51
|
Tomková M, Marohnic CC, Gurwitz D, Seda O, Masters BSS, Martásek P. Identification of six novel P450 oxidoreductase missense variants in Ashkenazi and Moroccan Jewish populations. Pharmacogenomics 2012; 13:543-54. [PMID: 22462747 DOI: 10.2217/pgs.12.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The enzyme NADPH-P450 oxidoreductase (POR) is the main electron donor to all microsomal CYPs. The possible contribution of common POR variants to inter- and intra-individual variability in drug metabolism is of great pharmacogenetic interest. AIM To search for POR polymorphic alleles and estimate their frequencies in a Jewish population. MATERIALS & METHODS We analyzed the POR gene in 301 Ashkenazi and Moroccan Jews. RESULTS A total of 30 POR SNPs were identified, nine in the noncoding regions and 21 in the protein-coding regions (ten synonymous, 11 missense). Six of these missense variants are previously undescribed (S102P, V164M, V191M, D344N, E398A and D648N). CONCLUSION The data collected in this study on missense POR SNPs, interpreted in light of the crystallographic structure of human POR, indicate that some POR missense variants may be potential biomarkers for future POR pharmacogenetic screening.
Collapse
Affiliation(s)
- Mária Tomková
- Department of Pediatrics, 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
52
|
Iyanagi T, Xia C, Kim JJP. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 2012; 528:72-89. [PMID: 22982532 PMCID: PMC3606592 DOI: 10.1016/j.abb.2012.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022]
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) and nitric oxide synthase (NOS), two members of the diflavin oxidoreductase family, are multi-domain enzymes containing distinct FAD and FMN domains connected by a flexible hinge. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to FMN, which in turn transfers electrons to the heme center of cytochrome P450 or NOS oxygenase domain. Structural analysis of CYPOR, the prototype of this enzyme family, has revealed the exact nature of the domain arrangement and the role of residues involved in cofactor binding. Recent structural and biophysical studies of CYPOR have shown that the two flavin domains undergo large domain movements during catalysis. NOS isoforms contain additional regulatory elements within the reductase domain that control electron transfer through Ca(2+)-dependent calmodulin (CaM) binding. The recent crystal structure of an iNOS Ca(2+)/CaM-FMN construct, containing the FMN domain in complex with Ca(2+)/CaM, provided structural information on the linkage between the reductase and oxgenase domains of NOS, making it possible to model the holo iNOS structure. This review summarizes recent advances in our understanding of the dynamics of domain movements during CYPOR catalysis and the role of the NOS diflavin reductase domain in the regulation of NOS isozyme activities.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Department of Biochemistry, Medical College of Wisconsin, USA
- Department of Life Science, The Himeji Institute of Technology, University of Hyogo, Japan
| | - Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, USA
| |
Collapse
|
53
|
Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Pharmacogenet Genomics 2012; 22:590-7. [DOI: 10.1097/fpc.0b013e3283544062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Moutinho D, Marohnic CC, Panda SP, Rueff J, Masters BS, Kranendonk M. Altered human CYP3A4 activity caused by Antley-Bixler syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust in vitro system. Drug Metab Dispos 2012; 40:754-60. [PMID: 22252407 PMCID: PMC3310424 DOI: 10.1124/dmd.111.042820] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 01/11/2023] Open
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) variants have been described in patients with perturbed steroidogenesis and sexual differentiation, related to Antley-Bixler syndrome (ABS). It is important to determine the effect of these variants on CYP3A4, the major drug-metabolizing cytochrome P450 (P450) in humans. In this study, 12 CYPOR_ABS variants were separately coexpressed with CYP3A4 in a robust in vitro system to evaluate the effects of these variants on CYP3A4 activity in a milieu that recapitulates the stoichiometry of the mammalian systems. Full-length CYPOR variants were coexpressed with CYP3A4, resulting in relative expression levels comparable to those found in hepatic tissue. Dibenzylfluorescein (DBF), a CYP3A-specific reporter substrate (Biopharm Drug Dispos 24:375-384, 2003), was used to compare the variants and wild-type (WT) CYPOR activities with that of human liver microsomes. CYP3A4, combined with WT CYPOR, demonstrated kinetic parameters (k(cat) and K(m)) equal to those for pooled human liver microsomes. CYPOR variants Y181D, Y459H, V492E, L565P, and R616X all demonstrated maximal loss of CYP3A4 catalytic efficiency, whereas R457H and G539R retained ∼10 and 30% activities, respectively. Conversely, variants P228L, M263V, A287P, and G413S each showed WT-like capacity (k(cat)/K(m)), with the A287P variant being formerly reported to exhibit substantially lower catalytic efficiency. In addition, Q153R exhibited 60% of WT CYPOR capacity to support the DBF O-debenzylation reaction, contradicting increased catalytic efficiency (k(cat)/K(m)) relative to that for the WT, reported previously. Our data indicate the importance of use of simulated, validated in vitro systems, employing full-length proteins with appropriate stoichiometric incorporation of protein partners, when pharmacogenetic predictions are to be made for P450-mediated biotransformation.
Collapse
Affiliation(s)
- Daniela Moutinho
- Department of Genetics, Faculty of Medical Sciences, Centro de Investigação em Genética Molecular Humana, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
55
|
D'Agostino J, Ding X, Zhang P, Jia K, Fang C, Zhu Y, Spink DC, Zhang QY. Potential biological functions of cytochrome P450 reductase-dependent enzymes in small intestine: novel link to expression of major histocompatibility complex class II genes. J Biol Chem 2012; 287:17777-17788. [PMID: 22453923 DOI: 10.1074/jbc.m112.354274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 reductase (POR) is essential for the functioning of microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. The biological roles of the POR-dependent enzymes in the intestine have not been defined, despite the wealth of knowledge on the biochemical properties of the various oxygenases. In this study, cDNA microarray analysis revealed significant changes in gene expression in enterocytes isolated from the small intestine of intestinal epithelium-specific Por knock-out (named IE-Cpr-null) mice compared with that observed in wild-type (WT) littermates. Gene ontology analyses revealed significant changes in terms related to P450s, transporters, cholesterol biosynthesis, and, unexpectedly, antigen presentation/processing. The genomic changes were confirmed at either mRNA or protein level for selected genes, including those of the major histocompatibility complex class II (MHC II). Cholesterol biosynthetic activity was greatly reduced in the enterocytes of the IE-Cpr-null mice, as evidenced by the accumulation of the lanosterol metabolite, 24-dihydrolanosterol. However, no differences in either circulating or enterocyte cholesterol levels were observed between IE-Cpr-null and WT mice. Interestingly, the levels of the cholesterol precursor farnesyl pyrophosphate and its derivative geranylgeranyl pyrophosphate were also increased in the enterocytes of the IE-Cpr-null mice. Furthermore, the expression of STAT1 (signal transducer and activator of transcription 1), a downstream target of geranylgeranyl pyrophosphate signaling, was enhanced. STAT1 is an activator of CIITA, the class II transactivator for MHC II expression; CIITA expression was concomitantly increased in IE-Cpr-null mice. Overall, these findings provide a novel and mechanistic link between POR-dependent enzymes and the expression of MHC II genes in the small intestine.
Collapse
Affiliation(s)
- Jaime D'Agostino
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Peng Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Kunzhi Jia
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - David C Spink
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509.
| |
Collapse
|
56
|
Influence of cytochrome P450 oxidoreductase genetic polymorphisms on CYP1A2 activity and inducibility by smoking. Pharmacogenet Genomics 2012; 22:143-51. [DOI: 10.1097/fpc.0b013e32834e9e1a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Marohnic CC, Huber Iii WJ, Patrick Connick J, Reed JR, McCammon K, Panda SP, Martásek P, Backes WL, Masters BSS. Mutations of human cytochrome P450 reductase differentially modulate heme oxygenase-1 activity and oligomerization. Arch Biochem Biophys 2011; 513:42-50. [PMID: 21741353 PMCID: PMC3516858 DOI: 10.1016/j.abb.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 01/26/2023]
Abstract
Genetic variations in POR, encoding NADPH-cytochrome P450 oxidoreductase (CYPOR), can diminish the function of numerous cytochromes P450, and also have the potential to block degradation of heme by heme oxygenase-1 (HO-1). Purified full-length human CYPOR, HO-1, and biliverdin reductase were reconstituted in lipid vesicles and assayed for NADPH-dependent conversion of heme to bilirubin. Naturally-occurring human CYPOR variants queried were: WT, A115V, Y181D, P228L, M263V, A287P, R457H, Y459H, and V492E. All CYPOR variants exhibited decreased bilirubin production relative to WT, with a lower apparent affinity of the CYPOR-HO-1 complex than WT. Addition of FMN or FAD partially restored the activities of Y181D, Y459H, and V492E. When mixed with WT CYPOR, only the Y181D CYPOR variant inhibited heme degradation by sequestering HO-1, whereas Y459H and V492E were unable to inhibit HO-1 activity suggesting that CYPOR variants might have differential binding affinities with redox partners. Titrating the CYPOR-HO-1 complex revealed that the optimal CYPOR:HO-1 ratio for activity was 1:2, lending evidence in support of productive HO-1 oligomerization, with higher ratios of CYPOR:HO-1 showing decreased activity. In conclusion, human POR mutations, shown to impact P450 activities, also result in varying degrees of diminished HO-1 activity, which may further complicate CYPOR deficiency.
Collapse
Affiliation(s)
- Christopher C Marohnic
- The University of Texas Health Science Center at San Antonio, Department of Biochemistry, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Flück CE, Mallet D, Hofer G, Samara-Boustani D, Leger J, Polak M, Morel Y, Pandey AV. Deletion of P399_E401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency. Biochem Biophys Res Commun 2011; 412:572-7. [PMID: 21843508 DOI: 10.1016/j.bbrc.2011.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhang X, Li L, Ding X, Kaminsky LS. Identification of cytochrome P450 oxidoreductase gene variants that are significantly associated with the interindividual variations in warfarin maintenance dose. Drug Metab Dispos 2011; 39:1433-9. [PMID: 21562147 PMCID: PMC3141882 DOI: 10.1124/dmd.111.038836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/11/2011] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is required for drug metabolism by all microsomal cytochrome P450 enzymes. The aim of this study was to investigate whether any of the common single nucleotide polymorphisms (SNPs) in the POR gene and its flanking intergenic sequences correlate with interindividual variations in the warfarin maintenance dose (which is determined partly by rates of warfarin metabolism) in patients undergoing anticoagulation therapy. Warfarin dose and patients' demographic and clinical information were collected from 124 patients, who had attained a stable warfarin dose while receiving treatment at the Stratton VA Medical Center. Genomic DNAs were isolated from blood samples and were genotyped for 15 SNPs (including 10 SNPs on the POR gene). Association analysis was performed on 122 male patients by linear regression. Simple regression analysis revealed that vitamin K epoxide reductase complex subunit 1 (VKORC1) -1639A>G, CYP2C9*2, CYP2C9*3, age, and chronic aspirin therapy were significantly associated with warfarin dose. In contrast, multiple regression analysis revealed that, in addition to several known factors contributing to the variations in warfarin maintenance dose (VKORC1 -1639A>G, CYP2C9*2, CYP2C9*3, CYP4F2 rs2108622, and chronic aspirin therapy), three common POR SNPs (-173C>A, -208C>T, and rs2868177) were also significantly associated with variations in warfarin maintenance dose. These results indicate, for the first time, that three common SNPs in the POR gene may contribute to the interindividual variability in warfarin maintenance dose. Further studies on functional characterization of the POR SNPs identified, including their impact on the in vivo metabolism of additional drugs, are needed.
Collapse
Affiliation(s)
- Xiuling Zhang
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
60
|
Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics 2011; 20:611-8. [PMID: 20697309 DOI: 10.1097/fpc.0b013e32833e0cb5] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES CYP3A4 receives electrons from P450 oxidoreductase (POR) to metabolize about 50% of clinically used drugs. There is substantial inter-individual variation in CYP3A4 catalytic activity that is not explained by CYP3A4 genetic variants. CYP3A4 is flexible and distensible, permitting it to accommodate substrates varying in shape and size. To elucidate the mechanisms of variability in CYP3A4 catalysis, we examined the effects of genetic variants of POR, and explored the possibility that substrate-induced conformational changes in CYP3A4 differentially affect the ability of POR variants to support catalysis. METHODS We expressed human CYP3A4 and four POR variants (Q153R, A287P, R457H, A503 V) in bacteria, reconstituted them in vitro and measured the Michaelis constant and maximum velocity with testosterone, midazolam, quinidine and erythromycin as substrates. RESULTS POR A287P and R457H had low activity with all substrates; Q153R had 76-94% of wild-type (WT) activity with midazolam and erythromycin, but 129-150% activity with testosterone and quinidine. The A503 V polymorphism reduced the CYP3A4 activity to 61-77% of WT with testosterone and midazolam, but had nearly WT activity with quinidine and erythromycin. CONCLUSION POR variants affect CYP3A4 activities. The impact of a POR variant on catalysis by CYP3A4 is substrate-specific, probably because of substrate-induced conformational changes in CYP3A4.
Collapse
|
61
|
Tomalik-Scharte D, Maiter D, Kirchheiner J, Ivison HE, Fuhr U, Arlt W. Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. Eur J Endocrinol 2010; 163:919-24. [PMID: 20844025 PMCID: PMC2977993 DOI: 10.1530/eje-10-0764] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/15/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug-metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. DESIGN We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. METHODS Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes. We also performed genotyping for variant CYP alleles known to affect drug metabolism. RESULTS Though CYP enzyme genotyping predicted normal or high enzymatic activities in both subjects, in vivo assessment showed subnormal activities of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in the patient and of CYP1A2 and CYP2C9 in her mother. CONCLUSIONS Our results provide in vivo evidence for an important role of POR in regulating drug metabolism and detoxification. In patients with ORD, in vivo assessment of drug-metabolizing activities with subsequent tailoring of drug therapy and steroid replacement should be considered.
Collapse
Affiliation(s)
- Dorota Tomalik-Scharte
- Department of PharmacologyUniversity Hospital, University of CologneCologne, 50931Germany
| | - Dominique Maiter
- Department of EndocrinologyUniversity Hospital Saint LucBrussels, 1200Belgium
| | - Julia Kirchheiner
- Department of Pharmacology of Natural Products and Clinical PharmacologyUniversity of UlmUlm, 89019Germany
| | | | - Uwe Fuhr
- Department of PharmacologyUniversity Hospital, University of CologneCologne, 50931Germany
| | - Wiebke Arlt
- (Correspondence should be addressed to W Arlt; )
| |
Collapse
|
62
|
Flück CE, Mullis PE, Pandey AV. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism. Biochem Biophys Res Commun 2010; 401:149-53. [DOI: 10.1016/j.bbrc.2010.09.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
63
|
Pandey AV, Flück CE, Mullis PE. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase. Biochem Biophys Res Commun 2010; 400:374-8. [PMID: 20732302 DOI: 10.1016/j.bbrc.2010.08.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.
Collapse
Affiliation(s)
- Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern, Switzerland.
| | | | | |
Collapse
|
64
|
Nicolo C, Flück CE, Mullis PE, Pandey AV. Restoration of mutant cytochrome P450 reductase activity by external flavin. Mol Cell Endocrinol 2010; 321:245-52. [PMID: 20188793 DOI: 10.1016/j.mce.2010.02.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/21/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.
Collapse
Affiliation(s)
- Catherine Nicolo
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
65
|
Marohnic CC, Panda SP, McCammon K, Rueff J, Masters BSS, Kranendonk M. Human cytochrome P450 oxidoreductase deficiency caused by the Y181D mutation: molecular consequences and rescue of defect. Drug Metab Dispos 2010; 38:332-40. [PMID: 19884324 PMCID: PMC2812058 DOI: 10.1124/dmd.109.030445] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/29/2009] [Indexed: 02/01/2023] Open
Abstract
Patients with congenital adrenal hyperplasia, exhibiting combined CYP17 and CYP21 deficiency, were shown by Arlt et al. (2004) to harbor a 541T-->G mutation in exon 5 of POR (encoding NADPH-cytochrome P450 reductase, CYPOR), which resulted in a Y181D substitution that obliterated electron transfer capacity. Using bacterial expression models, we examined catalytic and physical properties of the human CYPOR Y181D variant. As purified, Y181D lacked flavin mononucleotide (FMN) and NADPH-cytochrome c reductase (NCR) activity but retained normal flavin adenine dinucleotide binding and NADPH utilization. Titration of the purified protein with FMN restored 64 of wild-type (WT) NCR activity in Y181D with an activation constant of approximately 2 microM. As determined by FMN fluorescence quenching, Y181D had K(d)(FMN) = 7.3 microM. Biplasmid coexpression of CYPOR and CYP1A2, at the physiological ratio of approximately 1:10 in the engineered MK_1A2_POR Escherichia coli strain, showed the compromised capacity of Y181D to support CYP1A2-catalyzed metabolism of the procarcinogens 2-aminoanthracene, 2-amino-3-methylimidazo(4,5-f)quinoline, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Isolated MK1A2_POR membranes confirmed FMN stimulation of Y181D NCR activity with a 1.6 microM activation constant. CYP1A2 ethoxyresorufin-O-dealkylase activity of the MK1A2_POR(Y181D) membranes, undetectable in the absence of added FMN, increased to 37% of MK1A2_POR(WT) membranes with a 1.2 microM FMN activation constant. Therefore, we conclude that compromised FMN binding is the specific molecular defect causing POR deficiency in patients with Y181D mutation and that this defect, in large part, can be overcome in vitro by FMN addition.
Collapse
Affiliation(s)
- Christopher C Marohnic
- Department of Biochemistry, 7760, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol 2009; 66:239-51. [PMID: 20012030 DOI: 10.1007/s00228-009-0762-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the role of genetic, physiological, environmental, and epigenetic factors in regulating CYP2A6 expression and nicotine metabolism. METHODS Human livers (n = 67) were genotyped for CYP2A6 alleles and assessed for nicotine metabolism and CYP2A6 expression (mRNA and protein). In addition, a subset of livers (n = 18), human cryopreserved hepatocytes (n = 2), and HepG2 cells were used for DNA methylation analyses. RESULTS Liver samples with variant CYP2A6 alleles had significantly lower CYP2A6 protein expression, nicotine C-oxidation activity, and affinity for nicotine. Female livers had significantly higher CYP2A6 protein and mRNA expression compared to male livers. Livers exposed to dexamethasone and phenobarbital had higher CYP2A6 expression and activity, however the difference was not statistically significant. Age and DNA methylation status of the CpG island and a regulatory site were not associated with altered CYP2A6. CONCLUSIONS We identified genotype, gender, and exposure to inducers as sources of variation in CYP2A6 expression and activity, but much variation remains to be accounted for.
Collapse
Affiliation(s)
- Nael Al Koudsi
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
67
|
The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 2009; 19:877-83. [DOI: 10.1097/fpc.0b013e32833225e7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
68
|
Feidt DM, Klein K, Nüssler A, Zanger UM. RNA-interference approach to study functions of NADPH : cytochrome P450 oxidoreductase in human hepatocytes. Chem Biodivers 2009; 6:2084-2091. [PMID: 19937842 DOI: 10.1002/cbdv.200900135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human NADPH : cytochrome P450 oxidoreductase (POR) is encoded by a single gene on chromosome 7q11.2. This flavoprotein donates electrons derived from NADPH to a variety of acceptor proteins, including squalene monooxygenase, heme oxygenase, cytochrome b(5), and many microsomal cytochromes P450 (CYPs), which are involved in oxidative drug metabolism, steroidogenesis, and other functions. Numerous aspects related to cellular POR expression have not been systematically investigated. Interestingly, POR expression is lower compared to CYPs and may thus be limiting for monooxygenase activities, but conversely, POR knock-out in mice resulted in compensatory upregulation of CYPs. POR may also influence intracellular cholesterol and lipid homeostasis. To systematically investigate such effects, we developed specific POR gene silencing in cell lines and primary human hepatocytes by RNA interference using small interfering RNAs (siRNAs). In HepG2 cells, POR mRNA could be reduced by 95% over 4 days accompanied by reduced protein content and activity. In primary human hepatocytes, POR mRNA knock-down was less effective and more variable. Analysis of CYPs indicated induction of CYP3A4 but not CYP1A2 or CYP2D6. These results demonstrate that POR can be efficiently and almost completely silenced in HepG2 cells and, at least partially, in primary human hepatocytes. This will allow systematic studies of various consequences of POR variability in human cells.
Collapse
Affiliation(s)
- Diana M Feidt
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, DE-70376 Stuttgart
| | | | | | | |
Collapse
|
69
|
Sim SC, Miller WL, Zhong XB, Arlt W, Ogata T, Ding X, Wolf CR, Flück CE, Pandey AV, Henderson CJ, Porter TD, Daly AK, Nebert DW, Ingelman-Sundberg M. Nomenclature for alleles of the cytochrome P450 oxidoreductase gene. Pharmacogenet Genomics 2009; 19:565-6. [PMID: 19535965 PMCID: PMC2753199 DOI: 10.1097/fpc.0b013e32832af5b7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Sarah C. Sim
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Walter L. Miller
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Xiao-Bo Zhong
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | - Tsutomu Ogata
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, New York, USA
| | - C. Roland Wolf
- Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Christa E. Flück
- Pediatric Endocrinology and Diabetology, University Children’s Hospital Bern, Bern, Switzerland
| | - Amit V. Pandey
- Department of Clinical Research, Pediatric Endocrinology Unit, University of Bern, Bern, Switzerland
| | - Colin J. Henderson
- Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Todd D. Porter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Ann K. Daly
- Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Daniel W. Nebert
- Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Swan GE, Lessov-Schlaggar CN, Bergen AW, He Y, Tyndale RF, Benowitz NL. Genetic and environmental influences on the ratio of 3'hydroxycotinine to cotinine in plasma and urine. Pharmacogenet Genomics 2009; 19:388-98. [PMID: 19300303 PMCID: PMC2849278 DOI: 10.1097/fpc.0b013e32832a404f] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The ratio of trans-3'hydroxycotinine/cotinine (3HC/COT) is a marker of CYP2A6 activity, an important determinant of nicotine metabolism. This analysis sought to conduct a combined genetic epidemiologic and pharmacogenetic investigation of the 3HC/COT ratio in plasma and urine. METHODS One hundred and thirty-nine twin pairs [110 monozygotic and 29 dizygotic] underwent a 30-min infusion of stable isotope-labelled nicotine and its major metabolite, cotinine, followed by an 8-h in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine, and metabolites. DNA was genotyped to confirm zygosity and for variation in the gene for the primary nicotine metabolic enzyme, CYP2A6 (variants genotyped: *1B, *1 x 2, *2, *4, *9, *12). Univariate biometric analyses quantified genetic and environmental influences on each measure in the presence and absence of covariates, including measured CYP2A6 genotype. RESULTS There was a substantial amount of variation in the free 3HC/COT ratio in plasma (6 h postinfusion) attributable to additive genetic influences (67.4%, 95% confidence interval=55.9-76.2%). The heritability estimate was reduced to 61.0 and 49.4%, respectively, after taking into account the effect of covariates and CYP2A6 genotype. In urine (collected over 8 h), the estimated amount of variation in the 3HC/COT ratio attributable to additive genetic influences was smaller (47.2%, 95% confidence interval=0-67.2%) and decreased to 44.6 and 42.0% after accounting for covariates and genotype. CONCLUSION Additive genetic factors are prominent in determining variation in plasma 3HC/COT but less so in determining variation in urine 3HC/COT.
Collapse
Affiliation(s)
- Gary E Swan
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Gomes AM, Winter S, Klein K, Turpeinen M, Schaeffeler E, Schwab M, Zanger UM. Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 2009; 10:579-99. [DOI: 10.2217/pgs.09.7] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aims: NADPH:CYP oxidoreductase (POR) is an essential component of several enzyme systems, including the microsomal CYP monooxygenases. We investigated genetic and nongenetic POR variability and its impact on drug-oxidation activities in human liver microsomes. Material and methods: POR mRNA, protein and activity, as well as ten major drug-oxidation activities, were measured in the microsomes of 150 Caucasian surgical liver samples. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometric assays were established to determine the frequency of 46 selected POR SNPs. Multivariate log-linear regression models, including main effects and two-way interaction terms, and analyses of variance were used to identify statistically significant relationships. Results: POR phenotypes were less variable within the study population as compared with CYP phenotypes. Intronic SNPs g.18557G>A (intron 2), g.25676C>T (intron 3) and g.30986 G>A (intron 10) were associated with various drug-oxidation activities. The common allele POR*28 (A503V) was not associated with any activity or expression changes. Haplotype analysis identified two novel composite alleles POR*36 (P228L plus A503V) and POR*37 (A503V plus V631I). Conclusion: Models that integrate POR and microsomal CYP function are complex and depend on the CYP isozyme, the substrate and numerous genetic and nongenetic factors. Intronic POR variants may influence microsomal CYP activities. These data provide a basis for further studies towards inclusion of POR polymorphisms in pharmacogenomic strategies.
Collapse
Affiliation(s)
- Ana M Gomes
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
| | - Stefan Winter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
| | - Miia Turpeinen
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
- University of Oulu, Finland
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
| | - Ulrich M Zanger
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Auerbachstrasse 112, 70376 Stuttgart, Germany
- University of Tübingen, Germany
| |
Collapse
|
72
|
Swan GE, Lessov-Schlaggar CN. Tobacco addiction and pharmacogenetics of nicotine metabolism. J Neurogenet 2009; 23:262-71. [PMID: 19152209 DOI: 10.1080/01677060802572903] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This paper presents a brief overview of several components of tobacco addiction, including: 1) the epidemiology of smoking in the United States and elsewhere around the world; 2) implications of the pharmacogenetic study of nicotine metabolism for understanding tobacco addiction and its treatment; 3) the use of the twin design as an example of one strategy to understand the contribution of genetic and environmental factors to the pharmacokinetics of nicotine metabolism; 4) results from recent genomic studies of tobacco addiction in adults; and 5) a discussion of progress (past and future) toward the development of a comprehensive understanding of the pharmacogenetics of tobacco addiction and its treatment.
Collapse
Affiliation(s)
- Gary E Swan
- Center for Health Sciences, SRI International, Menlo Park, California 94025, USA.
| | | |
Collapse
|
73
|
Hart SN, Zhong XB. P450 oxidoreductase: genetic polymorphisms and implications for drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2008; 4:439-52. [PMID: 18433346 DOI: 10.1517/17425255.4.4.439] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cytochrome P450 oxidoreductase (POR) is the only electron donor for all microsomal cytochrome P450 monooxygenases (CYP), some of which are phase I drug-metabolizing enzymes, responsible for oxidation of more than 80% of drugs. OBJECTIVES To provide a more thorough understanding of the genetic factors influencing drug metabolism, we address the role of genetic polymorphisms in the POR gene, and their implications for drug metabolism and cytotoxicity. METHODS The scope of this review is intended to cover polymorphisms currently identified in the POR gene, assess their functional significance on POR activity, and address their impact on CYP-mediated drug metabolism. POR is also responsible for directly metabolizing several anticancer prodrugs via a 1-electron reduction reaction, so the effect of POR polymorphisms on the direct bioactivation of drugs is also considered. RESULTS/CONCLUSION POR is a polymorphic enzyme that can affect CYP-mediated drug metabolism as well as direct bioactivation of prodrugs. Genetic polymorphisms in the POR gene may help to explain altered drug-metabolizing phenotypes.
Collapse
Affiliation(s)
- Steven N Hart
- University of Kansas Medical Center, Department of Pharmacology, Toxicology, and Therapeutics, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
74
|
Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics 2008; 18:569-76. [DOI: 10.1097/fpc.0b013e32830054ac] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
75
|
Impairment of human CYP1A2-mediated xenobiotic metabolism by Antley-Bixler syndrome variants of cytochrome P450 oxidoreductase. Arch Biochem Biophys 2008; 475:93-9. [PMID: 18455494 DOI: 10.1016/j.abb.2008.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 01/08/2023]
Abstract
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: POR(null), POR(wt), POR(YH), and POR(VE), for which equivalent CYP1A2 and CYPOR levels were confirmed, except for POR(null), not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in POR(YH) and POR(VE) models than in POR(wt), indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.
Collapse
|