51
|
Badr P, Afsharypuor S, Tohidinik HR, Mohammadi AA, Daneshamouz S. Burn Wound Healing Effect of a Sterilized Traditional Formulation of Boswellia carteri vs. Silver Sulfadiazine Cream 1% in Patients Presenting Second-degree Burn Wounds: A Randomized, Double-blind Clinical Trial. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:137-145. [PMID: 36895452 PMCID: PMC9989234 DOI: 10.30476/ijms.2022.91853.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/01/2021] [Accepted: 01/30/2022] [Indexed: 03/11/2023]
Abstract
Background Burn wounds rank among the most serious healthcare issues. Many studies reported the effectiveness of natural products in the wound-healing process. The present study compared the effects of a standardized herbal formulation derived from Boswellia carteri (B. carteri) and silver sulfadiazine (SSD) cream 1% on the healing of burn wounds. Methods This randomized double-blind clinical trial was conducted at Shiraz Burn Hospital (Shiraz, Iran) between July 2012 to August 2013. A sterilized formulation comprising B. carteri 40% was prepared. 54 second-degree burn patients of both sexes with age ranges of 20 to 60 were invited to participate in this double-blind, randomized clinical trial. They were randomly divided into two groups and given either the Boswellia formulation or SSD cream. The healing index was determined based on the wound area assessment using the planimetry technique. The Kaplan-Meier survival analysis was used to assess the primary outcome, which was the amount of time until complete healing. Results The trial was completed by 17 patients from the SSD group and 15 patients from the Boswellia group. During the study period, both groups showed a progressive healing trend. The mean (95% CI) healing time in the SSD group was 10.94 (9.03-12.85) days and 10.73 (9.23-12.23) days in the Boswellia group (P=0.71), indicating no significant difference. On the 17th day, the healing index of all patients in the Boswellia group reached 1. Conclusion Boswellia topical formulation had a burn wound healing effect comparable to that of the standard SSD 1% treatment. Based on the findings of this study, the likelihood of contact dermatitis with Boswellia should be taken into consideration.
Collapse
Affiliation(s)
- Parmis Badr
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Suleiman Afsharypuor
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Tohidinik
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
52
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
53
|
Wu T, Phacharapan S, Inoue N, Kamitani Y. Antioxidant Activity Enhancement Effect of Silver-Ionized Water: Silver Cation Prepared by Electrolysis. Antioxidants (Basel) 2023; 12:antiox12020467. [PMID: 36830025 PMCID: PMC9952159 DOI: 10.3390/antiox12020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In the present study, tap water, alkaline electrolyzed water (AlEW) and tourmaline water (TMW) were used as the electrolytes to generated the silver-ionized water (SIW), AlEW-SIW and TMW-SIW, respectively. The antioxidant properties of the samples containing ascorbic acid (AsA) were investigated by WST-kit method. The results showed that the SOD activity of AsA (2 mmol/L) dissolved in SIW (66.0%) was enhanced by about 8% compared to that of the tap water (57.9%). The SOD activity of the AlEW-SIW solution (77.3%), which was higher than that of the SIW solution, and lower than that of the AlEW solution (83.6%). The SOD activity of the TMW-SIW solution (83.0%) was similar to that of the TMW solution (82.5%). Furthermore, to classify the sample solutions, discriminant analyses were performed based on near infrared (NIR) spectral data, which was consistent with the results of the WST-kit method. The SOD activity of the AlEW-SIW and TMW-SIW solutions decreased slowly with storage time, and their SOD activities were higher than that of AlEW, TMW and the tap water solutions at storage time of 14 days. In summary, AlEW-SIW and TMW-SIW showed similar antioxidant activity enhancement as AlEW and TMW, and they also maintained the stability of the antioxidant activity of AsA during storage.
Collapse
Affiliation(s)
- Tongjiao Wu
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Santudprom Phacharapan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Natsuki Inoue
- Graduate School of Agricultural, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshinori Kamitani
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Graduate School of Agricultural, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Correspondence:
| |
Collapse
|
54
|
Nyabadza A, Shan C, Murphy R, Vazquez M, Brabazon D. Laser-synthesised magnesium nanoparticles for amino acid and enzyme immobilisation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
55
|
Treatment of infection and inflammation associated with COVID-19, multi-drug resistant pneumonia and fungal sinusitis by nebulizing a nanosilver solution. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102654. [PMID: 36646192 PMCID: PMC9839457 DOI: 10.1016/j.nano.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Solutions containing Ag0 nanoclusters, Ag+1, and higher oxidation state silver, generated from nanocrystalline silver dressings, were anti-inflammatory against porcine skin inflammation. The dressings have clinically-demonstrated broad-spectrum antimicrobial activity, suggesting application of nanosilver solutions in treating pulmonary infection. Nanosilver solutions were tested for antimicrobial efficacy; against HSV-1 and SARS-CoV-2; and nebulized in rats with acute pneumonia. Patients with pneumonia (ventilated), fungal sinusitis, burns plus COVID-19, and two non-hospitalized patients with COVID-19 received nebulized nanosilver solution. Nanosilver solutions demonstrated pH-dependent antimicrobial efficacy; reduced infection and inflammation without evidence of lung toxicity in the rat model; and inactivated HSV-1 and SARS-CoV-2. Pneumonia patients had rapidly reduced pulmonary symptoms, recovering pre-illness respiratory function. Fungal sinusitis-related inflammation decreased immediately with infection clearance within 21 days. Non-hospitalized patients with COVID-19 experienced rapid symptom remission. Nanosilver solutions, due to anti-inflammatory, antiviral, and antimicrobial activity, may be effective for treating respiratory inflammation and infections caused by viruses and/or microbes.
Collapse
|
56
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
57
|
Wound Contact Layers: The unsung heroes of burn care when utilising Negative Pressure Wound Therapy? BURNS OPEN 2023. [DOI: 10.1016/j.burnso.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
58
|
Rybka M, Mazurek Ł, Konop M. Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing-From Experimental Studies to Clinical Practice. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010069. [PMID: 36676019 PMCID: PMC9864212 DOI: 10.3390/life13010069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Impaired wound healing affects hundreds of million people around the world; therefore, chronic wounds are a major problem not only for the patient, but also for already overloaded healthcare systems. Chronic wounds are always very susceptible to infections. Billions of dollars are spent to discover new antibiotics as quickly as possible; however, bacterial resistance against antibiotics is rising even faster. For this reason, a complete shift of the antibacterial treatment paradigm is necessary. The development of technology has allowed us to rediscover well-known agents presenting antimicrobial properties with a better outcome. In this context, silver nanoparticles are a promising candidate for use in such therapy. Silver has many useful properties that can be used in the treatment of chronic wounds, such as anti-bacterial, anti-inflammatory, and anti-oxidative properties. In the form of nanoparticles, silver agents can work even more effectively and can be more easily incorporated into various dressings. Silver-based dressings are already commercially available; however, innovative combinations are still being discovered and very promising results have been described. In this review article, the authors focused on describing experimental and clinical studies exploring dressings containing either silver or silver nanoparticles, the results of which have been published in recent years.
Collapse
|
59
|
Cook KA, Martinez-Lozano E, Sheridan R, Rodriguez EK, Nazarian A, Grinstaff MW. Hydrogels for the management of second-degree burns: currently available options and future promise. BURNS & TRAUMA 2022; 10:tkac047. [PMID: 36518878 PMCID: PMC9733594 DOI: 10.1093/burnst/tkac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Burn wounds result from exposure to hot liquids, chemicals, fire, electric discharge or radiation. Wound severity ranges from first-degree injury, which is superficial, to fourth-degree injury, which exposes bone, tendons and muscles. Rapid assessment of burn depth and accurate wound management in the outpatient setting is critical to prevent injury progression into deeper layers of the dermis. Injury progression is of particular pertinence to second-degree burns, which are the most common form of thermal burn. As our understanding of wound healing advances, treatment options and technologies for second-degree burn management also evolve. Polymeric hydrogels are a class of burn wound dressings that adhere to tissue, absorb wound exudate, protect from the environment, can be transparent facilitating serial wound evaluation and, in some cases, enable facile removal for dressing changes. This review briefly describes the burn level classification and common, commercially available dressings used to treat second-degree burns, and then focuses on new polymeric hydrogel burn dressings under preclinical development analyzing their design, structure and performance. The review presents the follow key learning points: (1) introduction to the integument system and the wound-healing process; (2) classification of burns according to severity and clinical appearance; (3) available dressings currently used for second-degree burns; (4) introduction to hydrogels and their preparation and characterization techniques; and (5) pre-clinical hydrogel burn wound dressings currently being developed.
Collapse
Affiliation(s)
- Katherine A Cook
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| | - Edith Martinez-Lozano
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Robert Sheridan
- Shriners Hospitals for Children and Burns Service, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02214, USA
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Mark W Grinstaff
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
60
|
Stynes G, Haertsch P, O'Hara J, Knight R, Issler-Fisher AC, Maitz PKM. Alginate dressings continuously for fourteen days on uncontaminated, superficial, partial thickness burns. J Burn Care Res 2022:6743261. [PMID: 36181757 DOI: 10.1093/jbcr/irac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 01/27/2023]
Abstract
Calcium alginate dressings are commonly used on split-thickness skin donor sites, where they are typically removed after 14 days. Alginates have been used previously on superficial, partial thickness burns, but changed every 3-4 days. In this study, alginates were applied to superficial, partial thickness burns on adults within 36 hours of injury, then left intact for up to 14 days. Wound healing (≥95% wound epithelialisation) and pain were measured. Twenty-one burns were reviewed on ten patients. Per the initial protocol, six patients were reviewed every 3-5 days, with removal of only secondary dressings, until day 13-14, when the alginate dressings were removed. One patient was reviewed every 3-5 days until day 10, when a clinic nurse removed the alginate dressing. Restrictions on movement during the COVID pandemic necessitated a protocol change, with only one review at approximately day 14 for removal of alginate and secondary dressings; three patients were reviewed in this manner. Burns on all patients were 100% epithelialised at the time of final review and there were no complications, such as scarring, infection, or need for grafting. Following initial debridement and dressings, patients reported minimal pain. Dressing costs appeared to be significantly decreased. This protocol may be particularly useful for patients managed in rural and remote locations, with telemedicine support if required.
Collapse
Affiliation(s)
- Gil Stynes
- Burns Unit, Concord Repatriation General Hospital, Hospital Rd, Concord NSW 2139, Australia.,University of Sydney, Camperdown, NSW.,ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia.,Department of Surgery, Wollongong Hospital, 252 Loftus St, Wollongong 2500, NSW, Australia
| | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Hospital Rd, Concord NSW 2139, Australia.,University of Sydney, Camperdown, NSW.,Department of Surgery, Wollongong Hospital, 252 Loftus St, Wollongong 2500, NSW, Australia
| | - Justine O'Hara
- Burns Unit, Concord Repatriation General Hospital, Hospital Rd, Concord NSW 2139, Australia.,University of Sydney, Camperdown, NSW
| | - Robert Knight
- Department of Surgery, Wollongong Hospital, 252 Loftus St, Wollongong 2500, NSW, Australia
| | - Andrea C Issler-Fisher
- Burns Unit, Concord Repatriation General Hospital, Hospital Rd, Concord NSW 2139, Australia.,University of Sydney, Camperdown, NSW.,ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Peter K M Maitz
- Burns Unit, Concord Repatriation General Hospital, Hospital Rd, Concord NSW 2139, Australia.,University of Sydney, Camperdown, NSW.,ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
61
|
Sanchez MF, Guzman ML, Flores-Martín J, Cruz Del Puerto M, Laino C, Soria EA, Donadio AC, Genti-Raimondi S, Olivera ME. Ionic complexation improves wound healing in deep second-degree burns and reduces in-vitro ciprofloxacin cytotoxicity in fibroblasts. Sci Rep 2022; 12:16035. [PMID: 36163445 PMCID: PMC9513095 DOI: 10.1038/s41598-022-19969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
The development of new treatments capable of controlling infections and pain related to burns continues to be a challenge. Antimicrobials are necessary tools, but these can be cytotoxic for regenerating cells. In this study, antibiotic-anesthetic (AA) smart systems obtained by ionic complexation of polyelectrolytes with ciprofloxacin and lidocaine were obtained as films and hydrogels. Ionic complexation with sodium alginate and hyaluronate decreased cytotoxicity of ciprofloxacin above 70% in a primary culture of isolated fibroblasts (p < 0.05). In addition, the relative levels of the proteins involved in cell migration, integrin β1 and p-FAK, increased above 1.5 times (p < 0.05) with no significant differences in cell mobility. Evaluation of the systems in a deep second-degree burn model revealed that reepithelization rate was AA-films = AA-hydrogels > control films > no treated > reference cream (silver sulfadiazine cream). In addition, appendage conservation and complete dermis organization were achieved in AA-films and AA-hydrogels. Encouragingly, both the films and the hydrogels showed a significantly superior performance compared to the reference treatment. This work highlights the great potential of this smart system as an attractive dressing for burns, which surpasses currently available treatments.
Collapse
Affiliation(s)
- María Florencia Sanchez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Laura Guzman
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Jesica Flores-Martín
- Departamento de Bioquímica Clínica and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Mariano Cruz Del Puerto
- Departamento de Bioquímica Clínica and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Carlos Laino
- Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica (CENIIT), Universidad Nacional de La Rioja, 5300, La Rioja, Argentina
| | - Elio Andrés Soria
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ana Carolina Donadio
- Departamento de Bioquímica Clínica and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Departamento de Bioquímica Clínica and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - María Eugenia Olivera
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
62
|
A Randomized Controlled Trial of Three Advanced Wound Dressings in Split-Thickness Skin Grafting Donor Sites-A Personalized Approach? J Pers Med 2022; 12:jpm12091395. [PMID: 36143180 PMCID: PMC9506097 DOI: 10.3390/jpm12091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Split-thickness skin grafting (STSG) is a frequently used reconstructive technique, and its donor site represents a standardized clinical model to evaluate wound dressings. We compared hydroactive nanocellulose-based, silver-impregnated and ibuprofen-containing foam wound dressings. Methods: A total of 46 patients scheduled for elective surgery were evaluated on the STSG donor site for wound healing (time-to-healing, Hollander Wound Evaluation Scale), pain level (Visual Analogue Scale), and handling (ease of use), as well as scar quality (Patient Scar Assessment Scale, Vancouver Scar Scale) after 3, 6 and 12 months. Results: Almost all dressings compared equally well. We observed statistically relevant differences for pain level favoring the ibuprofen-containing dressing (p = 0.002, ΔAIC = 8.1), and user friendliness in favor of nanocellulose (dressing removal: p = 0.037, ΔAIC = 2.59; application on patient: p = 0.042, ΔAIC = 2.33; wound adhesion: p = 0.017, ΔAIC = 4.16; sensation on skin: p = 0.027, ΔAIC = 3.21). We did not observe any differences for wound healing across all groups. Treatment with hydroactive nanocellulose and the ibuprofen-containing foam revealed statistically relevant better scar appearances as compared to the silver wound dressing (p < 0.001, ΔAIC = 14.77). Conclusion: All wound dressings performed equally well, with the detected statistical differences hinting future directions of clinical relevance. These include the reserved use of silver containing dressings for contaminated or close to contaminated wounds, and the facilitated clinical application of the nanocellulose dressing, which was the only suitable candidate in this series to be impregnated with a range of additional therapeutic agents (e.g., disinfectants and pain-modulating drugs). Personalized donor site management with the tested dressings can meet individual clinical requirements after STSG and improve management strategies and ultimately patient outcomes.
Collapse
|
63
|
Terezaki A, Kikionis S, Ioannou E, Sfiniadakis I, Tziveleka LA, Vitsos A, Roussis V, Rallis M. Ulvan/gelatin-based nanofibrous patches as a promising treatment for burn wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
64
|
Aisa J, Parlier M. Local wound management: A review of modern techniques and products. Vet Dermatol 2022; 33:463-478. [PMID: 35876262 DOI: 10.1111/vde.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 02/01/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Management of wounds is a commonly performed and essential aspect of small animal veterinary medicine. Appropriate wound management is a difficult art to master, due to the inherent complexity of the clinical scenario, as well as the ever-evolving nature of the field with the constant addition of new products and techniques. This article reviews key concepts that may help the practitioner better understand the natural process of wound healing, factors that delay healing and strategies to help improve the local wound environment to make it more conducive to healing during open wound management. The concept of wound bed preparation is defined before common local wound management strategies, such as wound lavage and debridement, are discussed in more detail. Key aspects of the management of biofilms and appropriate use of antimicrobial agents are also reviewed. Finally, the concept of moist wound healing and its impact in modern wound management is explained before a broad variety of types of wound dressings are reviewed, with a particular focus on active dressings.
Collapse
Affiliation(s)
- Josep Aisa
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Mark Parlier
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| |
Collapse
|
65
|
Nanostructured Polyacrylamide Hydrogels with Improved Mechanical Properties and Antimicrobial Behavior. Polymers (Basel) 2022; 14:polym14122320. [PMID: 35745896 PMCID: PMC9227893 DOI: 10.3390/polym14122320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023] Open
Abstract
This work proposes a simple method to obtain nanostructured hydrogels with improved mechanical characteristics and relevant antibacterial behavior for applications in articular cartilage regeneration and repair. Low amounts of silver-decorated carbon-nanotubes (Ag@CNTs) were used as reinforcing agents of the semi-interpenetrating polymer network, consisting of linear polyacrylamide (PAAm) embedded in a PAAm-methylene-bis-acrylamide (MBA) hydrogel. The rational design of the materials considered a specific purpose for each employed species: (1) the classical PAAm-MBA network provides the backbone of the materials; (2) the linear PAAm (i) aids the dispersion of the nanospecies, ensuring the systems' homogeneity and (ii) enhances the mechanical properties of the materials with regard to resilience at repeated compressions and ultimate compression stress, as shown by the specific mechanical tests; and (3) the Ag@CNTs (i) reinforce the materials, making them more robust, and (ii) imprint antimicrobial characteristics on the obtained scaffolds. The tests also showed that the obtained materials are stable, exhibiting little degradation after 4 weeks of incubation in phosphate-buffered saline. Furthermore, as revealed by micro-computed tomography, the morphometric features of the scaffolds are adequate for applications in the field of articular tissue regeneration and repair.
Collapse
|
66
|
Biological Synthesis of Low Cytotoxicity Silver Nanoparticles (AgNPs) by the Fungus Chaetomium thermophilum—Sustainable Nanotechnology. J Fungi (Basel) 2022; 8:jof8060605. [PMID: 35736088 PMCID: PMC9224622 DOI: 10.3390/jof8060605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Fungal biotechnology research has rapidly increased as a result of the growing awareness of sustainable development and the pressing need to explore eco-friendly options. In the nanotechnology field, silver nanoparticles (AgNPs) are currently being studied for application in cancer therapy, tumour detection, drug delivery, and elsewhere. Therefore, synthesising nanoparticles (NPs) with low toxicity has become essential in the biomedical area. The fungus Chaetomium thermophilum (C. thermophilum) was here investigated—to the best of our knowledge, for the first time—for application in the production of AgNPs. Transmission electronic microscopy (TEM) images demonstrated a spherical AgNP shape, with an average size of 8.93 nm. Energy-dispersive X-ray spectrometry (EDX) confirmed the presence of elemental silver. A neutral red uptake (NRU) test evaluated the cytotoxicity of the AgNPs at different inhibitory concentrations (ICs). A half-maximal concentration (IC50 = 119.69 µg/mL) was used to predict a half-maximal lethal dose (LD50 = 624.31 mg/kg), indicating a Global Harmonized System of Classification and Labelling of Chemicals (GHS) acute toxicity estimate (ATE) classification category of 4. The fungus extract showed a non-toxic profile at the IC tested. Additionally, the interaction between the AgNPs and the Balb/c 3T3 NIH cells at an ultrastructural level resulted in preserved cells structures at non-toxic concentrations (IC20 = 91.77 µg/mL), demonstrating their potential as sustainable substitutes for physical and chemically made AgNPs. Nonetheless, at the IC50, the cytoplasm of the cells was damaged and mitochondrial morphological alteration was evident. This fact highlights the fact that dose-dependent phenomena are involved, as well as emphasising the importance of investigating NPs’ effects on mitochondria, as disruption to this organelle can impact health.
Collapse
|
67
|
Ongarora BG. Recent technological advances in the management of chronic wounds: A literature review. Health Sci Rep 2022; 5:e641. [PMID: 35601031 PMCID: PMC9117969 DOI: 10.1002/hsr2.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Wound treatment comprises a substantial portion of the healthcare budgets in developed countries. Studies suggest that about 50% of patients admitted to hospitals have wounds, while 1%−2% of the general population in the developed world suffers from chronic wounds. Chronic wounds fail to repair themselves within the expected period of 30 days. Technologies have been developed to address challenges encountered during wound care with the aim of alleviating pain, promoting healing, or controlling wound infections. Objective The objective of this study was to explore the technological improvements that have been made in this field over time. Methods To gain insight into the future of wound management, a systematic review of literature on the subject was conducted in scientific databases (PubMed, Scopus, Web of Science, Medline, and Clinical Trials). Results and Discussion Results indicate that wound dressings have evolved from the traditional cotton gauze to composite materials embedded with appropriate ingredients such as metal‐based nanoparticles. Studies on biodegradable dressing materials are also underway to explore their applicability in dressing large and irregular wounds. On the other hand, conventional drugs and traditional formulations for the management of pain, inflammation, infections, and accelerating healing have been developed. However, more research needs to be carried out to address the issue of microbial resistance to drugs. Drugs for managing other ailments also need to be designed in such a way that they can augment wound healing. In addition, it has been demonstrated that a coordinated integration of conventional and traditional medicine can produce laudable results in chronic wound management. Conclusion Accordingly, collaborative efforts and ingenuity of all players in the field can accelerate technological advances in the wound care market to the benefit of the patients. Wounds affect about 50% of patients admitted to hospitals.
Technologies have been developed including biodegradable dressing materials to address underlying challenges.
Technological advancement, rising incidences of chronic wounds, growing government support, and a rising elderly population will drive wound market growth.
A careful combination of recent research outputs can greatly change wound care technologies.
This review highlights the recent research advances and opportunities in the wound care field.
The future lies in biodegradable dressing materials, probably embedded with selected nanoparticles and which shall be combined in predetermined ratios.
Collapse
Affiliation(s)
- Benson G. Ongarora
- Department of Chemistry Dedan Kimathi University of Technology Nyeri Kenya
| |
Collapse
|
68
|
Kotturi H, Lopez-Davis C, Nikfarjam S, Kedy C, Byrne M, Barot V, Khandaker M. Incorporation of Mycobacteriophage Fulbright into Polycaprolactone Electrospun Nanofiber Wound Dressing. Polymers (Basel) 2022; 14:1948. [PMID: 35631831 PMCID: PMC9143337 DOI: 10.3390/polym14101948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The Genus Mycobacterium includes pathogens known to cause disease in mammals such as tuberculosis (Mycobacterium tuberculosis) and skin infections (M. abscessus). M. smegmatis is a model bacterium that can cause opportunistic infections in human tissues and, rarely, a respiratory disease. Due to the emergence of multidrug-resistant bacteria, phage therapy is potentially an alternative way of treating these bacterial infections. As bacteriophages are specific to their bacterial host, it ensures that the normal flora is unharmed. Fulbright is a mycobacteriophage that infects the host bacteria M. smegmatis. The main goal of this study is to incorporate Mycobacteriophage Fulbright into a polycaprolactone (PCL) nanofiber and test its antimicrobial effect against the host bacteria, M. smegmatis. Stability tests conducted over 7 days showed that the phage titer does not decrease when in contact with PCL, making it a promising vehicle for phage delivery. Antimicrobial assays showed that PCL_Fulbright effectively reduces bacterial concentration after 24 h of contact. In addition, when stored at -20 °C, the phage remains viable for up to eleven months in the fiber. Fulbright addition on the nanofibrous mats resulted in an increase in water uptake and decrease in the mechanical properties (strength and Young's modulus) of the membranes, indicating that the presence of phage Fulbright can greatly enhance the physical and mechanical properties of the PCL. Cytotoxicity assays showed that PCL_Fulbright is not cytotoxic to Balbc/3T3 mouse embryo fibroblast cell lines; thus, phage-incorporated PCL is a promising alternative to antibiotics in treating skin infections.
Collapse
Affiliation(s)
- Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Charmaine Lopez-Davis
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Sadegh Nikfarjam
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Cameron Kedy
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Micah Byrne
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Vishal Barot
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA;
| | - Morshed Khandaker
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA;
| |
Collapse
|
69
|
First Report on the Phenotypic and Genotypic Susceptibility Profiles to Silver Nitrate in Bacterial Strains Isolated from Infected Leg Ulcers in Romanian Patients. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Silver-ion-based antiseptics are widely used in treating chronic leg ulcers and, given the emergence of resistance to such compounds, the investigation of silver susceptibility and resistance profiles of pathogenic strains isolated from this type of wound is a topic of great interest. Therefore, in this study, 125 bacterial strains isolated from 103 patients with venous ulcers were investigated to elucidate their susceptibility to silver-nitrate solutions in planktonic and biofilm growth states, and the associated genetic determinants. The isolated strains, both in the planktonic and biofilm growth phases, showed high sensitivity to the standard concentration of 1/6000 silver-nitrate solution. It was noticed that even at concentrations lower than the clinical one (the first 2–3 binary dilutions in the case of planktonic cultures and the first 6–7 binary dilutions in the case of biofilms), the antiseptic solution proved to maintain its antibacterial activity. The phenotypic results were correlated with the genetic analysis, highlighting the presence of silver-resistance genes (sil operon) in only a few of the tested Staphylococcus sp. (especially in S. aureus) strains, Escherichia coli and Pseudomonas aeruginosa strains. These results demonstrate that despite its large use, this antiseptic remains a viable treatment alternative for the management of chronic leg wounds.
Collapse
|
70
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
71
|
Du C, Liu J, Fikhman DA, Dong KS, Monroe MBB. Shape Memory Polymer Foams With Phenolic Acid-Based Antioxidant and Antimicrobial Properties for Traumatic Wound Healing. Front Bioeng Biotechnol 2022; 10:809361. [PMID: 35252129 PMCID: PMC8893234 DOI: 10.3389/fbioe.2022.809361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023] Open
Abstract
The leading cause of trauma-related death before arrival at a hospital is uncontrolled blood loss. Upon arrival at the hospital, microbial infections in traumatic wounds become an additional factor that increases mortality. The development of hemostatic materials with antimicrobial and antioxidant properties could improve morbidity and mortality in these wounds. To that end, phenolic acids (PAs) were successfully incorporated into the network of shape memory polymer (SMP) polyurethane foams by reacting them with isocyanates. Resulting PA-containing SMP foam shape memory properties, antimicrobial and antioxidant activity, and blood and cell interactions were characterized. Results showed that p-coumaric, vanillic, and ferulic acids were successfully incorporated into the SMP foams. The PA-containing SMP foams retained the antimicrobial and antioxidant properties of the incorporated PAs, with ∼20% H2O2 scavenging and excellent antimicrobial properties again E. coli (∼5X reduction in CFUs vs. control foams), S. aureus (∼4.5X reduction in CFUs vs. control foams, with comparable CFU counts to clinical control), and S. epidermidis (∼25–120X reduction in CFUs vs. control foams, with comparable CFU counts to clinical control). Additionally, appropriate thermal and shape memory properties of PA foams could enable stable storage in low-profile secondary geometries at temperatures up to ∼55°C and rapid expand within ∼2 min after exposure to water in body temperature blood. PA foams had high cytocompatibility (>80%), non-hemolytic properties, and platelet attachment and activation, with improved cytocompatibility and hemocompatibility in comparison with clinical, silver-based controls. The incorporation of PAs provides a natural non-antibiotic approach to antimicrobial SMP foams with antioxidant properties. This system could improve outcomes in traumatic wounds to potentially reduce bleeding-related deaths and subsequent infections.
Collapse
|
72
|
ŞAHİN Y, GÜN GÖK Z, ALÇIĞIR ME, ÇINAR M. Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.990270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
73
|
Li HS, Luo GX, Yuan ZQ. [Research advances on the prevention and treatment strategies of burn wound progressive deepening]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:1199-1204. [PMID: 34937157 PMCID: PMC11917290 DOI: 10.3760/cma.j.cn501120-20200828-00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The progressive deepening of burn wounds is one of the common clinical problems and difficulties in early burn treatment. At the present, it is believed that local ischemia and hypoxia, persistent inflammation, infection, unbalanced local microenvironment, cell necrosis, apoptosis, and autophagy are the main mechanisms of progressive deepening of burn wounds. In recent years, basic and clinical studies have proposed various new strategies for prevention and treatment of progressive deepening of burn wounds, mainly including correct cooling, improving blood perfusion of the wound, early debridement, improving the wound microenvironment, preventing and treating wound infection, reducing wound inflammation, and inhibiting the oxidative stress in the wound. This review focuses on the current progress of prevention and treatment strategies of burn wound progressive deepening, in order to provide references for the treatment of burn wounds.
Collapse
Affiliation(s)
- H S Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - G X Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - Z Q Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
74
|
Singh R, Roopmani P, Chauhan M, Basu SM, Deeksha W, Kazem MD, Hazra S, Rajakumara E, Giri J. Silver sulfadiazine loaded core-shell airbrushed nanofibers for burn wound healing application. Int J Pharm 2021; 613:121358. [PMID: 34896560 DOI: 10.1016/j.ijpharm.2021.121358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/21/2023]
Abstract
Ideal dressing materials for complex and large asymmetric burns should have the dual properties of anti-bacterial and regenerative with advanced applicability of direct deposit on the wound at the patient bedside. In this study, core-shell nanofibers (polycaprolactone; PCL and polyethylene oxide; PEO) with different percent of silver sulfadiazine (SSD) loading (2-10%) were prepared by the airbrushing method using a custom build device. Results indicate a sustained release profile of silver sulfadiazine (SSD) up to 28 days and concentration-dependent anti-bacterial activity. The morphology and proliferation of human dermal fibroblast (HDF) cells and human dental follicle stem cells (HDFSC) on the silver sulfadiazine loaded nanofibers confirm the biocompatibility of airbrushed nanofibers. Moreover, upregulation of extracellular matrix (ECM) proteins (Col I, Col III, and elastin) support the differentiation and regenerative properties of silver sulfadiazine nanofiber mats. This was further confirmed by the complete recovery of rabbit burn wound models within 7 days of silver sulfadiazine loaded nanofiber dressing. Histopathology data show silver sulfadiazine loaded core-shell nanofibers' anti-inflammatory and proliferative activity without any adverse response on the tissue. Overall data display that the airbrushed silver sulfadiazine-loaded core-shell nanofibers are effective dressing material with the possibility of direct fiber deposition on the wound to cover, heal, and regenerate large asymmetric burn wounds.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - M D Kazem
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Sarbani Hazra
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
75
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
76
|
Do TBT, Nguyen TNT, Ho MH, Nguyen NTP, Do TM, Vo DT, Hua HTN, Phan TB, Tran PA, Nguyen HTT, Vo TV, Nguyen TH. The Efficacy of Silver-Based Electrospun Antimicrobial Dressing in Accelerating the Regeneration of Partial Thickness Burn Wounds Using a Porcine Model. Polymers (Basel) 2021; 13:polym13183116. [PMID: 34578017 PMCID: PMC8469778 DOI: 10.3390/polym13183116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.
Collapse
Affiliation(s)
- Thien Bui-Thuan Do
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
| | - Tien Ngoc-Thuy Nguyen
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
| | - Minh Hieu Ho
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
| | - Nghi Thi-Phuong Nguyen
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
| | - Thai Minh Do
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
| | - Dai Tan Vo
- Veterinary Hospital, Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam;
| | - Ha Thi-Ngoc Hua
- Department of Anatomic Pathology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam;
| | - Thang Bach Phan
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia;
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Hoai Thi-Thu Nguyen
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
- School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam
| | - Toi Van Vo
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
| | - Thi-Hiep Nguyen
- Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam; (T.B.-T.D.); (T.N.-T.N.); (M.H.H.); (N.T.-P.N.); (T.M.D.); (T.V.V.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam; (T.B.P.); (H.T.-T.N.)
- Correspondence:
| |
Collapse
|
77
|
Hayashida K, Yamakawa S. Topical odour management in burn patients. BURNS & TRAUMA 2021; 9:tkab025. [PMID: 34458382 PMCID: PMC8389170 DOI: 10.1093/burnst/tkab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Preventing microbial colonization or infections that cause offensive smells may lead to odor reduction. As both anaerobic and aerobic bacteria cause the release of malodor from wounds, the most direct way of avoiding or eliminating wound odor is to prevent or eradicate the responsible infection through the debridement of necrotic tissues. However, some burn patients with malodorous wounds are unable to undergo debridement due to systemic conditions, especially in the acute stage. Moreover, the optimal drug doses and dressings to ensure the efficacy and cost-effectiveness of odorous burn wound management is unclear. The purpose of this commentary is to outline the odor management options available for burn patients, focusing on topical strategies. Numerous potential therapies for treating odorous wounds after burn injuries are suggested.
Collapse
Affiliation(s)
- Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-0021, Japan
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-0021, Japan
| |
Collapse
|
78
|
Mahmoudabadi S, Farahpour MR, Jafarirad S. Effectiveness of Green Synthesis of Silver/Kaolinite Nanocomposite Using Quercus infectoria Galls Aqueous Extract and Its Chitosan-Capped Derivative on the Healing of Infected Wound. IEEE Trans Nanobioscience 2021; 20:530-542. [PMID: 34406944 DOI: 10.1109/tnb.2021.3105356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kaolinite nanocomposites (NCs) could be utilized as agents for wound healing owing to their efficiency and low toxicity. The present study was conducted to synthesize a novel silver/kaolinite NCs (Ag/Kaol NCs) and investigate their chitosan derivation (Ag/Kaol/Chit NCs) using oak extract. XRD, SEM, EDX, FT-IR, and DLS were employed for the investigation of structural and physio-chemical properties of the synthesized NCs. The obtained results revealed that synthesized Ag/Kaol NCs were mesoporous and spherical with sizes ranging from 7-11 nm. They also demonstrated successful synthesis between silver and kaolinite using the extract. Cytotoxicity and in vitro antibacterial activity were also investigated. The clinical effects of ointments containing the NCs for improving wound healing were studied on the wound area, total bacterial count, histological parameters, and protein expression of some genes. Nanocomposites were safe up to 0.50 mg/mL. The results of in vivo and in vitro antibacterial activity showed that Ag/Kaol NCs, were of antibacterial activity ( ). The results of antioxidant activity indicated that Ag/Kaol NCs have antioxidant structures. Our findings concerning molecular mechanism implied that Ag/Kaol/Chit increased the expression of Wnt/ β -catenin and collagen ( ). In sum, Ag/Kaol/Chit showed antibacterial activity and improved wound healing by decreasing the inflammation and promoting the proliferative phase. The novel NCs showed wound healing properties by decreasing inflammation and total bacterial count and increasing proliferative phase. The application of Ag/Kaol/Chit was suggested as a green agent for improving infected wound healing.
Collapse
|
79
|
Pangli H, Vatanpour S, Hortamani S, Jalili R, Ghahary A. Incorporation of Silver Nanoparticles in Hydrogel Matrices for Controlling Wound Infection. J Burn Care Res 2021; 42:785-793. [PMID: 33313805 PMCID: PMC8335948 DOI: 10.1093/jbcr/iraa205] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
For centuries, silver has been recognized for its antibacterial properties. With the development of nanotechnology, silver nanoparticles (AgNPs) have garnered significant attention for their diverse uses in antimicrobial gel formulations, dressings for wound healing, orthopedic applications, medical catheters and instruments, implants, and contact lens coatings. A major focus has been determining AgNPs' physical, chemical, and biological characteristics and their potential to be incorporated in biocomposite materials, particularly hydrogel scaffolds, for burn and wound healing. Though AgNPs have been rigorously explored and extensively utilized in medical and nonmedical applications, important research is still needed to elucidate their antibacterial activity when incorporated in wound-healing scaffolds. In this review, we provide an up-to-date, 10-yr (2010-2019), comprehensive literature review on advancements in the understanding of AgNP characteristics, including the particles' preparation and mechanisms of activity, and we explore various hydrogel scaffolds for delivering AgNPs.
Collapse
Affiliation(s)
- Harpreet Pangli
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Division of Plastic Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Saba Vatanpour
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Shamim Hortamani
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Reza Jalili
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Aziz Ghahary
- BC Professional Firefighters’ Burn and Wound Healing Research Group, Department of Surgery, Division of Plastic Surgery, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| |
Collapse
|
80
|
da Silva RAG, Afonina I, Kline KA. Eradicating biofilm infections: an update on current and prospective approaches. Curr Opin Microbiol 2021; 63:117-125. [PMID: 34333239 DOI: 10.1016/j.mib.2021.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Biofilm formation is a multifactorial process and often a multi-species endeavour that involves complex signalling networks, chemical gradients, bacterial adhesion, and production or acquisition of matrix components. Antibiotics remain the main choice when treating bacterial biofilm-associated infections despite their intrinsic tolerance to antimicrobials, and propensity for acquisition and rapid dissemination of antimicrobial resistance within the biofilm. Eliminating hard to treat biofilm-associated infections that are antibiotic resistant will demand a holistic and multi-faceted approach, targeting multiple stages of biofilm formation, many of which are already in development. This mini review will highlight the current approaches that are employed to treat bacterial biofilm infections and discuss new approaches in development that have promise to reach clinical practice.
Collapse
Affiliation(s)
- Ronni A G da Silva
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore
| | - Irina Afonina
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
81
|
Amer Y, Bridges C, Marathe K. Epidemiology, Pathophysiology, and Management Strategies of Neonatal Wound Care. Neoreviews 2021; 22:e452-e460. [PMID: 34210809 DOI: 10.1542/neo.22-7-e452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Guidelines for neonatal skin care are scarce, and there is no consensus on the best management practices for neonatal skin breakdown. This review presents the pathology and phases of wound healing, reasons for neonatal skin fragility, and approaches to recognition of commonly encountered neonatal wounds. This review also provides general strategies for neonatal wound prevention, care, dressing, and management to avoid further damage to the fragile neonatal skin. The importance and role of retaining moisture in expediting wound healing is discussed, as well as updated classifications on how to grade and assess pressure ulcers and the role of negative pressure wound therapy and silver dressings. Lastly, this review discusses prevention and treatment options for surgical wounds, intravenous extravasation wounds, congenital wounds, and thermal injuries, in addition to how to differentiate these wounds from the common diaper dermatitis and contact dermatitis.
Collapse
Affiliation(s)
- Yomna Amer
- School of Medicine, University of Louisville, Louisville, KY
| | - Catherine Bridges
- Department of Dermatology, University of Cincinnati, Cincinnati, OH.,Department of Dermatology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Kalyani Marathe
- Department of Dermatology, Cincinnati Children's Hospital, Cincinnati, OH
| |
Collapse
|
82
|
White AJ, Fiani B, Jarrah R, Momin AA, Rasouli J. Surgical Site Infection Prophylaxis and Wound Management in Spine Surgery. Asian Spine J 2021; 16:451-461. [PMID: 34167274 PMCID: PMC9260408 DOI: 10.31616/asj.2020.0674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
Surgical site infection (SSI) is a potentially devastating complication of spinal surgery that increases patient morbidity and healthcare costs. SSIs have complex and multifactorial etiologies; therefore, there are numerous opportunities for prevention and risk mitigation. The aim of this narrative review was to describe the incidence, risk factors, and outcomes of SSIs in spine surgery with an emphasis on postoperative wound care. We list and describe the preoperative, intraoperative, and postoperative evidence-based interventions that can be applied to potentially prevent SSI after spinal surgery.
Collapse
Affiliation(s)
- Alexandra J White
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Ryan Jarrah
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Arbaz A Momin
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Rasouli
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
83
|
Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 2021; 18:342-358. [PMID: 33314723 PMCID: PMC8244012 DOI: 10.1111/iwj.13537] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022] Open
Abstract
Biofilms play a major role in delaying chronic wounds from healing. A wound infiltrated with biofilm, or "critically colonised" wound, may become clinically infected if the number of microbes exceeds a critical level. Chronic wound biofilms represent a significant treatment challenge by demonstrating recalcitrance towards antimicrobial agents. However, a "window of opportunity" may exist after wound debridement when biofilms are more susceptible to topical antiseptics. Here, we discuss the role of antiseptics in the management of chronic wounds and biofilm, focusing on povidone-iodine (PVP-I) in comparison with two commonly used antiseptics: polyhexanide (PHMB) and silver. This article is based on the literature reviewed during a focus group meeting on antiseptics in wound care and biofilm management, and on a PubMed search conducted in March 2020. Compared with PHMB and silver, PVP-I has a broader spectrum of antimicrobial activity, potent antibiofilm efficacy, no acquired bacterial resistance or cross-resistance, low cytotoxicity, good tolerability, and an ability to promote wound healing. PVP-I represents a viable therapeutic option in wound care and biofilm management, with the potential to treat biofilm-infiltrated, critically colonised wounds. We propose a practical algorithm to guide the management of chronic, non-healing wounds due to critical colonisation or biofilm, using PVP-I.
Collapse
Affiliation(s)
- Paulo J. Alves
- Wounds Research LaboratoryUniversidade Católica PortuguesaPortoPortugal
| | | | | | - Luc G. Gryson
- Belgian Defence Military Medical ComponentBrusselsBelgium
| | - Sylvie Meaume
- Department of Geriatrics and Wound Care UnitHospital Rothschild, APHP Assistance Publique Hôpitaux de Paris, Sorbonne UniversitéParisFrance
| | - Stan J. Monstrey
- Department of Plastic SurgeryGhent University HospitalGhentBelgium
| |
Collapse
|
84
|
Somszor K, Allison-Logan S, Karimi F, McKenzie T, Fu Q, O'Connor A, Qiao G, Heath D. Amphiphilic Core Cross-Linked Star Polymers for the Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules 2021; 22:2554-2562. [PMID: 33983713 DOI: 10.1021/acs.biomac.1c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of hydrophilic drugs from hydrophobic polymers is a long-standing challenge in the biomaterials field due to the limited solubility of the therapeutic agent within the polymer matrix. In this work, we develop a drug delivery mechanism that enables the impregnation and subsequent elution of hydrophilic drugs from a hydrophobic polymer material. This was achieved by synthesizing core cross-linked star polymer amphiphiles with hydrophilic cores and hydrophobic coronas. While significant work has been done to create nanocarriers for hydrophilic drugs, this work is distinct from previous work in that it designs amphiphilic and core cross-linked particles for controlled release from hydrophobic matrices. Ultraviolet-mediated atom transfer radical polymerization was used to synthesize the poly(ethylene glycol) (PEG)-based hydrophilic cores of the star polymers, and hydrophobic coronas of poly(caprolactone) (PCL) were then built onto the stars using ring-opening polymerization. We illustrated the cytocompatibility of PCL loaded with these star polymers through human endothelial cell adhesion and proliferation for up to 7 days, with star loadings of up to 40 wt %. We demonstrated successful loading of the hydrophilic drug heparin into the star polymer core, achieving a loading efficiency and content of 50 and 5%, respectively. Finally, the heparin-loaded star polymers were incorporated into a PCL matrix and sustained release of heparin was illustrated for over 40 days. These results support the use of core cross-linked star polymer amphiphiles for the delivery of hydrophilic drugs from hydrophobic polymer matrices. These materials were developed for application as drug-eluting and biodegradable coronary artery stents, but this flexible drug delivery platform could have impact in a broad range of medical applications.
Collapse
Affiliation(s)
- Katarzyna Somszor
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Stephanie Allison-Logan
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Fatemeh Karimi
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thomas McKenzie
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Qiang Fu
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Andrea O'Connor
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Greg Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Daniel Heath
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| |
Collapse
|
85
|
Titanium Oxide (TiO2) Nanoparticles for Treatment of Wound Infection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Wound infections is one of the major problems worldwide. Millions of people around the world require several medical treatments for wound infections. The extensive use of antibiotics to treat wound infection leads to emerging new microbial strains that are resistant to many antibiotics. There is a growing concern on the emergence and re-emergence of drug-resistant pathogens such as multi-resistant bacterial strains. Hence, the development of new antimicrobial compounds or the modification of those that already exist to improve antibacterial activity is a high research priority. Metallic nanoparticles (NPs) are considered as new alternative treatment for wound infection with superior antibacterial activity. In this study, new formulation of titanium oxide (TiO2) NPs with different sizes were synthesized and characterized. Genotoxicity, mutagenicity and antibacterial activities of TiO2 NPs against the causative agents of wound infection were investigated. Antibacterial activity of TiO2 NPs was conducted against three ATCC® bacterial strains: methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa. The results clearly illustrate a superior antibacterial activity of all newly formulated TiO2 NPs against the most causative agents of wound infection. Most of our TiO2 NPs showed non-genotoxic and non-mutagenic results at the maximum concentrations. Findings of this study will enhance the future of the therapeutic strategies against the resistant pathogenic strains that cause wound infections.
Collapse
|
86
|
Netanel Liberman G, Ochbaum G, Bitton R, (Malis) Arad S. Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
87
|
Interaction of silver nanoparticle and commonly used anti-inflammatory drug within a poly(amino acid) derivative fibrous mesh. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
88
|
Storey K, Kimble RM, Holbert MD. The Management of Burn Pain in a Pediatric Burns-Specialist Hospital. Paediatr Drugs 2021; 23:1-10. [PMID: 33447938 DOI: 10.1007/s40272-020-00434-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Appropriate pain management for children who have experienced an acute burn injury is critical to improve patient outcomes and reduce potential morbidities. With 60% of our patients being under the age of 4 years, pain management is crucial in reducing pain and anxiety in both patients and parents. It is imperative that appropriate pain relief is commenced from initial contact with healthcare workers as this will affect the success or failure of future wound procedures. Uncontrolled pain can negatively affect a patient, both short and long term. It may cause anticipatory anxiety for future medical procedures, increased pain and anxiety can decrease wound re-epithelialization which can lead to long-term consequences for growth and mobility, and increased pain can also influence the possibility of patients and families displaying signs of post-traumatic stress disorder. Pain management in the form of pharmaceuticals is imperative during burn wound treatment and should incorporate pain relief targeted at both background and procedural pain. It also requires a multimodal, individualized, and targeted approach combining both pharmaceutical and nonpharmaceutical techniques, including cold running water, multimodal distraction devices, hypnotherapy, and bubbles. We discuss the research and knowledge that our center has gained through treating pediatric patients with burns over the last 20 years.
Collapse
Affiliation(s)
- Kristen Storey
- Centre for Children's Burns and Trauma Research, Centre for Children's Health Research, South Brisbane, QLD, Australia. .,Pegg Leditschke Paediatric Burns Centre, The Queensland Children's Hospital, South Brisbane, QLD, Australia. .,Queensland University of Technology, Brisbane, QLD, Australia. .,Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, 501 Stanley Street, South Brisbane, QLD, 4101, Australia.
| | - Roy M Kimble
- Centre for Children's Burns and Trauma Research, Centre for Children's Health Research, South Brisbane, QLD, Australia.,Pegg Leditschke Paediatric Burns Centre, The Queensland Children's Hospital, South Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology, Brisbane, QLD, Australia
| | - Maleea D Holbert
- Centre for Children's Burns and Trauma Research, Centre for Children's Health Research, South Brisbane, QLD, Australia.,Pegg Leditschke Paediatric Burns Centre, The Queensland Children's Hospital, South Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
89
|
Jalilimanesh M, Azhdari M, Mirjalili A, Mozaffari MA, Hekmatimoghaddam S. The Comparison of Clinical and Histopathological Effects of Topical Psyllium ( Plantago ovata) Powder and Silver Sulfadiazine on Second-Degree Burn Wound Healing in Rats. World J Plast Surg 2021; 10:96-103. [PMID: 33833960 PMCID: PMC8016387 DOI: 10.29252/wjps.10.1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Burn wounds are a worldwide health problem, leading to physical and psychological disabilities in all age's groups. With regard to absorbent properties of Plantago ovata mucilage which can decrease wound moisture, we aimed to compare the effect of silver sulfadiazine (SSD) 1% and powdered P. ovata on second-degree burn wound healing in rats. METHODS This experimental study was conducted on 30 male Wistar rats with second-degree burn in three groups. Group 1 (control) did not receive any treatment; group 2 and group 3 (treated groups) were dressed daily using SSD cream and P. ovata powder, respectively. The weight of rats, wound size (by applying ImageJ software) and percentage of wound healing on the 5th, 7th, 10th, 13th, 16th, 19th, and 22nd days (by diagnosing a plastic surgeon) and histological cutaneous changes at day 22 were evaluated. The Prism software was applied for data analysis. The Haematoxylin & Eosin as well as Masson's trichrome staining were performed on wound skin biopsies. RESULTS On day 22nd, 20%, 50% and 60% of the rats had complete wound healing in the control, SSD and P. ovata groups, respectively. A significant decrease in wound size was shown in the treated groups compared to the control group (P<0.01), but no significant difference was shown between the treated groups (P>0.05). CONCLUSION However, the wound healing in P. ovata group or SSD was better than the control group, and the significant difference was not found with the treated group.
Collapse
Affiliation(s)
- Mohammad Jalilimanesh
- Herbal Medicine Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Plastic and Reconstructive Surgery, Shohadaye Mehrab Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Azhdari
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aghdas Mirjalili
- Department of Plastic and Reconstructive Surgery, Shohadaye Mehrab Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
90
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
91
|
Keil C, Hübner C, Richter C, Lier S, Barthel L, Meyer V, Subrahmanyam R, Gurikov P, Smirnova I, Haase H. Ca-Zn-Ag Alginate Aerogels for Wound Healing Applications: Swelling Behavior in Simulated Human Body Fluids and Effect on Macrophages. Polymers (Basel) 2020; 12:E2741. [PMID: 33218195 PMCID: PMC7699170 DOI: 10.3390/polym12112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic non-healing wounds represent a substantial economic burden to healthcare systems and cause a considerable reduction in quality of life for those affected. Approximately 0.5-2% of the population in developed countries are projected to experience a chronic wound in their lifetime, necessitating further developments in the area of wound care materials. The use of aerogels for wound healing applications has increased due to their high exudate absorbency and ability to incorporate therapeutic substances, amongst them trace metals, to promote wound-healing. This study evaluates the swelling behavior of Ca-Zn-Ag-loaded alginate aerogels and their metal release upon incubation in human sweat or wound fluid substitutes. All aerogels show excellent liquid uptake from any of the formulas and high liquid holding capacities. Calcium is only marginally released into the swelling solvents, thus remaining as alginate bridging component aiding the absorption and fast transfer of liquids into the aerogel network. The zinc transfer quota is similar to those observed for common wound dressings in human and animal injury models. With respect to the immune regulatory function of zinc, cell culture studies show a high availability and anti-inflammatory activity of aerogel released Zn-species in RAW 264.7 macrophages. For silver, the balance between antibacterial effectiveness versus cytotoxicity remains a significant challenge for which the alginate aerogels need to be improved in the future. An increased knowledge of the transformations that alginate aerogels undergo in the course of the fabrication as well as during wound fluid exposure is necessary when aiming to create advanced, tissue-compatible aerogel products.
Collapse
Affiliation(s)
- Claudia Keil
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Christopher Hübner
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Constanze Richter
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Sandy Lier
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Lars Barthel
- Applied and Molecular Microbiology, Institute of Biotechnology, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.B.); (V.M.)
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.B.); (V.M.)
| | - Raman Subrahmanyam
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany; (R.S.); (I.S.)
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany;
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany; (R.S.); (I.S.)
| | - Hajo Haase
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| |
Collapse
|
92
|
Min JG, Sanchez Rangel UJ, Franklin A, Oda H, Wang Z, Chang J, Fox PM. Topical Antibiotic Elution in a Collagen-Rich Hydrogel Successfully Inhibits Bacterial Growth and Biofilm Formation In Vitro. Antimicrob Agents Chemother 2020; 64:e00136-20. [PMID: 32690648 PMCID: PMC7508589 DOI: 10.1128/aac.00136-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Chronic wounds are a prominent concern, accounting for $25 billion of health care costs annually. Biofilms have been implicated in delayed wound closure, but they are susceptible to developing antibiotic resistance and treatment options continue to be limited. A novel collagen-rich hydrogel derived from human extracellular matrix presents an avenue for treating chronic wounds by providing appropriate extracellular proteins for healing and promoting neovascularization. Using the hydrogel as a delivery system for localized secretion of a therapeutic dosage of antibiotics presents an attractive means of maximizing delivery while minimizing systemic side effects. We hypothesize that the hydrogel can provide controlled elution of antibiotics leading to inhibition of bacterial growth and disruption of biofilm formation. The rate of antibiotic elution from the collagen-rich hydrogel and the efficacy of biofilm disruption was assessed with Pseudomonas aeruginosa Bacterial growth inhibition, biofilm disruption, and mammalian cell cytotoxicity were quantified using in vitro models. The antibiotic-loaded hydrogel showed sustained release of antibiotics for up to 24 h at therapeutic levels. The treatment inhibited bacterial growth and disrupted biofilm formation at multiple time points. The hydrogel was capable of accommodating various classes of antibiotics and did not result in cytotoxicity in mammalian fibroblasts or adipose stem cells. The antibiotic-loaded collagen-rich hydrogel is capable of controlled antibiotic release effective for bacteria cell death without native cell death. A human-derived hydrogel that is capable of eluting therapeutic levels of antibiotic is an exciting prospect in the field of chronic wound healing.
Collapse
Affiliation(s)
- Jung Gi Min
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Uriel J Sanchez Rangel
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Austin Franklin
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Hiroki Oda
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Zhen Wang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - James Chang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Paige M Fox
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
93
|
Infectious Complications Associated with the Use of Integra: A Systematic Review of the Literature. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2869. [PMID: 32802634 PMCID: PMC7413764 DOI: 10.1097/gox.0000000000002869] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Dermal regeneration templates such as Integra are effective reconstructive biomaterials used in a variety of soft-tissue defects. Fully understanding the complications associated with their use is paramount to improve outcomes and maximize patient safety. In this study, our purpose is to perform a comprehensive literature review to assess the previously reported infectious complications linked to Integra-based wound closure.
Collapse
|
94
|
A human skin equivalent burn model to study the effect of a nanocrystalline silver dressing on wound healing. Burns 2020; 47:417-429. [PMID: 32830005 DOI: 10.1016/j.burns.2020.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023]
Abstract
In this study, a deep burn wound model was established using a 3D human skin equivalent (HSE) model and this was compared to native skin. HSEs were constructed from dermis derived from abdominoplasty/breast surgery and this dermal template was seeded with primary keratinocytes and fibroblasts. The HSE model was structurally similar to native skin with a stratified and differentiated epidermis. A contact burn (60 °C, 80 °C, 90 °C) was applied with a modified soldering iron and wounds were observed at day 1 and 7 after burn. The HSEs demonstrated re-growth with keratinocyte proliferation and formation of a neo-epidermis after burn injury, whereas the ex vivo native skin did not. To assess the suitability of the 3D HSE model for penetration and toxicity studies, a nanocrystalline silver dressing was applied to the model for 7 days, with and without burn injury. The effect of silver on skin re-growth and its penetration and subcellular localization was assessed in HSEs histologically and with laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The silver treatment delayed or reduced skin re-growth, and silver particles were detected on the top of the epidermis, and within the papillary dermis. This novel in vitro 3D multicellular deep burn wound model is effective for studying the pathology and treatment of burn wound injury and is suitable for penetration and toxicity studies of wound healing treatments.
Collapse
|
95
|
Ofstead CL, Buro BL, Hopkins KM, Eiland JE. The impact of continuous electrical microcurrent on acute and hard-to-heal wounds: a systematic review. J Wound Care 2020; 29:S6-S15. [PMID: 32654615 DOI: 10.12968/jowc.2020.29.sup7.s6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Wound infections result in considerable morbidity, mortality and healthcare costs. Antibiotic resistance has complicated wound healing, and new, non-antibiotic-based treatment methods are being developed. AIMS To evaluate evidence on the safety, efficacy and real-world effectiveness of electroceutical devices (ECDs) that provide continuous electrical stimulation to wounds. METHOD A systematic search was conducted to identify primary studies published between 2009 and 2019 that described therapeutic wound treatment using portable ECDs. Studies were included if the ECD delivered continuous electrical current directly to the wound area for the duration of treatment. RESULTS Of 171 citations identified in the search, 13 articles met the inclusion criteria and were analysed. Nine studies evaluated dressings embedded with zinc and silver particles that generated electricity electrochemically, and four evaluated electrode-based units with external batteries. ECDs were effective in healing complex, hard-to-heal wounds that had not responded to other treatments. Four studies showed that ECDs led to complete closure of wounds without complications, and in some cases healed wounds faster than standard of care (SOC). One study found that ECDs resulted in higher ratings by both patients and surgeons than SOC for the progression of wound healing and scar appearance. Additionally, three studies found ECD treatment was less expensive than SOC, due to patients requiring fewer dressing changes or nurse visits. CONCLUSION ECDs appeared to be a safe, effective and cost-effective method for treating severe, complex and challenging wounds, including hard-to-heal wounds, surgical incisions and skin graft donor sites.
Collapse
Affiliation(s)
- Cori L Ofstead
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| | - Brandy L Buro
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| | - Krystina M Hopkins
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| | - John E Eiland
- Ofstead & Associates, Inc., 1360 Energy Park Drive, Suite 300, St. Paul, MN 55102
| |
Collapse
|
96
|
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Mol Pharm 2020; 18:550-575. [PMID: 32519875 DOI: 10.1021/acs.molpharmaceut.0c00346] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammad Javad Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02912, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
97
|
Blanchette V, Belosinschi D, Lai TT, Cloutier L, Barnabé S. New Antibacterial Paper Made of Silver Phosphate Cellulose Fibers: A Preliminary Study on the Elimination of Staphylococcus aureus Involved in Diabetic Foot Ulceration. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1304016. [PMID: 31998775 PMCID: PMC6973200 DOI: 10.1155/2020/1304016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
AIM To evaluate in vitro the antibacterial effect of a paper made of silver phosphate cellulose fibers (SPCF) on Staphylococcus aureus, the most common diabetic foot ulceration (DFU) pathogen when compared with other common commercial products. METHODS The antibacterial activity of SPCF samples was evaluated through time with cell counting on agar plates. SPCF samples were then compared with commercial wound care products currently in use in DFU treatments (Silvercel™, Acticoat 7, and Aquacel Ag ExtraTM) through time on agar plates (growth inhibition zones). RESULTS After 6 hours, there was no viable bacterial cell detected on either plate (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (. CONCLUSIONS These results have shown the efficiency of SPCF paper to eliminate Staphylococcus aureus in these conditions. SPCF papers are effective when compared with other common commercial products and could have an industrial potential in wound care. Infected DFU could benefit from the antibacterial effectiveness of SPCF, but more relevant experimentations related to foot ulcers are needed.Staphylococcus aureus, the most common diabetic foot ulceration (DFU) pathogen when compared with other common commercial products.
Collapse
Affiliation(s)
- Virginie Blanchette
- Université du Québec à Trois-Rivières, Podiatric Medicine Program, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Dan Belosinschi
- Innofibre, Cégep de Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, Québec G9A 5E6, Canada
| | - Thanh Tung Lai
- Université du Québec à Trois-Rivières, Lignocellulosic Material Research Center, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Lyne Cloutier
- Université du Québec à Trois-Rivières, Nursing Department, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Simon Barnabé
- Université du Québec à Trois-Rivières, Lignocellulosic Material Research Center, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
- Université du Québec à Trois-Rivières, Department of Biochemistry, Chemistry and Physics, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|