51
|
Tomková M, Marohnic CC, Gurwitz D, Seda O, Masters BSS, Martásek P. Identification of six novel P450 oxidoreductase missense variants in Ashkenazi and Moroccan Jewish populations. Pharmacogenomics 2012; 13:543-54. [PMID: 22462747 DOI: 10.2217/pgs.12.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The enzyme NADPH-P450 oxidoreductase (POR) is the main electron donor to all microsomal CYPs. The possible contribution of common POR variants to inter- and intra-individual variability in drug metabolism is of great pharmacogenetic interest. AIM To search for POR polymorphic alleles and estimate their frequencies in a Jewish population. MATERIALS & METHODS We analyzed the POR gene in 301 Ashkenazi and Moroccan Jews. RESULTS A total of 30 POR SNPs were identified, nine in the noncoding regions and 21 in the protein-coding regions (ten synonymous, 11 missense). Six of these missense variants are previously undescribed (S102P, V164M, V191M, D344N, E398A and D648N). CONCLUSION The data collected in this study on missense POR SNPs, interpreted in light of the crystallographic structure of human POR, indicate that some POR missense variants may be potential biomarkers for future POR pharmacogenetic screening.
Collapse
Affiliation(s)
- Mária Tomková
- Department of Pediatrics, 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
52
|
Miller WL. P450 Oxidoreductase Deficiency: A Disorder of Steroidogenesis with Multiple Clinical Manifestations. Sci Signal 2012; 5:pt11. [DOI: 10.1126/scisignal.2003318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
53
|
Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Pharmacogenet Genomics 2012; 22:590-7. [DOI: 10.1097/fpc.0b013e3283544062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Chen X, Pan LQ, Naranmandura H, Zeng S, Chen SQ. Influence of various polymorphic variants of cytochrome P450 oxidoreductase (POR) on drug metabolic activity of CYP3A4 and CYP2B6. PLoS One 2012; 7:e38495. [PMID: 22719896 PMCID: PMC3373556 DOI: 10.1371/journal.pone.0038495] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
55
|
Moutinho D, Marohnic CC, Panda SP, Rueff J, Masters BS, Kranendonk M. Altered human CYP3A4 activity caused by Antley-Bixler syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust in vitro system. Drug Metab Dispos 2012; 40:754-60. [PMID: 22252407 PMCID: PMC3310424 DOI: 10.1124/dmd.111.042820] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 01/11/2023] Open
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) variants have been described in patients with perturbed steroidogenesis and sexual differentiation, related to Antley-Bixler syndrome (ABS). It is important to determine the effect of these variants on CYP3A4, the major drug-metabolizing cytochrome P450 (P450) in humans. In this study, 12 CYPOR_ABS variants were separately coexpressed with CYP3A4 in a robust in vitro system to evaluate the effects of these variants on CYP3A4 activity in a milieu that recapitulates the stoichiometry of the mammalian systems. Full-length CYPOR variants were coexpressed with CYP3A4, resulting in relative expression levels comparable to those found in hepatic tissue. Dibenzylfluorescein (DBF), a CYP3A-specific reporter substrate (Biopharm Drug Dispos 24:375-384, 2003), was used to compare the variants and wild-type (WT) CYPOR activities with that of human liver microsomes. CYP3A4, combined with WT CYPOR, demonstrated kinetic parameters (k(cat) and K(m)) equal to those for pooled human liver microsomes. CYPOR variants Y181D, Y459H, V492E, L565P, and R616X all demonstrated maximal loss of CYP3A4 catalytic efficiency, whereas R457H and G539R retained ∼10 and 30% activities, respectively. Conversely, variants P228L, M263V, A287P, and G413S each showed WT-like capacity (k(cat)/K(m)), with the A287P variant being formerly reported to exhibit substantially lower catalytic efficiency. In addition, Q153R exhibited 60% of WT CYPOR capacity to support the DBF O-debenzylation reaction, contradicting increased catalytic efficiency (k(cat)/K(m)) relative to that for the WT, reported previously. Our data indicate the importance of use of simulated, validated in vitro systems, employing full-length proteins with appropriate stoichiometric incorporation of protein partners, when pharmacogenetic predictions are to be made for P450-mediated biotransformation.
Collapse
Affiliation(s)
- Daniela Moutinho
- Department of Genetics, Faculty of Medical Sciences, Centro de Investigação em Genética Molecular Humana, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
56
|
Influence of cytochrome P450 oxidoreductase genetic polymorphisms on CYP1A2 activity and inducibility by smoking. Pharmacogenet Genomics 2012; 22:143-51. [DOI: 10.1097/fpc.0b013e32834e9e1a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Kaspera R, Naraharisetti SB, Evangelista EA, Marciante KD, Psaty BM, Totah RA. Drug metabolism by CYP2C8.3 is determined by substrate dependent interactions with cytochrome P450 reductase and cytochrome b5. Biochem Pharmacol 2011; 82:681-91. [PMID: 21726541 PMCID: PMC3159548 DOI: 10.1016/j.bcp.2011.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 01/20/2023]
Abstract
Genetic polymorphisms in CYP2C8 can influence the metabolism of important therapeutic agents and cause interindividual variation in drug response and toxicity. The significance of the variant CYP2C8*3 has been controversial with reports of higher in vivo but lower in vitro activity compared to CYP2C8*1. In this study, the contribution of the redox partners cytochrome P450 reductase (CPR) and cytochrome b5 to the substrate dependent activity of CYP2C8.3 (R139K, K399R) was investigated in human liver microsomes (HLMs) and Escherichia coli expressed recombinant CYP2C8 proteins using amodiaquine, paclitaxel, rosiglitazone and cerivastatin as probe substrates. For recombinant CYP2C8.3, clearance values were two- to five-fold higher compared to CYP2C8.1. CYP2C8.3's higher k(cat) seems to be dominated by a higher, but substrate specific affinity, towards cytochrome b5 and CPR (K(D) and K(m,red)) which resulted in increased reaction coupling. A stronger binding affinity of ligands to CYP2C8.3, based on a two site binding model, in conjunction with a five fold increase in amplitude of heme spin change during binding of ligands and redox partners could potentially contribute to a higher k(cat). In HLMs, carriers of the CYP2C8*1/*3 genotype were as active as CYP2C8*1/*1 towards the CYP2C8 specific reaction amodiaquine N-deethylation. Large excess of cytochrome b5 compared to CYP2C8 in recombinant systems and HLMs inhibited metabolic clearance, diminishing the difference in k(cat) between the two enzymes, and may provide an explanation for the discrepancy to in vivo data. In silico studies illustrate the genetic differences between wild type and variant on the molecular level.
Collapse
Affiliation(s)
- Rüdiger Kaspera
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA
| | - Suresh B. Naraharisetti
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA
| | - Eric A. Evangelista
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA
| | - Kristin D. Marciante
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA; Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA; Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Rheem A. Totah
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA
| |
Collapse
|
58
|
Zhang X, Li L, Ding X, Kaminsky LS. Identification of cytochrome P450 oxidoreductase gene variants that are significantly associated with the interindividual variations in warfarin maintenance dose. Drug Metab Dispos 2011; 39:1433-9. [PMID: 21562147 PMCID: PMC3141882 DOI: 10.1124/dmd.111.038836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/11/2011] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is required for drug metabolism by all microsomal cytochrome P450 enzymes. The aim of this study was to investigate whether any of the common single nucleotide polymorphisms (SNPs) in the POR gene and its flanking intergenic sequences correlate with interindividual variations in the warfarin maintenance dose (which is determined partly by rates of warfarin metabolism) in patients undergoing anticoagulation therapy. Warfarin dose and patients' demographic and clinical information were collected from 124 patients, who had attained a stable warfarin dose while receiving treatment at the Stratton VA Medical Center. Genomic DNAs were isolated from blood samples and were genotyped for 15 SNPs (including 10 SNPs on the POR gene). Association analysis was performed on 122 male patients by linear regression. Simple regression analysis revealed that vitamin K epoxide reductase complex subunit 1 (VKORC1) -1639A>G, CYP2C9*2, CYP2C9*3, age, and chronic aspirin therapy were significantly associated with warfarin dose. In contrast, multiple regression analysis revealed that, in addition to several known factors contributing to the variations in warfarin maintenance dose (VKORC1 -1639A>G, CYP2C9*2, CYP2C9*3, CYP4F2 rs2108622, and chronic aspirin therapy), three common POR SNPs (-173C>A, -208C>T, and rs2868177) were also significantly associated with variations in warfarin maintenance dose. These results indicate, for the first time, that three common SNPs in the POR gene may contribute to the interindividual variability in warfarin maintenance dose. Further studies on functional characterization of the POR SNPs identified, including their impact on the in vivo metabolism of additional drugs, are needed.
Collapse
Affiliation(s)
- Xiuling Zhang
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
59
|
Sandee D, Miller WL. High-yield expression of a catalytically active membrane-bound protein: human P450 oxidoreductase. Endocrinology 2011; 152:2904-8. [PMID: 21586563 PMCID: PMC3115607 DOI: 10.1210/en.2011-0230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
P450 oxidoreductase (POR) is a two-flavin protein that reduces microsomal P450 enzymes and some other proteins. Preparation of active bacterially expressed human POR for biochemical studies has been difficult because membrane-bound proteins tend to interact with column matrices. To reduce column-protein interactions and permit more vigorous washing, human POR lacking 27 N-terminal residues (N-27 POR) was modified to carry a C-terminal Gly3His6-tag (N-27 POR-G3H6). When expressed in Escherichia coli, N-27 POR-G3H6 could be purified to apparent homogeneity by a modified, single-step nickel-nitrilotriacetic acid affinity chromatography, yielding 31 mg POR per liter of culture, whereas standard purification of native N-27 POR required multiple steps, yielding 5 mg POR per liter. Both POR proteins had absorption maxima at 375 and 453 nm and both reduced cytochrome c with indistinguishable specific activities. Using progesterone as substrate for bacterially expressed purified human P450c17, the Michaelis constant for 17α-hydroxylase activity supported by N-27 POR or N-27 POR-G3H6 were 1.73 or 1.49 μm, and the maximal velocity was 0.029 or 0.026 pmol steroids per picomole P450 per minute, respectively. Using 17-hydroxypregnenolone as the P450c17 substrate, the Michaelis constant for 17,20 lyase activity using N-27 POR or N-27 POR-G3H6 was 1.92 or 1.89 μm and the maximal velocity was 0.041 or 0.042 pmol steroid per picomole P450 per minute, respectively. Thus, N-27 POR-G3H6 is equally active as native N-27 POR. This expression and purification system permits the rapid preparation of large amounts of highly pure, biologically active POR and may be generally applicable for the preparation of membrane-bound proteins.
Collapse
Affiliation(s)
- Duanpen Sandee
- Department of Pediatrics, University of California, HSE-1401, 513 Parnassus Avenue, San Francisco, San Francisco, California 94143-0978, USA
| | | |
Collapse
|
60
|
Miller WL, Agrawal V, Sandee D, Tee MK, Huang N, Choi JH, Morrissey K, Giacomini KM. Consequences of POR mutations and polymorphisms. Mol Cell Endocrinol 2011; 336:174-9. [PMID: 21070833 PMCID: PMC4632974 DOI: 10.1016/j.mce.2010.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 01/23/2023]
Abstract
P450 oxidoreductase (POR) transports electrons from NADPH to all microsomal cytochrome P450 enzymes, including steroidogenic P450c17, P450c21 and P450aro. Severe POR mutations A287P (in Europeans) and R457H (in Japanese) cause the Antley-Bixler skeletal malformation syndrome (ABS) plus impaired steroidogenesis (causing genital anomalies), but the basis of ABS is unclear. We have characterized the activities of ∼40 POR variants, showing that assays based on P450c17 activities, but not cytochrome c assays, correlate with the clinical phenotype. The human POR gene is highly polymorphic: the A503V sequence variant, which decreases P450c17 activities to ∼60%, is found on ∼28% of human alleles. A promoter polymorphism (∼8% of Asians and ∼13% of Caucasians) at -152 reduces transcriptional activity by half. Screening of 35 POR variants showed that most mutants lacking activity with P450c17 or cytochrome c also lacked activity to support CYP1A2 and CYP2C19 metabolism of EOMCC (a fluorogenic non-drug substrate), although there were some remarkable differences: Q153R causes ABS and has ∼30% of wild-type activity with P450c17 but had 144% of WT activity with CYP1A2 and 284% with CYP2C19. The effects of POR variants on CYP3A4, which metabolizes nearly 50% of clinically used drugs, was examined with multiple, clinically relevant drug substrates, showing that A287P and R457H dramatically reduce drug metabolism, and that A503V variably impairs drug metabolism. The degree of activity can vary with the drug substrate assayed, as the drugs can influence the conformation of the P450. POR is probably an important contributor to genetic variation in both steroidogenesis and drug metabolism.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143-0978, USA.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1554] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|