitive deficiencies following sleep deprivation (SD). METHODS The influence of butylphthalide on cognitive function changes in SD-induced mice was evaluated. Nissl staining and HE staining were used to analyze the morphology changes of the hippocampal formation. The changes in cognitive function of SD-induced mice were detected by the Morris water maze. Inflammatory factors, apoptosis, and signal pathway-related proteins in the mice hippocampus were detected. RESULTS SD increased escape latency and path length for mice to reach the hidden platform, decreased the time and range of activity in the target area, and reduced the number and time for traversing the target area. Butylphthalide significantly improved the cognitive decline of SD-induced spatial exploration and learning/memory ability. Butylphthalide also decreased the degeneration of hippocampal neurone, neuronal apoptosis, and inflammatory factors in hippocampus tissue. In addition, butylphthalide activated the nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1) pathway. CONCLUSION Butylphthalide alleviated SD-induced cognitive decline, neuronal apoptosis, and inflammation by activating Nrf2/HO-1 pathway. We suggested that butylphthalide may be a prospective candidate for the alleviation of cognitive deficit induced by SD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China.
| | - Lijun Xiao
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Ying Chen
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Wei Li
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Yinan Liu
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Fang Yi
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Ying Zhou
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Hong Tan
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| |
Collapse
|
52
|
Liu Z, Lu W, Gao L, Guo X, Liu J, Gao F, Huo K, Wang J, Qu Q. Protocol of End-PSCI trial: a multicenter, randomized controlled trial to evaluate the effects of DL-3-n-butylphthalide on delayed-onset post stroke cognitive impairment. BMC Neurol 2022; 22:435. [PMID: 36384493 PMCID: PMC9667601 DOI: 10.1186/s12883-022-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Delayed-onset post stroke cognitive impairment (PSCI) results from secondary neurodegeneration induced by stroke. Whereas targeted prevention or treatment strategies are still missing due to lack of evidences. This trial aims to evaluate the preventive effects of DL-3-n-butylphthalide (NBP) on delayed-onset PSCI. Methods Effects of NBP on Delayed-onset Post Stroke Cognitive Impairment (End-PSCI) is a prospective, parallel-group, open-label, multicenter, randomized controlled trial with blinded outcome assessment. Hospital patients with acute cerebral infarction (within 2 weeks of onset) will be randomized into either standard medical therapy group or standard medical therapy combined NBP treatment group (NBP 200 mg, three times per day for 24 weeks). The primary outcome is the difference of incidence of delayed-onset PSCI between two groups. The secondary outcomes include difference of white matter degeneration, cognitive scores and prevalence of early-onset PSCI between two groups. Discussion End-PSCI trial will provide evidences for NBP preventing delayed-onset PSCI. The secondary outcomes will also provide valuable insights into the pathogenesis of delayed-onset PSCI and mechanism of NBP’s actions. Trial registration Trialsearch.who.int, ChiCTR2000032555, 2020/5/2, prospectively registered.
Collapse
|
53
|
Liu S, Li F, Yang J, Xie D, Yue C, Luo W, Hu J, Song J, Li L, Huang J, Zhao C, Gong Z, Yang Q, Zi W. Efficacy and safety of 3-n-butylphthalide combined with endovascular treatment in acute ischemic stroke due to large vessel occlusion. CNS Neurosci Ther 2022; 28:2298-2307. [PMID: 36184804 PMCID: PMC9627349 DOI: 10.1111/cns.13978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The drug 3-n-butylphthalide (NBP) was developed and approved in China, where it has been used to treat ischemic cerebrovascular diseases. It is also considered to have a neuroprotective effect. This study aimed to evaluate whether NBP combined with endovascular treatment (EVT) can improve the clinical outcome and safety in patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO). METHODS Data from three studies of patients treated with EVT for AIS due to LVO were combined in this study. Patients of LVO undergoing EVT were dichotomized into NBP and non-NBP subgroups. The primary efficacy outcome was the shift of the modified Rankin Scale (mRS) score at 90 days. The secondary efficacy outcome included favorable functional outcomes, functional independence, and excellent outcome (defined as an mRS score of 3 or less) at 90 days. Safety outcomes included mortality within 90 days and symptomatic intracranial hemorrhage (sICH) within 48 h. RESULTS A total of 1820 patients undergoing EVT were included in this study; 628 (37.5%) patients received NBP treatment, whereas 1138 (62.5%) did not. After adjusting for multiple factors, NBP was associated with the improvement of functional outcomes at 90 days (adjusted common odds ratio [OR]: 1.503; 95% confidence interval (CI): 1.254-1.801; p < 0.001). NBP was associated with a higher rate of 90-day favorable outcomes (adjusted OR: 1.589; 95% CI: 1.251-2.020; p < 0.001) and a lower rate of 90-day mortality (adjusted OR: 0.486 [95% CI: 0.372-0.635]; p < 0.001). sICH occurred in 74 of 682 (10.9%) patients in the NBP group and 155 of 1126 (13.8%) patients in the non-NBP group; no statistical difference was detected (adjusted OR: 0.787 [95% CI: 0.567-1.092]; p = 0.152). CONCLUSION Among patients with AIS due to LVO, NBP combined with EVT is associated with better functional outcomes and reduced mortality risk without increasing the risk of sICH.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Fengli Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jie Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Dongjie Xie
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Chengsong Yue
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Weidong Luo
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jinrong Hu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jiaxing Song
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Linyu Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jiacheng Huang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Chenhao Zhao
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Zili Gong
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Wenjie Zi
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| |
Collapse
|
54
|
Clinical Trials of New Drugs for Vascular Cognitive Impairment and Vascular Dementia. Int J Mol Sci 2022; 23:ijms231911067. [PMID: 36232368 PMCID: PMC9569827 DOI: 10.3390/ijms231911067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Population aging has challenged the treatment of cognitive impairment or dementia. Vascular dementia is the second leading cause of dementia after Alzheimer’s disease. Cognitive consequences after ischemic brain injury have been recognized as a preferred target for therapeutic strategies, prompting the search for potential agents. The keyword “vascular dementia” was used to search ClinicalTrials.gov to determine agents represented in phases I, II, III, and IV. The agents were classified on the basis of their mechanisms. Of the 17 randomized controlled trials meeting our inclusion criteria, 9 were completed in the past 10 years, and 8 are ongoing or in the planning stages. We also identified one trial in phase I, nine in phase II, six in phase III, and one in phase IV. Fewer trials of new drugs for improving cognition or ameliorating the behavioral and psychological symptoms of dementia target vascular dementia than Alzheimer’s dementia. Drug trials on vascular dementia overlap with drug trials targeting functional outcomes in cerebrovascular disease. International pharmaceutical companies’ investment in new drugs targeting VCI and vascular dementia remains insufficient.
Collapse
|
55
|
Lv J, Zhao D, Zhao G, Xie Z. Efficacy and safety of butylphthalide in secondary prevention of stroke: study protocol for a multicenter, real world trial based on Internet. BMC Neurol 2022; 22:305. [PMID: 35986234 PMCID: PMC9389750 DOI: 10.1186/s12883-022-02815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background As one of the leading causes of morbidity and mortality, stroke and its recurrence has attracted more and more attention. Dl-3-n-butylphthalidle(NBP) has been widely used for treating acute ischemic stroke in China and shows a great clinical effect. NBP plays a role in different pathophysiological processes in the treatment of ischemic stroke, including antioxidants, anti-inflammatory, anti-apoptotic, anti-thrombosis, and mitochondrial protection. Many randomized, double-blind, placebo-controlled, multicenter clinical trials suggest that NBP is a safe and effective treatment for ischemic stroke. To sum up, the current research is mainly focused on the short-term treatment of stroke patients with RCT (randomized controlled trial). Therefore, we designed this study to confirm the role of butylphthalide in secondary stroke prevention in the real world. Methods This study will be a multicenter, prospective real-world trial. We would recruit 8000 patients with ischemic stroke from 78 public hospitals in China. All participants will be allocated to one of two parallel treatment groups according to their own wills: (1) butylphthalide group: 0.2 g of butylphthalide capsules three times daily plus routine treatment (aspirin 50-300 mg/d, clopidogrel 75 mg/d, etc.); (2) control group: routine treatment (aspirin 50-300 mg/d, clopidogrel 75 mg/d, etc.). Treatment duration is 90 consecutive days or more. The primary outcome is recurrence rate of stroke within 1 month, 3 months, 6 months and 1 year in butylphthalide group and control group. The secondary outcomes included NIHSS score, the mRS score, other clinical cardiovascular events within one year (sudden death / myocardial infarction / arrhythmia / heart failure, etc.), and adverse events of patients in groups. NIHSS will be captured in the first month after discharge, and the others will be captured at the same time points as the primary end point. Discussion This trial will be exploring the efficacy and safety of butylphthalide in secondary prevention of ischemic stroke to expand the scope of application of butylphthalide soft capsules and provide new ideas for enriching the secondary prevention of stroke. Trial registration Chinese Clinical Trial Registry (ChiCTR). Trial registration number: ChiCTR2000034481. Registered on 6 July 2020, http://www.chictr.org.cn/showproj.aspx?proj=55800 Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02815-x.
Collapse
|
56
|
Sun M, Jiang C, Hao X, Pang J, Chen C, Xiang W, Zhang J, Zhao S, Wang P, Geng S, Wang H, Li Y, Wang B. Long-term L-3-n-butylphthalide pretreatment attenuates ischemic brain injury in mice with permanent distal middle cerebral artery occlusion through the Nrf2 pathway. Heliyon 2022; 8:e09909. [PMID: 35874077 PMCID: PMC9305368 DOI: 10.1016/j.heliyon.2022.e09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 10/25/2022] Open
Abstract
L-3-n-butylphthalide (NBP), which is used for treatment of mild and moderate acute ischemic stroke, exerts its effects by modulating the Nrf2 pathway. However, it has not been established whether NBP exerts its preventive effects in high-risk ischemic stroke patients through the Nrf2 pathway. We investigated whether NBP exerts its preventive effects through the Nrf2 pathway in long-term NBP pretreated dMCAO mice models. Nrf2+/+ wild-type and Nrf2-/- knockout mice were randomized into the vehicle group (equal volume vegetable oil), NBP-low-dose group (20 mg/kg) and NBP-high-dose group (60 mg/kg). The drug was administered once daily by gavage for a month. Then, a permanent distal middle cerebral artery occlusion model (dMCAO) was established after pretreatment with NBP. Neurological deficits, cerebral infarct volumes, brain water contents, activities of SOD, GSH-Px and MDA levels were determined. Further, axonal injury and demyelination, expression levels of Nrf2, HO-1 and NQO1 in ischemic brains were determined. Long-term NBP pretreatment significantly improved neurological functions, reduced cerebral infarction volumes, reduced brain water contents, increased SOD, GSH-Px activities, decreased MDA contents, reduced neurological injuries, axonal damage as well as demyelination, while increasing Nrf2, HO-1 and NQO1 mRNA as well as protein expressions in dMCAO mice models.
Collapse
Affiliation(s)
- Mingying Sun
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Changchun Jiang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Xiwa Hao
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Chao Chen
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Wenping Xiang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Jun Zhang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Po Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Shangyong Geng
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Hanzhang Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Yuechun Li
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| |
Collapse
|
57
|
Zhang Y, Lu W, Xu N. Effects of butyphthalide on microglia polarization after intracerebral hemorrhage and the underlying mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:717-729. [PMID: 35837771 PMCID: PMC10930025 DOI: 10.11817/j.issn.1672-7347.2022.210527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Because intracerebral hemorrhage (ICH) has high morbidity, disability and mortality, it is significant to find new and effective treatments for ICH. This study aims to explore the effect of butyphthalide (NBP) on neuroinflammation secondary to ICH and microglia polarization. METHODS A total of 48 healthy male SD rats were randomly divided into 6 groups: a sham 24 h group, a sham 72 h group, an ICH 24 h group, an ICH 72 h group, an ICH+NBP 24 h group, and an ICH+NBP 72 h group (8 rats per group). After operation, the neurological deficiencies were assessed based on improved Garcia scores and corner test. The expressions of Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), aquaporin-4 (AQP4), zonula occludens-1 (ZO-1), occludin, CD68, CD86, and CD206 were observed by Western blotting. Inflammatory cytokines were detected by ELISA. The immunofluorescence was to detect the polarization of microglia. RESULTS 1) Compared with the sham groups, the expression of TLR4 (24 h: P<0.05; 72 h: P<0.01), NF-κB (both P<0.01) and Nrf2 (both P<0.01) in the perihematoma of the ICH group was increased, leading to microglia activation (P<0.01). The expressions of IL-6 (24 h: P<0.05; 72 h: P<0.01) and TNF-α (both P<0.01), the pro-inflammatory cytokines were up-regulated, and the expression of anti-inflammatory cytokine IL-4 was down-regulated (both P<0.01). Besides, the expression of AQP4 was enhanced (both P<0.01). The protein level of tightly connected proteins (including ZO-1, occludin) was decreased (all P<0.01). The neurological function of the rats in the ICH group was impaired in the 2 time points (both P<0.01). 2) Compared with the sham group at 24 h and 72 h after the intervention of NBP, the expressions of TLR4 (both P<0.05) and NF-κB (both P<0.01) were significantly declined, and the expression of Nrf2 was further enhanced (both P<0.05) in the perihematoma of the ICH+NBP group. Furthermore, the expression of M1 microglia marker was inhibited (P<0.05), and the polarization of microglia to the M2 phenotype was promoted (P<0.01). 3) In terms of inflammation after ICH, the IL-4 expression in the ICH+NBP group was increased compared with the ICH group (24 h: P<0.05; 72 h: P<0.01); the expression of IL-6 was decreased significantly in the ICH+NBP 72 h group (P<0.01); the level of AQP4 was declined significantly in the ICH+NBP 24 h group (P<0.05), there was a downward trend in the 72-hour intervention group but without significant statistical difference. 4) Compared with the ICH group, the ZO-1 protein levels were increased (24 h: P<0.05; 72 h: P<0.01), and the symptoms of nerve defect were improved eventually (both P<0.05) in the ICH+NBP groups. CONCLUSIONS After ICH, the TLR4/NF-κB pathway is activated. The M1 microglia is up-regulated along with the release of detrimental cytokines, while the anti-inflammatory cytokines are down-regulated. The expression of AQP4 is increased, the tight junction proteins from the blood-brain barrier (BBB) is damaged, and the neurological function of rats is impaired. On the contrary, NBP may regulate microglia polarization to M2 phenotype and play a role in the neuroprotective effect mediated via inhibiting TLR4/NF-κB and enhancing Nrf2 pathways, which relieves the neuroinflammation, inhibits the expression of AQP4, repairs BBB, and improves neurological functional defects.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Wei Lu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Niangui Xu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
58
|
Li G, Ruan L, Meng H, Liu W, Zhong X, Yu J, Zhang L, Zhu M, Wang J. 1H NMR Spectroscopy-Based Metabolomics Approach to Study the Anti-Stroke Activity of G-3702, a Novel Better Alternative to DL-3-n-Butylphthalide. Neurochem Res 2022; 47:3024-3036. [PMID: 35737204 DOI: 10.1007/s11064-022-03648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Cerebrovascular disease is the leading cause of disability and death, and ischemic stroke accounts for most stroke cases. However, few effective drugs are available for the treatment of ischemic stroke; thus, there is an urgent need to develop effective drugs to treat ischemic stroke. DL-3-n-butylphthalide (NBP) is clinically approved as an anti-ischemic drug in China, but its potential hepatotoxicity limits its use. G-3702 (a structural analogue of NBP) is synthesized with the boron hydroxyl group replacing carbonyl group. G-3702 significantly enhanced the survival of middle cerebral artery occlusion (MCAO) rats, decreased neurobehavioral deficit scores and cerebral infarct volume, comparable with NBP, which was also supported by tissue damage assessment, immunohistochemistry staining, biochemical parameters and ELISA assay. G-3702 showed better anti-stroke activity than NBP according to 1H NMR spectroscopy-based metabolomics analysis, demonstrating the feasibility of metabolomics approach to assess drug efficacy. G-3702 markedly ameliorated energy metabolism, attenuated oxidative and inflammatory stress during ischemia/reperfusion (I/R). G-3702 exhibited good neuroprotective effects against I/R induced injury and favorable little possibility of hepatotoxicity, which made it a promising anti-stroke drug and better NBP alternative.
Collapse
Affiliation(s)
- Guanghui Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Lingyu Ruan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Huihui Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Wenya Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Xinyu Zhong
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Jinran Yu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Lin Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Minqiang Zhu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
59
|
Zhao Y, Yang WQ, Yu L, Yang J, Zhu HR, Zhang L. Dl-3-n-butylphthalide alleviates cognitive impairment in amyloid precursor protein/presenilin 1 transgenic mice by regulating the striatal-enriched protein tyrosine phosphatase/ERK/cAMP-response element-binding protein signaling pathway. Exp Ther Med 2022; 23:319. [PMID: 35350668 PMCID: PMC8943801 DOI: 10.3892/etm.2022.11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and the deposition of amyloid plaques in the brain. In a transgenic mouse model of AD, cognitive impairment and synaptic dysfunction were revealed to be associated with soluble amyloid oligomers and to occur prior to plaque formation. The results of our previous studies revealed that striatal-enriched protein tyrosine phosphatase (STEP)61 negatively regulated the β-amyloid protein-mediated ERK/cAMP-response element-binding protein (CREB) signaling pathway. Dl-3-n-butylphthalide (NBP) is a synthetic compound approved by the Food and Drug Administration of China for the treatment of ischemic stroke in 2002. Studies have shown that the neuroprotective effects of NBP involve multiple mechanisms. The present study further explored the mechanism of NBP therapy in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, and the involvement of the STEP/ERK/CREB signaling pathway. The results suggested that NBP treatment effectively ameliorated the spatial learning and memory impairment of the APP/PS1 transgenic mice, which was assessed using a Morris water maze. In addition, NBP reduced amyloid-induced activation of STEP61 levels, while increasing phosphorylated (p)-ERK1/2 and p-CREB levels in the cerebral cortex and hippocampus of APP/PS1 transgenic mice by western blotting and immunostaining. In conclusion, the present study provided evidence to suggest that the new drug NBP improved amyloid-induced learning and memory deficits, likely through the regulation of the STEP/ERK/CREB pathway. The results revealed that NBP, as a multi-target drug, may exert a neuroprotective effect. Therefore, NBP may serve as an effective treatment for AD.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science Institution, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Wen-Qiang Yang
- Life Science Institution, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lu Yu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hai-Rong Zhu
- Department of Neurology, Affiliated Taizhou Hospital of Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Lin Zhang
- Department of Neurology, Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China,Correspondence to: Dr Lin Zhang, Department of Neurology, Affiliated Wenling Hospital of Wenzhou Medical University, 333 Chuan'an South Road, Chengxi Street, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
60
|
Li K, Zhang Q, Lu X, Yao S. Effects of Butylphthalide Sodium Chloride Injection Combined with Edaravone Dexborneol on Neurological Function and Serum Inflammatory Factor Levels in Sufferers Having Acute Ischemic Stroke. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1509407. [PMID: 35463675 PMCID: PMC9020939 DOI: 10.1155/2022/1509407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
For investigating an influence on butylphthalide sodium chloride injection combined with edaravone dexborneol on neurological function and serum inflammatory factor levels in sufferers having acute ischemic stroke, 120 sufferers having acute ischemic stroke from September 2020 to September 2021 are chosen for the study subjects. In line with the diverse therapies, they took part in a control group and the study group, with 60 examples in each group. The control group is treated with edaravone dexborneol, and the study group is treated with butylphthalide sodium chloride injection, based on the control group. The posttreatment curative efficacy on the two groups is recorded, and treatment of both the two groups is compared. Before and after neurological function indexes (NIHSS and mRS), inflammatory factor indexes (IL-6, CRP, and TNF-α), life quality index (Barthel index), hemorheological indexes (plasma-specific viscosity), and neurological levels of NSE are logged and contrasted between the two groups of adverse reactions during therapy. Postcure, the overall response rate and Barthel index of the study group obviously overtop those of the control group (p < 0.05). IL-6, CRP, TNF-α, NSE, plasma specific viscosity, and NIHSS and mRS scores obviously hypodown those of the control group (p < 0.05), and untoward effects on the two groups during curing are lower, and the discrepancy is not obvious(p > 0.05). Butylphthalide sodium chloride injection combined with edaravone dexborneol can enhance curative efficacy on sufferers having acute ischemic stroke, improve neurological function, blood rheology, and quality of life, and decrease the secretion of cytokine, having a better effect and high medication safety.
Collapse
Affiliation(s)
- Keliang Li
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qiting Zhang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xuesheng Lu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shengqi Yao
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
61
|
Liu B, Zhao T, Li Y, Han Y, Xu Y, Yang H, Wang S, Zhao Y, Li P, Wang Y. Notoginsenoside R1 ameliorates mitochondrial dysfunction to circumvent neuronal energy failure in acute phase of focal cerebral ischemia. Phytother Res 2022; 36:2223-2235. [PMID: 35419891 DOI: 10.1002/ptr.7450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/03/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Due to sudden loss of cerebral blood circulation, acute ischemic stroke (IS) causes neuronal energy attenuation or even exhaustion by mitochondrial dysfunction resulting in aggravation of neurological injury. In this study, we investigated if Notoginsenoside R1 ameliorated cerebral energy metabolism by limiting neuronal mitochondrial dysfunction in acute IS. Male Sprague-Dawley rats (260-280 g) were selected and performed by permanent middle cerebral artery occlusion model. In vitro, the oxygen glucose deprivation (OGD) model of Neuro2a (N2a) cells was established. We found Notoginsenoside R1 treatment reduced rats' cerebral infarct volume and neurological deficits, with increased Adenosine triphosphate (ATP) level together with upregulated expression of glucose transporter 1/3, monocarboxylate transporter 1 and citrate synthase in brain peri-ischemic tissue. In vitro, OGD-induced N2a cell death was inhibited, cell mitochondrial morphology was improved. Mitochondrial amount, mitochondrial membrane potential, and mitochondrial DNA copy number were increased by Notoginsenoside R1 administration. Furthermore, mitochondrial energy metabolism-related mRNA array found Atp12a and Atp6v1g3 gene expression were upregulated more than twofold, which were also verified in rat ischemic tissue by quantitative polymerase chain reaction (qPCR) assay. Therefore, Notoginsenoside R1 administration increases cerebral glucose and lactate transportation and ATP levels, ameliorates neuronal mitochondrial function after IS. Notoginsenoside R1 may be a novel protective agent for neuronal mitochondria poststroke.
Collapse
Affiliation(s)
- Bowen Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| |
Collapse
|
62
|
Role of Butylphthalide in Immunity and Inflammation: Butylphthalide May Be a Potential Therapy for Anti-Inflammation and Immunoregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7232457. [PMID: 35422893 PMCID: PMC9005281 DOI: 10.1155/2022/7232457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction, alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection, antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function of NBP in various disorders.
Collapse
|
63
|
CaMKIIα Signaling Is Required for the Neuroprotective Effects of Dl-3-n-Butylphthalide in Alzheimer's Disease. Mol Neurobiol 2022; 59:3370-3381. [PMID: 35305243 DOI: 10.1007/s12035-022-02777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and most anti-AD drugs have failed in clinical trials; hence, it is urgent to find potentially effective drugs against AD. DL-3-n-butylphthalide (NBP) is a compound extracted from celery seed and is a multiple-target drug. Several studies have demonstrated the neuroprotective effects of NBP on cognitive impairment, but the mechanisms of NBP remains relatively unexplored. In this study, we found that NBP could alleviated the increase of intracellular Ca2+ and reversed down-regulation of Ca2+/calmodulin-dependent protein kinase alpha (CaMKIIα) signaling and rescued neuronal apoptosis in SH-SY5Y cells treated by Aβ oligomers. However, these neuroprotective effects of NBP on neuronal damage and CaMKIIα signaling were abolished when CaMKIIα expression was knocked down or its activity was inhibited. Thus, our findings suggested that CaMKIIα signaling was required for the neuroprotective effects of NBP in AD and provided an improved basis for elucidating the mechanism and treatment of NBP in AD.
Collapse
|
64
|
ZHANG X, GUO D, ZHANG X, ZHANG W, WANG T, ZHANG L. Three-N-butyphthalide alleviates early brain injury caused via subarachnoid hemorrhage via activating the LKB-1/ (AMP-activated protein kinase) pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.86321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
65
|
Xiong Y, Liu J, Xu Y, Xie S, Zhou X, Cheng S. Butylphthalide Combined With Conventional Treatment Attenuates MMP-9 Levels and Increases VEGF Levels in Patients With Stroke: A Prospective Cohort Study. Front Neurol 2021; 12:686199. [PMID: 34987460 PMCID: PMC8720749 DOI: 10.3389/fneur.2021.686199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose: Butylphtalide increases the vascular endothelial growth factor (VEGF) and decreases matrix metalloproteinase (MMP)-9 in animal models of stroke and might be of use in the management of stroke. To explore whether butylphthalide combined with conventional treatment can change the levels of MMP-9 and VEGF and the National Institutes of Health Stroke Scale (NIHSS) scores of patients with stroke. Methods: This was a prospective cohort study involving inpatients admitted to the Jiangxi Provincial People's Hospital (January–June 2019) due to acute cerebral infarction. The patients received conventional treatments with or without butylphthalide. The changes in the NIHSS scores were compared between groups. Plasma MMP-9 and VEGF were measured by enzyme-linked immunosorbent assay. Results: A total of 24 patients were included in the conventional treatment group and 46 in the butylphthalide group. The butylphthalide group showed lower MMP-9 (130 ± 59 vs. 188 ± 65, p = 0.001) and higher VEGF (441 ± 121 vs. 378 ± 70, p = 0.034) levels on day 6 compared with the conventional treatment group. The changes in MMP-9 and VEGF were significant, starting on day 3 in the butylphthalide group but on day 6 in the conventional treatment group. There were no differences between the two groups in the NIHSS scores at admission and at discharge (p > 0.05). The overall response rate was higher in the butylphthalide group compared with the conventional treatment group (63.0 vs. 37.5%, p = 0.042). Conclusion: Butylphthalide combined with conventional treatment can decrease MMP-9 levels and increase VEGF levels. The patients showed the reduced NIHSS scores, possibly suggesting some improvement in prognosis after stroke. Still, the conclusions need to be confirmed in a larger sample and in different etiological subtypes of stroke.
Collapse
Affiliation(s)
- Yingqiong Xiong
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Juanjuan Liu
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yang Xu
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shu Xie
- Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Shaomin Cheng
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- *Correspondence: Shaomin Cheng
| |
Collapse
|
66
|
Xue Y, Ren X, Zhu Z, Lei P, Liu M, Wan M, Zhong D, Huang H, Diao X. Site-specific protein modification by 3-n-butylphthalide in primary hepatocytes: Covalent protein adducts diminished by glutathione and N-acetylcysteine. Life Sci 2021; 287:120125. [PMID: 34762904 DOI: 10.1016/j.lfs.2021.120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
AIMS 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.
Collapse
Affiliation(s)
- Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Institute of Big Data Research, Beijing 100871, China
| | - Peng Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengling Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mimi Wan
- Waters Technology (Shanghai), Co., Ltd, Shanghai 201203, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
67
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
68
|
Wei ZZ, Chen D, Lee MJH, Zhao Y, Gu X, Yu SP, Wei L. DL-3-n-butylphthalide Increases Collateriogenesis and Functional Recovery after Focal Ischemic Stroke in Mice. Aging Dis 2021; 12:1835-1849. [PMID: 34631224 PMCID: PMC8460296 DOI: 10.14336/ad.2020.1226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/26/2020] [Indexed: 12/25/2022] Open
Abstract
Recent evidence indicates that collateral circulation is critical for the outcome of ischemic stroke. DL-3-n-butylphthalide (NBP), a synthesized compound based on an extract from seeds of celery Apium graveolens Linn, has been used as a therapeutic drug, showing multiple neuroprotective and regenerative activities. A potential effect of NBP on collateral arterial regulation is unknown. We examined the effects of NBP on arteriogenesis of collateral arteries in vitro and a mouse ischemic stroke model. In cultures of mouse iPS cell-derived vascular progenitors, NBP (10 μM) significantly increased α-smooth muscle actin (αSMA)/CD-31 co-labeled cells and the expression of newly formed vasculature marker PDGFRα. A sensorimotor cortex ischemia was induced in transgenic mice expressing αSMA-GFP that allowed direct observation of arterial vasculatures in brain regions. NBP (80 mg/kg) was intranasally delivered 1 hr after stroke and once daily for 14 days. To label proliferating cells, 5-Bromo-2’-deoxyuridine (BrdU, 50 mg/kg, i.p.) was administrated every day from 3 days after stroke. Western blotting of peri-infarct tissue detected increased expressions of VEGF, Ang-1 and reduced nNOS level in NBP-treated mice. The NBP treatment significantly increased αSMA/BrdU co-labeled cells, the diameter of ipsilateral collaterals, and arterial area in ischemic and peri-infarct regions examined 14 days after stroke. Examined 3 days after stroke, NBP prevented functional deficits in the cylinder test and corner test. The NBP treatment of 14 days improved the local cerebral blood flow (LCBF) and functional performance in multiple tests. Thus, NBP promotes collateriogenesis, short and long-term structural and functional improvements after ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew Joong H Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingying Zhao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
69
|
Wang G, Ma D, Wang R. Effect of butylphthalide on serum CRP, PARK7, NT-3 and neurological function in patients with acute cerebral infarction. Am J Transl Res 2021; 13:10388-10395. [PMID: 34650707 PMCID: PMC8507030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The effects of butylphthalide on serum C-reactive protein (CRP), Parkinson disease protein 7 (PARK7), and neurotrophin-3 (NT-3) levels, and neurological function in patients with acute cerebral infarction (ACI) were explored in order to provide a reference for clinical treatment of the disease. METHODS One hundred and twenty patients with ACI treated in our hospital from September 2016 to June 2018 were selected and randomized into the control group and the study group, with 60 cases in each group. Patients in the control group were treated with conventional therapy, while those in the study group were treated with butylphthalide. Clinical efficacy, serum levels of CRP, PARK7, and NT-3, as well as the scores of National Institutes of Health Stroke Scale (NIHSS), Fugl-Meyer Assessment (FMA), and Barthel Index (BI) before and 2 months after treatment were analyzed and compared between the two groups. RESULTS The study group had a significantly higher effective rate (93.33%) than the control group (73.33%; P<0.05). Before treatment, differences in serum CRP, PARK7, NT-3, IL-6, IL-8, and IL-10 levels between the study group and the control group were barely notable (P>0.05). After treatment, the study group observed lower serum levels of CRP, PARK7, IL-6, IL-8, and a higher levels of IL-10, NT-3 in comparison with those of the control group (P<0.05). Before treatment, NIHSS, FMA, and BI scores between the two groups did not show significant differences (P>0.05). After treatment, the study group yielded a remarkably lower NIHSS score and higher FMA and BI scores than the control group (P<0.05). CONCLUSION Butylphthalide is effective in the treatment of ACI. It can effectively facilitate the recovery of neurological and motor functions of patients, enhance their quality of life and improve serum CRP, PARK7, and NT-3 levels, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Guangmin Wang
- Department of Neurosurgery, Pingyi County People’s HospitalPingyi, Linyi, Shandong, China
| | - Dandan Ma
- Department of Anesthesiology, Yidu Central HospitalWeifang, Shandong, China
| | - Runli Wang
- Department of Neurology, Pingyi County People’s HospitalPingyi, Linyi, Shandong, China
| |
Collapse
|
70
|
Xu J, Tang Z, He Y, Cai S, Wang B, Zhang S, Wu M, Qian K, Zhang K, Chai B, Chen G, Xu K, Ji H, Xiao J, Wu Y. Dl-3-n-Butylphthalide Ameliorates Diabetic Nephropathy by Ameliorating Excessive Fibrosis and Podocyte Apoptosis. Front Pharmacol 2021; 12:628950. [PMID: 34497508 PMCID: PMC8419457 DOI: 10.3389/fphar.2021.628950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a common diabetes associated complication. Thus, it is important to understand the pathological mechanism of DN and find the appropriate therapeutic strategy for it. Dl-3-n-Butylphthalide (DL-NBP) has anti-inflammatory and antioxidant effects, and been widely used for the treatment of stroke and cardiovascular diseases. In this study, we selected three different doses (20, 60, and 120 mg⋅kg-1 d-1) of DL-NBP and attempted to elucidate its role and molecular mechanism underlying DN. We found that DL-NBP, especially at the dose of 60 or 120 mg⋅kg-1 d-1, could significantly ameliorate diabetes-induced elevated blood urea nitrogen (BUN) and creatinine level, and alleviate renal fibrosis. Additionally, the elevated expressions of collagen and α-smooth muscle actin (α-SMA) in the kidney from db/db mice were found to be significantly suppressed after DL-NBP treatment. Furthermore, mechanistic studies revealed that DL-NBP inhibits pro-inflammatory cytokine levels, thereby ameliorating the development of renal fibrosis. Moreover, we found that DL-NBP could not only reduce the endoplasmic reticulum stress (ERS), but also suppress activation of the renin-angiotensin system to inhibit vascular endothelial growth factor (VEGF) level, which subsequently reduces the podocyte apoptosis in kidney of db/db mice. In a word, our findings suggest that DL-NBP may be a potential therapeutic drug in the treatment of DN.
Collapse
Affiliation(s)
- Jingyu Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Zonghao Tang
- Drug Discovery Research Center, Key Laboratory of Medical Electrophysiology of Ministry of Education, Southwest Medical University, Luzhou, China
| | - Youwu He
- Department of hand and plastic surgery, The First People's Hospital of Yuhang District, Hangzhou, China
| | - Shufang Cai
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Beini Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Susu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Man Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kai Qian
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Kailun Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bo Chai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hao Ji
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
71
|
Zheng B, Jin Y, Mi S, Xu W, Yang X, Hong Z, Wang Z. Dl-3-n-butylphthalide Attenuates Spinal Cord Injury via Regulation of MMPs and Junction Proteins in Mice. Neurochem Res 2021; 46:2297-2306. [PMID: 34086144 DOI: 10.1007/s11064-021-03361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
As a serious trauma of the neurological system, spinal cord injury (SCI) results in permanent disability, gives rise to immediate vascular damage and a wide range of matters that induce the breakage of blood spinal cord barrier (BSCB). SCI activates the expression of MMP-2/9, which are considered to accelerate the disruption of BSCB. Recent research shows that Dl-3-n-butylphthalide (NBP) exerted protective effects on blood spinal cord barrier in animals after SCI, but the underlying molecular mechanism of NBP on the BSCB undergoing SCI is unknown. Here, our research show that NBP inhibited the expression of MMP-2/9, then improved the permeability of BSCB following SCI. After the T9 level of spinal cord performed with a moderate injury, NBP was managed by intragastric administration and further performed once a day. NBP remarkably improved the permeability of BSCB and junction proteins degration, then promoted locomotion recovery. The protective effect of NBP on BSCB destruction is related to the regulation of MMP-2/9 induced by SCI. Moreover, NBP obviously inhibited the MMP-2/9 expression and junction proteins degradation in microvascular endothelial cells. In conclusion, our results indicate that MMP-2/9 are relevant to the breakdown of BSCB, NBP impairs BSCB destruction through inhibiting MMP-2/9 and promotes functional recovery subjected to SCI. NBP is likely to become a new nominee as a therapeutic to treat SCI via a transigent BSCB.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Yanjun Jin
- Nursing Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Shuang Mi
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Wei Xu
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Xiangdong Yang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
72
|
Liu B, Li Y, Han Y, Wang S, Yang H, Zhao Y, Li P, Wang Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153660. [PMID: 34344565 DOI: 10.1016/j.phymed.2021.153660] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The leakage of blood-brain barrier (BBB) is main pathophysiological change in acute stage of ischemic stroke, which not only deteriorates neurological function, but also increases the risk of hemorrhagic transformation after thrombolysis. PURPOSE/STUDY DESIGN This article investigates the efficacy of Notoginsenoside R1, an active ingredient of Panax notoginseng, on BBB permeability and explores related mechanisms after acute ischemic stroke. METHODS In vivo, male Sprague-Dawley rats (260-280 g) were selected and randomly divided into 6 groups: sham group, model group, low, middle and high doses of Notoginsenoside R1 groups and positive drug Dl-3-n-Butylphthalide group. Except for sham group, rats were performed with permanent middle cerebral artery occlusion model in each group. Twelve hours later, rats were evaluated for Bederson neurological function, and BBB integrity by Evans blue leak imaging; Triphenyltetrazolium chloride staining was used to detect the volume of cerebral infarction. Frozen sections of rats' brain tissue were prepared for detection of MMPs activity in situ zymography. Peripheral tissue of cerebral infarction was collected and tested the expression of MMP2, 9 and tight junction proteins (zo1, claudin5, occludin) by western blot. In vitro, transwell endothelial barrier model was established by bEnd.3 cells. Oxygen glucose deprivation (OGD) was chosen to simulate the hypoxic environment. Suitable OGD stimulation time as well as Notoginsenoside R1 and Dl-3-n-Butylphthalide optimal dose concentrations were determined through transwell leakage and CCK8 assay. Furthermore, endothelial subcellular component proteins were extracted. The change of zo1, claudin5, occludin and caveolin1 was detected by western blot. RESULTS Notoginsenoside R1 treatment significantly reduced BBB leakage and cerebral infarction volume, weakened neurological deficits in post-stroke rats. Moreover, it inhibited the activity of MMPs in infarcted cortex and striatum, down-regulated MMP2, 9 and up-regulated zo1 and claudin5 expressions in penumbra. In vitro, Notoginsenoside R1 treatment decreased OGD-induced endothelial barrier permeability, restored expressions of zo1, claudin5 on cellular membrane and cytoplasm, as well as mediated membrane redistribution of occludin and caveolin1 from actin cytoskeletal fraction. CONCLUSIONS Notoginsenoside R1 treatment attenuates BBB permeability, cerebral infarction volume and neurological impairments in rats with acute cerebral ischemia. The mechanisms might be related to intervening degradation and redistribution of zo1, caludin5 and occludin by caveolin1/ MMP2/9 pathway. More effects and mechanisms of Notoginsenoside R1 on rehabilitation of stroke are worthy to be explored in the future.
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
73
|
Huang YT, Hong FF, Yang SL. Atherosclerosis: The Culprit and Co-victim of Vascular Dementia. Front Neurosci 2021; 15:673440. [PMID: 34421513 PMCID: PMC8377286 DOI: 10.3389/fnins.2021.673440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular dementia (VD), a cerebrovascular disease which causes cognitive impairment, is one of the significant factors that affects the quality of senectitude. Atherosclerosis (AS) is a chronic inflammatory syndrome and closely associated with VD. Analyzing the role of AS in VD contribute greatly to its early detection and prevention, but their relationship has not been integrated into a complete network. This review summarizes AS biomarkers as VD predictors for the first time and describes the direct mechanisms of AS causing VD from five aspects: vascular morphogenesis, hemodynamic change, neurovascular unit damage (NVU), oxidative stress, and microRNA (miRNA). Finally, it discriminates the relationship between AS and VD in common risk factors which can be disease or some molecules. In particular, these data imply that the role of AS in VD is not only a pathogenic factor but also a comorbidity in VD. This review aims to bring new ideas for the prediction and treatment of VD.
Collapse
Affiliation(s)
- Ya-Ting Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Queen Marry College, School of Medicine, Nanchang University, Nanchang, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Department of Physiology, Fuzhou Medical College, Fuzhou, China
| |
Collapse
|
74
|
Li H, Wang H, Zhang L, Wang M, Li Y. Dl-3-n-Butylphthalide Alleviates Behavioral and Cognitive Symptoms Via Modulating Mitochondrial Dynamics in the A53T-α-Synuclein Mouse Model of Parkinson's Disease. Front Neurosci 2021; 15:647266. [PMID: 34121985 PMCID: PMC8193045 DOI: 10.3389/fnins.2021.647266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/26/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Aggregation and neurotoxicity of the presynaptic protein α-synuclein and the progressive loss of nigral dopaminergic neurons are believed to be the key hallmarks of Parkinson's disease (PD). A53T mutant α-synuclein causes early onset PD and more severe manifestations. A growing body of evidence shows that misfolding or deposition of α-synuclein is linked to the maintenance of mitochondrial dynamics, which has been proven to play an important role in the pathogenesis of PD. It has been observed that Dl-3-n-butylphthalide (NBP) may be safe and effective in improving the non-tremor-dominant PD. However, the potential mechanism remains unclear. This study aimed to investigate whether NBP could decrease the loss of dopaminergic neurons and α-synuclein deposition and explore its possible neuroprotective mechanisms. METHODS A total of 20 twelve-month-old human A53T α-synuclein transgenic mice and 10 matched adult C57BL/6 mice were included in the study; 10 adult C57BL/6 mice were selected as the control group and administered with saline (0.2 ml daily for 14 days); 20 human A53T α-synuclein transgenic mice were randomly divided into A53T group (treated in the same manner as in the control group) and A53T + NBP group (treated with NBP 0.2 ml daily for 14 days). Several markers of mitochondrial fission and fusion and mitophagy were determined, and the behavioral, olfactory, and cognitive symptoms were assessed as well. RESULTS In the present study, it was observed that the A53T-α-synuclein PD mice exhibited anxiety-like behavioral disturbance, impairment of coordination ability, memory deficits, and olfactory dysfunction, loss of dopaminergic neurons, and α-synuclein accumulation. Meanwhile, the mitofusin 1 expression was significantly decreased, and the mitochondrial number and dynamin-related protein 1, Parkin, and LC3 levels were increased. The detected levels of all markers were reversed by NBP treatment, and the mitochondrial morphology was partially recovered. CONCLUSION In the present study, a valuable neuropharmacological role of NBP has been established in the A53T-α-synuclein PD mouse model. Possible neuroprotective mechanisms might be that NBP is involved in the maintenance of mitochondrial dynamics including mitochondrial fission and fusion and clearance of damaged mitochondria. It is essential to perform further experiments to shed light on the precise mechanisms of NBP on mitochondrial homeostasis.
Collapse
Affiliation(s)
- Huiying Li
- Department of Neurology, Beijing Aerospace General Hospital, Beijing, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Ling Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College, Beijing, China
| | - Manshi Wang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College, Beijing, China
| | - Yanfeng Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College, Beijing, China
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
75
|
Lu KY, Lin SZ, Primus Dass KT, Lin WJ, Liu SP, Harn HJ. 3-N-butylphthalide protects against high-fat-diet-induced obesity in C57BL/6 mice and increases metabolism in lipid-accumulating cells. Biomed Pharmacother 2021; 139:111687. [PMID: 34243611 DOI: 10.1016/j.biopha.2021.111687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the world's largest health problems, and 3-N-butylphthalide (NBP), a bioactive compound in celery, has been used in dieting and weight management programs. In this study, NBP prevented high-fat-diet-induced weight gain, reduced the food efficiency ratio, altered the blood biochemical profile, and reduced the obesity-related index. NBP reduced adiposity, white fat depots, liver weight, and hepatic steatosis in obese mice. NBP ameliorated the diabetic state by decreasing glucose levels and improving glucose and insulin tolerance. NBP increased uncoupling protein-1 expression in white adipose tissue and upregulated thermogenesis by enhancing mitochondrial respiration. NBP inhibited white adipocyte development by prohibiting lipid accumulation in human adipose-derived stem cells. NBP increased free fatty acid uptake and the oxygen consumption rate in beige adipocytes. Our results suggest that NBP could be used as functional natural supplement against obesity and its associated disorders.
Collapse
Affiliation(s)
- Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien 970, Taiwan.
| | | | - Wei-Ju Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Shih-Ping Liu
- Ph. D. Program for Aging, College of Medicine, China Medical University, Taichung 404, Taiwan; Center for Translational Medicine, China Medical University Hospital, Taichung 404, Taiwan; Department of Social Work, Asia University, Taichung 404, Taiwan.
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
76
|
Qi FX, Hu Y, Wang S. Clinical observation of thrombolytic effect of alteplase combined with butylphthalide in patients with acute anterior circulation cerebral infarction. Pak J Med Sci 2021; 37:1145-1150. [PMID: 34290798 PMCID: PMC8281141 DOI: 10.12669/pjms.37.4.3986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: This study aims to evaluate the clinical effect of alteplase combined with butylphthalide in treating patients with acute anterior circulation cerebral infarction. Methods: Retrospective study methods were used. Eighty patient cases with acute anterior circulation cerebral infarction treated in Baoding First Central Hospital, China from January 2018 to December 2020 were randomly and averagely divided into two groups. Patients in the two groups were given symptomatic treatment. Patients in the experimental group were treated with alteplase combined with butylphthalide for thrombolytic therapy, whereas patients in the control group were treated with urokinase thrombolytic therapy. The NIHSS score, effective rates and neurological function recovery were analysed one day, seven days and 30 days after treatment were analyzed, respectively. So as the incidence of adverse reactions within seven days after drug adminutesistration. Results: The NIHSS scores of the two groups were significantly lower than those before treatment on one day, seven days and 30 days after treatment (experimental group, p=0.00; control group, p=0.02). The experimental group was more significantly lower than the control group (p=0.00). The effective rate of the experimental group was significantly higher than that of the control group (p=0.03), and the recovery rate after treatment was significantly higher than that of the control group (p=0.04). Within one week after treatment, the complication rate was 15% in the experimental group and 20% in the control group but was not significantly different (p=0.56). Conclusion: Alteplase combined with butylphthalide is effective and safe in the treatment of acute anterior circulation cerebral infarction without obvious complications.
Collapse
Affiliation(s)
- Fan-Xing Qi
- Fan-xing Qi, Department of Neurology, Baoding First Central Hospital, Baoding 071000, Hebei, China
| | - Ying Hu
- Ying Hu, Department of Cardiology, Baoding First Central Hospital, Baoding 071000, Hebei, China
| | - Sen Wang
- Sen Wang, Department of Neurology, Baoding First Central Hospital, Baoding 071000, Hebei, China
| |
Collapse
|
77
|
Chen X, Deng S, Lei Q, He Q, Ren Y, Zhang Y, Nie J, Lu W. miR-7-5p Affects Brain Edema After Intracerebral Hemorrhage and Its Possible Mechanism. Front Cell Dev Biol 2020; 8:598020. [PMID: 33392188 PMCID: PMC7772315 DOI: 10.3389/fcell.2020.598020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: To explore the relationship between miR-7-5p and brain edema after intracerebral hemorrhage and the role of butylphthalide (NBP) in brain edema after intracerebral hemorrhage. Method: Routine blood testing, C-reactive protein results, and computed tomography data were collected 1, 7, and 14 days after intracerebral hemorrhage in six patients. Levels of MMP-9, ZO-1, occludin, IL-6, TNF-α, and miR-7-5p were detected in each patient's serum. Sixty male Sprague-Dawley rats were randomly divided into sham operation, intracerebral hemorrhage, and NBP treatment groups. Dry-wet weight was used to assess brain edema, and Evans blue staining was used to assess the permeability of the blood-brain barrier. Expression levels of IL-6, TNF-α, ZO-1 and occludin, PI3K, AKT, p-AKT, AQP4, and miR-7-5p were analyzed in the rat brains. Result: The blood neutrophil-lymphocyte ratio (NLR) on day 1 was associated with the area of brain edema on day 7. The expression of miR-7-5p decreased after intracerebral hemorrhage, and as a result, the inhibition of the PI3K/AKT pathway was weakened. The decreased inhibition of the PI3K/AKT pathway resulted in an increase in AQP4 expression, which further aggravated brain edema. NBP can upregulate the expression of miR-7-5p, affecting these pathways to reduce brain edema. Conclusion: After intracerebral hemorrhage, miR-7-5p expression in brain tissue is reduced, which may increase the expression of AQP4 by activating the PI3K/AKT pathway. NBP can inhibit this process and reduce brain edema.
Collapse
Affiliation(s)
- Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Nie
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
78
|
Zhou L, Yang R, Wu F. Efficacy and safety of butylphthalide as adjunctive therapy for vascular dementia: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23236. [PMID: 33181711 PMCID: PMC7668513 DOI: 10.1097/md.0000000000023236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Butylphthalide is widely used for the adjunctive treatment of vascular dementia; however, the clinical evidences are not well synthesized yet. METHODS We proposed a systematic review and meta-analysis to evaluate the efficacy and safety of butylphthalide as adjunctive therapy for vascular dementia. Seven electronic databases (China National Knowledge Infrastructure, Wanfang database, Chongqing VIP database, China Biomedical Literature Database, Pubmed, EMBASE and Cochrane library) will be searched for eligible randomized controlled trials (RCTs). Required data of included studies will be collected. Quality of studies will be evaluated using Cochrane risk of bias assessment tool. Data synthesis will be performed using Review Manager software. Subgroup analysis and sensitivity analysis will also be carried. RESULTS Synthesis results of current available RCTs regarding the efficacy and safety of butylphthalide for the treatment vascular dementia will be provided by this systematic review and meta-analysis. CONCLUSION This systematic review and meta-analysis will provide high level evidence of butylphthalide clinical application. REGISTRATION PROSPERO CRD42020168947.
Collapse
|
79
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
80
|
Ding Y, Gu Z, Zhai T, Wang W, Zhang Y, Wei C, Liu Y, Niu J. Effect of butylphthalide on new cerebral microbleeds in patients with acute ischemic stroke. Medicine (Baltimore) 2020; 99:e21594. [PMID: 32769914 PMCID: PMC7593026 DOI: 10.1097/md.0000000000021594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND To evaluate the effect of dl-3-N-butylphthalide (NBP) on new cerebral microbleeds (CMBs) in patients with acute ischemic stroke (AIS). METHODS We will prospectively enroll patients with AIS admitted to the stroke center of Jingjiang People's Hospital. Qualified participants will be randomly assigned to either the NBP group (NBP injection) or the control group (NBP injection placebo) in a ratio of 1:1. Patients will complete the brain magnetic resonance imaging within 48 hours and 14 days after stroke onset to observe the CMBs through susceptibility weighted imaging, and evaluate whether the use of NBP will affect the new CMBs in AIS patients. SPSS 20.0 will be used for statistical analyses. RESULT We will provide practical and targeted results assessing the safety of NBP for AIS patients, to provide reference for clinical use of NBP. CONCLUSION The stronger evidence about the effect of NBP on new CMBs in AIS patients will be provided for clinicians.
Collapse
Affiliation(s)
- Yunlong Ding
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Zhiqun Gu
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Tingting Zhai
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Wenjuan Wang
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yanrong Zhang
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Can Wei
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yan Liu
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Jiali Niu
- Department of Clinical Pharmacy, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| |
Collapse
|
81
|
Marco-Contelles J, Zhang Y. From Seeds of Apium graveolens Linn. to a Cerebral Ischemia Medicine: The Long Journey of 3- n-Butylphthalide. J Med Chem 2020; 63:12485-12510. [PMID: 32672958 DOI: 10.1021/acs.jmedchem.0c00887] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3-n-Butylphthalide (NBP) as well as its derivatives and analogues (NBPs), in racemic or enantiomerically pure forms, possess potent and diverse pharmacological properties and have shown a great potential therapeutic interest for many human conditions, especially for cerebral ischemia. This Perspective outlines the synthesis and therapeutic applications of NBPs.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006-Madrid, Spain
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China.,Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
82
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|