51
|
Minnema L, Wheeler J, Enomoto M, Pitake S, Mishra SK, Lascelles BDX. Correlation of Artemin and GFRα3 With Osteoarthritis Pain: Early Evidence From Naturally Occurring Osteoarthritis-Associated Chronic Pain in Dogs. Front Neurosci 2020; 14:77. [PMID: 32116521 PMCID: PMC7031206 DOI: 10.3389/fnins.2020.00077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and other musculoskeletal-associated pain, is a worldwide problem, however, effective drug options are limited. Several receptors, neurotransmitters, and endogenous mediators have been identified in rodent models, but the relevance of these molecules in disease-associated pain is not always clear. Artemin, a neurotrophic factor, and its receptor, glial-derived neurotrophic factor (GDNF) family receptor alpha-3 (GFRα3), have been identified as involved in pain in rodents. Their role in OA-associated pain is unknown. To explore a possible association, we analyzed tissue from naturally occurring OA in dogs to characterize the correlation with chronic pain. We used behavioral assessment, objective measures of limb use, and molecular tools to identify whether artemin and GFRα3 might be associated with OA pain. Our results using banked tissue from well-phenotyped dogs indicates that artemin/GFRα3 may play an important, and hitherto unrecognized, role in chronic OA-associated pain. Elevated serum levels of artemin from osteoarthritic humans compared to healthy individuals suggest translational relevance. Our data provide compelling evidence that the artemin/GFRα3 signaling pathway may be important in OA pain in both non-humans and humans and may ultimately lead to novel therapeutics.
Collapse
Affiliation(s)
- Laura Minnema
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Joshua Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Masataka Enomoto
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - B Duncan X Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Thurston Arthritis Research Center, UNC School of Medicine, Chapel Hill, NC, United States.,Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
| |
Collapse
|
52
|
Herzberg D, Strobel P, Müller H, Meneses C, Werner M, Bustamante H. Proteomic profiling of proteins in the dorsal horn of the spinal cord in dairy cows with chronic lameness. PLoS One 2020; 15:e0228134. [PMID: 31990932 PMCID: PMC6986711 DOI: 10.1371/journal.pone.0228134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lameness affects bovine welfare and has a negative economic impact in dairy industry. Moreover, due to the translational gap between traditional pain models and new drugs development for treating chronic pain states, naturally occurring painful diseases could be a potential translational tool for chronic pain research. We therefore employed liquid chromatography tandem mass spectrometry (LC-MS/MS) to stablish the proteomic profile of the spinal cord samples from lumbar segments (L2-L4) of chronic lame dairy cows. Data were validated and quantified through software tool (Scaffold® v 4.0) using output data from two search engines (SEQUEST® and X-Tandem®). Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis was performed to detect proteins interactions. LC-MS/MS identified a total amount of 177 proteins; of which 129 proteins were able to be quantified. Lame cows showed a strong upregulation of interacting proteins with chaperone and stress functions such as Hsp70 (p < 0.006), Hsc70 (p < 0.0079), Hsp90 (p < 0.015), STIP (p > 0.0018) and Grp78 (p <0.0068), and interacting proteins associated to glycolytic pathway such as; γ-enolase (p < 0.0095), α-enolase (p < 0.013) and hexokinase-1 (p < 0.028). It was not possible to establish a clear network of interaction in several upregulated proteins in lame cows. Non-interacting proteins were mainly associated to redox process and cytoskeletal organization. The most relevant down regulated protein in lame cows was myelin basic protein (MBP) (p < 0.02). Chronic inflammatory lameness in cows is associated to increased expression of stress proteins with chaperone, metabolism, redox and structural functions. A state of endoplasmic reticulum stress and unfolded protein response (UPR) might explain the changes in protein expression in lame cows; however, further studies need to be performed in order to confirm these findings.
Collapse
Affiliation(s)
- Daniel Herzberg
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (HB); (DH)
| | - Pablo Strobel
- Animal Science Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Heine Müller
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Meneses
- Comparative Biomedical Science Graduate Program, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina, United States of America
| | - Marianne Werner
- Animal Science Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (HB); (DH)
| |
Collapse
|
53
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
54
|
Gruen ME, Samson DR, Lascelles BDX. Functional linear modeling of activity data shows analgesic-mediated improved sleep in dogs with spontaneous osteoarthritis pain. Sci Rep 2019; 9:14192. [PMID: 31578432 PMCID: PMC6775071 DOI: 10.1038/s41598-019-50623-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
In humans, pain due to osteoarthritis has been demonstrated to be associated with insomnia and sleep disturbances that affect perception of pain, productivity, and quality of life. Dogs, which develop spontaneous osteoarthritis and represent an increasingly used model for human osteoarthritis, would be expected to show similar sleep disturbances. Further, these sleep disturbances should be mitigated by analgesic therapy. Previous efforts to quantify sleep in osteoarthritic dogs using accelerometry have not demonstrated a beneficial effect of analgesic therapy; this is despite owner-reported improvements in dogs' sleep quality. However, analytic techniques for time-series accelerometry data have advanced with the development of functional linear modeling. Our aim was to apply functional linear modeling to accelerometry data from osteoarthritic dogs participating in a cross-over non-steroidal anti-inflammatory (meloxicam) drug trial. Significant differences in activity patterns were seen dogs receiving drug (meloxicam) vs. placebo, suggestive of improved nighttime resting (sleep) and increased daytime activity. These results align with owner-reported outcome assessments of sleep quality and further support dogs as an important translational model with benefits for both veterinary and human health.
Collapse
Affiliation(s)
- M E Gruen
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA. .,Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA.
| | - D R Samson
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - B D X Lascelles
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA.,Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA.,Translational Research in Pain Program, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.,Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA.,Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA
| |
Collapse
|
55
|
Herzberg D, Strobel P, Chihuailaf R, Ramirez-Reveco A, Müller H, Werner M, Bustamante H. Spinal Reactive Oxygen Species and Oxidative Damage Mediate Chronic Pain in Lame Dairy Cows. Animals (Basel) 2019; 9:ani9090693. [PMID: 31533257 PMCID: PMC6770087 DOI: 10.3390/ani9090693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammatory diseases could impact central nervous system homeostasis, being oxidative damage of the dorsal horn, a relevant mechanism mediating central sensitization. Chronic inflammatory lameness in dairy cows is a painful condition that affects animal welfare, affecting dairy production worldwide. This study reveals increased levels of reactive oxygen species, malondialdehyde, and carbonyl groups, indicating lipid and protein damage in the spinal cord of cows with chronic lameness. Moreover, antioxidant system activity was similar between lame and non-lame cows which suggests that antioxidant dysregulation was not the cause of oxidative damage, as has been proposed previously. Based on the fact that nociceptive pathways are strongly conserved between species, there is no reason to neglect that chronic pain in cows promotes Central Nervous System (CNS) alterations, such as oxidative damage. Moreover, lame cows develop central sensitization, as allodynia and hyperalgesia are centrally and not peripherally mediated. Our results support the current assumption that chronic pain is a central nervous system disease and lameness in dairy cows is far beyond an inflammation of the hoof. Abstract Lameness in dairy cows is a worldwide prevalent disease with a negative impact on animal welfare and herd economy. Oxidative damage and antioxidant system dysfunction are common features of many CNS diseases, including chronic pain. The aim of this study was to evaluate the levels of reactive oxygen species (ROS) and oxidative damage markers in the spinal cord of dairy cows with chronic inflammatory lameness. Locomotion score was performed in order to select cows with chronic lameness. Dorsal horn spinal cord samples were obtained post mortem from lumbar segments (L2–L5), and ROS, malondialdehyde (MDA), and carbonyl groups were measured along with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant response (TAR). Lame cows had increased levels of ROS, MDA, and carbonyl groups, while no differences were observed between lame and non-lame cows in SOD, GPx, CAT, and TAR activity. We conclude that painful chronic inflammatory lameness in dairy cows is associated with an increase in ROS, MDA, and carbonyl groups. Nonetheless, an association between ROS generation and dysfunction of the antioxidant system, as previously proposed, could not be established.
Collapse
Affiliation(s)
- Daniel Herzberg
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Pablo Strobel
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Ricardo Chihuailaf
- Department of Veterinary Sciences, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Alfredo Ramirez-Reveco
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Heine Müller
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Marianne Werner
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Hedie Bustamante
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| |
Collapse
|
56
|
Devinsky O, Boesch JM, Cerda-Gonzalez S, Coffey B, Davis K, Friedman D, Hainline B, Houpt K, Lieberman D, Perry P, Prüss H, Samuels MA, Small GW, Volk H, Summerfield A, Vite C, Wisniewski T, Natterson-Horowitz B. A cross-species approach to disorders affecting brain and behaviour. Nat Rev Neurol 2019; 14:677-686. [PMID: 30287906 DOI: 10.1038/s41582-018-0074-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural and functional elements of biological systems are highly conserved across vertebrates. Many neurological and psychiatric conditions affect both humans and animals. A cross-species approach to the study of brain and behaviour can advance our understanding of human disorders via the identification of unrecognized natural models of spontaneous disorders, thus revealing novel factors that increase vulnerability or resilience, and via the assessment of potential therapies. Moreover, diagnostic and therapeutic advances in human neurology and psychiatry can often be adapted for veterinary patients. However, clinical and research collaborations between physicians and veterinarians remain limited, leaving this wealth of comparative information largely untapped. Here, we review pain, cognitive decline syndromes, epilepsy, anxiety and compulsions, autoimmune and infectious encephalitides and mismatch disorders across a range of animal species, looking for novel insights with translational potential. This comparative perspective can help generate novel hypotheses, expand and improve clinical trials and identify natural animal models of disease resistance and vulnerability.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA.
| | - Jordyn M Boesch
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Barbara Coffey
- Department of Child and Adolescent Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kathryn Davis
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Friedman
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA
| | - Brian Hainline
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA
| | - Katherine Houpt
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Daniel Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Pamela Perry
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Harald Prüss
- Department of Neurology with Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany, and German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Gary W Small
- University of California-Los Angeles (UCLA) Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Holger Volk
- Veterinary Neurology and Neurosurgery, The Royal Veterinary College, University of London, London, UK
| | - Artur Summerfield
- Institute of Virology and Immunology and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Wisniewski
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA
| | - Barbara Natterson-Horowitz
- Department of Ecology and Evolutionary Biology, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
57
|
Abstract
All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
58
|
Electrophysiological Properties of Medium Spiny Neuron Subtypes in the Caudate-Putamen of Prepubertal Male and Female Drd1a-tdTomato Line 6 BAC Transgenic Mice. eNeuro 2019; 6:eN-CFN-0016-19. [PMID: 30899778 PMCID: PMC6426437 DOI: 10.1523/eneuro.0016-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/21/2022] Open
Abstract
The caudate-putamen is a striatal brain region essential for sensorimotor behaviors, habit learning, and other cognitive and premotor functions. The output and predominant neuron of the caudate-putamen is the medium spiny neuron (MSN). MSNs present discrete cellular subtypes that show differences in neurochemistry, dopamine receptor expression, efferent targets, gene expression, functional roles, and most importantly for this study, electrophysiological properties. MSN subtypes include the striatonigral and the striatopallidal groups. Most studies identify the striatopallidal MSN subtype as being more excitable than the striatonigral MSN subtype. However, there is some divergence between studies regarding the exact differences in electrophysiological properties. Furthermore, MSN subtype electrophysiological properties have not been reported disaggregated by biological sex. We addressed these questions using prepubertal male and female Drd1a-tdTomato line 6 BAC transgenic mice, an important transgenic line that has not yet received extensive electrophysiological analysis. We made acute caudate-putamen brain slices and assessed a robust battery of 16 relevant electrophysiological properties using whole-cell patch-clamp recording, including intrinsic membrane, action potential, and miniature EPSC (mEPSC) properties. We found that: (1) MSN subtypes exhibited multiple differential electrophysiological properties in both sexes, including rheobase, action potential threshold and width, input resistance in both the linear and rectified ranges, and mEPSC amplitude; (2) select electrophysiological properties showed interactions between MSN subtype and sex. These findings provide a comprehensive evaluation of mouse caudate-putamen MSN subtype electrophysiological properties across females and males, both confirming and extending previous studies.
Collapse
|
59
|
Chaves RHDF, Souza CCD, Furlaneto IP, Teixeira RKC, Oliveira CPD, Rodrigues EDM, Santos DASD, Silva RC, Penha NEAD, Lima ARD. Influence of tramadol on functional recovery of acute spinal cord injury in rats. Acta Cir Bras 2019; 33:1087-1094. [PMID: 30624514 DOI: 10.1590/s0102-865020180120000006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To evaluate the influence tramadol on functional recovery of acute spinal cord injury in rats. METHODS Ten rats were divided into two groups (n = 5). All animals were submitted by a laminectomy and spinal cord injury at eighth thoracic vertebra. In control group, the rats didn't receive any analgesic. In tramadol group, the rats received tramadol 4mg/Kg at 12/12h until 5 days by subcutaneous. Animals were following by fourteen days. Was evaluated the Basso, Beattie, Bresnahan scale (locomotor evaluation) and Rat Grimace Scale (pain evaluation) at four periods. RESULTS There no difference between the groups in locomotor evaluation in all periods evaluated (p>0.05) and in both groups there was a partial recover of function. The tramadol group show a lower pain levels at the first, third and seventh postoperatively days when comparing to the control group. CONCLUSION The tramadol as an analgesic agent don't influence on functional recovery of acute spinal cord injury in rats.
Collapse
Affiliation(s)
- Rosa Helena de Figueiredo Chaves
- Fellow PhD degree, Postgraduate Program in Health and Animal Production in Amazon, Universidade Federal Rural da Amazônia (UFRA), Belem-PA, Brazil. Conception, design, intellectual and scientific content of the study; interpretation of data; manuscript writing
| | - Celice Cordeiro de Souza
- PhD, Associate Professor, School of Medicine, Centro Universitário do Estado do Pará (CESUPA), Belem-PA, Brazil. Acquisition and interpretation data, manuscript writing
| | - Ismari Perini Furlaneto
- Fellow PhD degree, Postgraduate Program in Parasitic Biology at Amazon, Universidade Federal do Pará (UFPA), Belem-PA, Brazil. Interpretation of data
| | - Renan Kleber Costa Teixeira
- MD, MS, Department of Experimental Surgery, School of Medicine, Universidade do Estado do Pará (UEPA), Belem-PA, Brazil. Interpretation of data, statistical analysis, manuscript writing
| | | | | | | | - Renata Cunha Silva
- Graduate student, School of Occupational Therapy, UEPA, Belem-PA, Brazil. Acquisition and interpretation of data
| | - Nelson Elias Abrahão da Penha
- PhD, Associate Professor, School of Medicine, CESUPA, Belem-PA, Brazil. Conception, design, intellectual and scientific content of the study; critical revision; final approval
| | - Ana Rita de Lima
- PhD, Full Professor, Institute of Health and Animal Production, UFRA, Belem-PA, Brazil. Conception, design, intellectual and scientific content of the study; critical revision, final approval
| |
Collapse
|
60
|
Mechanisms of acute and chronic pain after surgery: update from findings in experimental animal models. Curr Opin Anaesthesiol 2019; 31:575-585. [PMID: 30028733 DOI: 10.1097/aco.0000000000000646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Management of postoperative pain is still a major issue and relevant mechanisms need to be investigated. In preclinical research, substantial progress has been made, for example, by establishing specific rodent models of postoperative pain. By reviewing most recent preclinical studies in animals related to postoperative, incisional pain, we outline the currently available surgical-related pain models, discuss assessment methods for pain-relevant behavior and their shortcomings to reflect the clinical situation, delineate some novel clinical-relevant mechanisms for postoperative pain, and point toward future needs. RECENT FINDINGS Since the development of the first rodent model of postoperative, incisional pain almost 20 years ago, numerous variations and some procedure-specific models have been emerged including some conceivably relevant for investigating prolonged, chronic pain after surgery. Many mechanisms have been investigated by using these models; most recent studies focussed on endogenous descending inhibition and opioid-induced hyperalgesia. However, surgical models beyond the classical incision model have so far been used only in exceptional cases, and clinical relevant behavioral pain assays are still rarely utilized. SUMMARY Pathophysiological mechanisms of pain after surgery are increasingly discovered, but utilization of pain behavior assays are only sparsely able to reflect clinical-relevant aspects of acute and chronic postoperative pain in patients.
Collapse
|
61
|
Gomez-Varela D, Barry AM, Schmidt M. Proteome-based systems biology in chronic pain. J Proteomics 2019; 190:1-11. [DOI: 10.1016/j.jprot.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
62
|
Monteiro BP, de Lorimier LP, Moreau M, Beauchamp G, Blair J, Lussier B, Pelletier JP, Troncy E. Pain characterization and response to palliative care in dogs with naturally-occurring appendicular osteosarcoma: An open label clinical trial. PLoS One 2018; 13:e0207200. [PMID: 30521538 PMCID: PMC6283659 DOI: 10.1371/journal.pone.0207200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
This study aimed to characterize bone cancer pain (quantitative sensory testing (QST), stance asymmetry index, actimetry, scores of pain and quality of life (QoL)) in dogs with appendicular osteosarcoma (OSA), and to evaluate a stepwise palliative analgesic treatment. The pain profile of thirteen client-owned dogs with OSA was compared with seven healthy dogs. Dogs with OSA were then enrolled in a prospective, open-label, clinical trial. Outcome measures included: primary and secondary mechanical thresholds (MT), conditioned pain modulation (CPM), stance asymmetry index, actimetry (most and least active periods), visual analog scales and QoL. After baseline assessments, stepwise treatment comprised orally administered cimicoxib (2 mg/kg q 24h), amitriptyline (1–1.5 mg/kg q 24h) and gabapentin (10 mg/kg q 8h); re-evaluations were performed after 14 (D14), 21 (D21) and 28 (D28) days, respectively. Statistics used mixed linear models (α = 5%; one-sided). Centralized nociceptive sensitivity (primary and secondary MT, and dynamic allodynia) was recorded in OSA dogs. Healthy dogs had responsive CPM, but CPM was deficient in OSA dogs. Construct validity was observed for the QST protocol. Asymmetry index was significantly present in OSA dogs. The CPM improved significantly at D14. When compared with baseline (log mean ± SD: 4.1 ± 0.04), most active actimetry significantly improved at D14 (4.3 ± 0.04), D21 and D28 (4.2 ± 0.04 for both). When compared with baseline, least active actimetry significantly decreased after treatment at all time-points indicating improvement in night-time restlessness. No other significant treatment effect was observed. Except for tactile threshold and actimetry, all outcomes worsened when gabapentin was added to cimicoxib-amitriptyline. Dogs with bone cancer are affected by widespread somatosensory sensitivity characterized by peripheral and central sensitization and have a deficient inhibitory system. This severe pain is mostly refractory to palliative analgesic treatment, and the latter was only detected by specific and sensitive outcomes.
Collapse
Affiliation(s)
- Beatriz P. Monteiro
- GREPAQ (Groupe de recherche en pharmacologie animale du Québec), Department of biomedical sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | - Maxim Moreau
- GREPAQ (Groupe de recherche en pharmacologie animale du Québec), Department of biomedical sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Guy Beauchamp
- GREPAQ (Groupe de recherche en pharmacologie animale du Québec), Department of biomedical sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jeffrey Blair
- Vétoquinol SA, Global–Le Groupe Vétoquinol, Magny-Vernois, France
| | - Bertrand Lussier
- GREPAQ (Groupe de recherche en pharmacologie animale du Québec), Department of biomedical sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- GREPAQ (Groupe de recherche en pharmacologie animale du Québec), Department of biomedical sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
63
|
Nie A, Zehnder A, Page RL, Zhang Y, Pineda AL, Rivas MA, Bustamante CD, Zou J. DeepTag: inferring diagnoses from veterinary clinical notes. NPJ Digit Med 2018; 1:60. [PMID: 31304339 PMCID: PMC6550285 DOI: 10.1038/s41746-018-0067-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Large scale veterinary clinical records can become a powerful resource for patient care and research. However, clinicians lack the time and resource to annotate patient records with standard medical diagnostic codes and most veterinary visits are captured in free-text notes. The lack of standard coding makes it challenging to use the clinical data to improve patient care. It is also a major impediment to cross-species translational research, which relies on the ability to accurately identify patient cohorts with specific diagnostic criteria in humans and animals. In order to reduce the coding burden for veterinary clinical practice and aid translational research, we have developed a deep learning algorithm, DeepTag, which automatically infers diagnostic codes from veterinary free-text notes. DeepTag is trained on a newly curated dataset of 112,558 veterinary notes manually annotated by experts. DeepTag extends multitask LSTM with an improved hierarchical objective that captures the semantic structures between diseases. To foster human-machine collaboration, DeepTag also learns to abstain in examples when it is uncertain and defers them to human experts, resulting in improved performance. DeepTag accurately infers disease codes from free-text even in challenging cross-hospital settings where the text comes from different clinical settings than the ones used for training. It enables automated disease annotation across a broad range of clinical diagnoses with minimal preprocessing. The technical framework in this work can be applied in other medical domains that currently lack medical coding resources.
Collapse
Affiliation(s)
- Allen Nie
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Ashley Zehnder
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Rodney L. Page
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Yuhui Zhang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Arturo Lopez Pineda
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Manuel A. Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Carlos D. Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
64
|
Araújo-Filho HG, Pereira EWM, Campos AR, Quintans-Júnior LJ, Quintans JSS. Chronic orofacial pain animal models - progress and challenges. Expert Opin Drug Discov 2018; 13:949-964. [PMID: 30220225 DOI: 10.1080/17460441.2018.1524458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic orofacial pain is one of the most common pain conditions experienced by adults. Animal models are often selected as the most useful scientific methodology to explore the pathophysiology of the disorders that cause this disabling pain to facilitate the development of new treatments. The creation of new models or the improvement of existing ones is essential for finding new ways to approach the complex neurobiology of this type of pain. Areas covered: The authors describe and discuss a variety of animal models used in chronic orofacial pain (COFP). Furthermore, they examine in detail the mechanisms of action involved in orofacial neuropathic pain and orofacial inflammatory pain. Expert opinion: The use of animal models has several advantages in chronic orofacial pain drug discovery. Choosing an animal model that most closely represents the human disease helps to increase the chances of finding effective new therapies and is key to the successful translation of preclinical research to clinical practice. Models using genetically modified animals seem promising but have not yet been fully developed for use in chronic orofacial pain research. Although animal models have provided significant advances in the pharmacological treatment of orofacial pain, several barriers still need to be overcome for better treatment options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Erik W M Pereira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Adriana Rolim Campos
- b Experimental Biology Centre (NUBEX) , University of Fortaleza (UNIFOR) , Fortaleza , Brazil
| | - Lucindo J Quintans-Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Jullyana S S Quintans
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| |
Collapse
|
65
|
Cao J, Dorris DM, Meitzen J. Electrophysiological properties of medium spiny neurons in the nucleus accumbens core of prepubertal male and female Drd1a-tdTomato line 6 BAC transgenic mice. J Neurophysiol 2018; 120:1712-1727. [PMID: 29975170 PMCID: PMC6230806 DOI: 10.1152/jn.00257.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The nucleus accumbens core (AcbC) is a striatal brain region essential for integrating motivated behavior and reward processing with premotor function. In humans and rodents, research has identified sex differences and sex steroid hormone sensitivity in AcbC-mediated behaviors, in disorders, and in rats in the electrophysiological properties of the AcbC output neuron type, the medium spiny neuron (MSN). It is unknown whether the sex differences detected in MSN electrophysiological properties extend to mice. Furthermore, MSNs come in distinct subtypes with subtle differences in electrophysiological properties, and it is unknown whether MSN subtype-specific electrophysiology varies by sex. To address these questions, we used male and female Drd1a-tdTomato line 6 bacterial artificial chromosome transgenic mice. We made acute brain slices of the AcbC, and performed whole cell patch-clamp recordings across MSN subtypes to comprehensively assess AcbC MSN subtype electrophysiological properties. We found that ( 1 mice MSNs did not exhibit the sex differences detected in rat MSNs, and 2) electrophysiological properties differed between MSN subtypes in both sexes, including rheobase, resting membrane potential, action potential properties, intrinsic excitability, input resistance in both the linear and rectified ranges, and miniature excitatory postsynaptic current properties. These findings significantly extend previous studies of MSN subtypes performed in males or animals of undetermined sex and indicate that the influence of sex upon AcbC MSN properties varies between rodent species. NEW & NOTEWORTHY This research provides the most comprehensive assessment of medium spiny neuron subtype electrophysiological properties to date in a critical brain region, the nucleus accumbens core. It additionally represents the first evaluation of whether mouse medium spiny neuron subtype electrophysiological properties differ by sex.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina
- W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina
- W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
- Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
66
|
Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model. Sci Rep 2018; 8:13894. [PMID: 30224708 PMCID: PMC6141616 DOI: 10.1038/s41598-018-32297-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Although pre-clinical models of pain are useful for defining relationships between biological mechanisms and pain, common methods testing peripheral sensitivity do not translate to the human pain experience. Facial grimace scales evaluate affective pain levels in rodent models by capturing and scoring spontaneous facial expression. But, the Rat Grimace Scale (RGS) has not assessed the common disorder of temporomandibular joint (TMJ) pain. A rat model of TMJ pain induced by jaw loading (1 hr/day for 7 days) was used to investigate the time course of RGS scores and compare them between different loading magnitudes with distinct peripheral sensitivity profiles (0N–no sensitivity, 2N–acute sensitivity, 3.5N–persistent sensitivity). In the 3.5N group, RGS is elevated over baseline during the loading period and one day after loading and is correlated with peripheral sensitivity (ρ = −0.48, p = 0.002). However, RGS is not elevated later when that group exhibits peripheral sensitivity and moderate TMJ condylar cartilage degeneration. Acutely, RGS is elevated in the 3.5N loading group over the other loading groups (p < 0.001). These findings suggest that RGS is an effective tool for detecting spontaneous TMJ pain and that spontaneous pain is detectable in rats that develop persistent TMJ sensitivity, but not in rats with acute resolving sensitivity.
Collapse
|
67
|
Applying the 3Rs to neuroscience research involving nonhuman primates. Drug Discov Today 2018; 23:1574-1577. [DOI: 10.1016/j.drudis.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
|
68
|
Morris LS, Sprenger C, Koda K, de la Mora DM, Yamada T, Mano H, Kashiwagi Y, Yoshioka Y, Morioka Y, Seymour B. Anterior cingulate cortex connectivity is associated with suppression of behaviour in a rat model of chronic pain. Brain Neurosci Adv 2018; 2:2398212818779646. [PMID: 30246156 PMCID: PMC6109941 DOI: 10.1177/2398212818779646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
A cardinal feature of persistent pain that follows injury is a general suppression of behaviour, in which motivation is inhibited in a way that promotes energy conservation and recuperation. Across species, the anterior cingulate cortex is associated with the motivational aspects of phasic pain, but whether it mediates motivational functions in persistent pain is less clear. Using burrowing behaviour as an marker of non-specific motivated behaviour in rodents, we studied the suppression of burrowing following painful confirmatory factor analysis or control injection into the right knee joint of 30 rats (14 with pain) and examined associated neural connectivity with ultra-high-field resting state functional magnetic resonance imaging. We found that connectivity between anterior cingulate cortex and subcortical structures including hypothalamic/preoptic nuclei and the bed nucleus of the stria terminalis correlated with the reduction in burrowing behaviour observed following the pain manipulation. In summary, the findings implicate anterior cingulate cortex connectivity as a correlate of the motivational aspect of persistent pain in rodents.
Collapse
Affiliation(s)
- Laurel S. Morris
- Department of Psychology and Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Christian Sprenger
- Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK,Christian Sprenger, Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Ken Koda
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Daniela M. de la Mora
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Tomomi Yamada
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Hiroaki Mano
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Yuto Kashiwagi
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshichika Yoshioka
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasuhide Morioka
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Ben Seymour
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan,Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK,Immunology Frontier Research Center, Osaka University, Osaka, Japan,Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| |
Collapse
|
69
|
Yezierski RP, Hansson P. Inflammatory and Neuropathic Pain From Bench to Bedside: What Went Wrong? THE JOURNAL OF PAIN 2018; 19:571-588. [DOI: 10.1016/j.jpain.2017.12.261] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
|
70
|
Cooper MA, O'Meara B, Jack MM, Elliot D, Lamb B, Khan ZW, Menta BW, Ryals JM, Winter MK, Wright DE. Intrinsic Activity of C57BL/6 Substrains Associates with High-Fat Diet-Induced Mechanical Sensitivity in Mice. THE JOURNAL OF PAIN 2018; 19:1285-1295. [PMID: 29803670 DOI: 10.1016/j.jpain.2018.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
Pain is significantly impacted by the increasing epidemic of obesity and the metabolic syndrome. Our understanding of how these features impact pain is only beginning to be developed. Herein, we have investigated how small genetic differences among C57BL/6 mice from 2 different commercial vendors lead to important differences in the development of high-fat diet-induced mechanical sensitivity. Two substrains of C57BL/6 mice from Jackson Laboratories (Bar Harbor, ME; C57BL/6J and C57BL/6NIH), as well as C57BL/6 from Charles Rivers Laboratories (Wilmington, MA; C57BL/6CR) were placed on high-fat diets and analyzed for changes in metabolic features influenced by high-fat diet and obesity, as well as measures of pain-related behaviors. All 3 substrains responded to the high-fat diet; however, C57BL/6CR mice had the highest weights, fat mass, and impaired glucose tolerance of the 3 substrains. In addition, the C57BL/6CR mice were the only strain to develop significant mechanical sensitivity over the course of 8 weeks. Importantly, the C57BL/6J mice were protected from mechanical sensitivity, which may be based on increased physical activity compared with the other 2 substrains. These findings suggest that activity may play a powerful role in protecting metabolic changes associated with a high-fat diet and that these may also be protective in pain-associated changes as a result of a high-fat diet. These findings also emphasize the importance of selection and transparency in choosing C57BL/6 substrains in pain-related research. PERSPECTIVE: Obesity and the metabolic syndrome play an important role in pain. This study identifies key differences in the response to a high-fat diet among substrains of C57BL/6 mice and differences in intrinsic physical activity that may influence pain sensitivity. The results emphasize physical activity as a powerful modulator of obesity-related pain sensitivity.
Collapse
Affiliation(s)
- Michael A Cooper
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Bryn O'Meara
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Megan M Jack
- Departments of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Dan Elliot
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Bradley Lamb
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zair W Khan
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Blaise W Menta
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janelle M Ryals
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Michelle K Winter
- Departments of Kansas Intellectual and Developmental Disabilities Research, University of Kansas Medical Center, Kansas City, Kansas
| | - Douglas E Wright
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
71
|
Reid J, Nolan AM, Scott EM. Measuring pain in dogs and cats using structured behavioural observation. Vet J 2018; 236:72-79. [PMID: 29871754 DOI: 10.1016/j.tvjl.2018.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 11/27/2022]
Abstract
The contemporary approach to pain measurement in people and animals seeks to measure the affective (emotional) component of the pain experience using structured questionnaires with formal scoring methodology. Chronic pain has wide-ranging impacts which affects the quality of life (QOL) of the individual, whether that is a person or an animal. Accordingly instruments to measure chronic pain are designed to measure its impact on QOL and are called health-related quality of life (HRQL) instruments. In veterinary science instruments to measure pain are based on behavioural observation by the veterinary surgeon/nurse in the case of acute pain and by the owner in the case of chronic pain. The development of HRQL instruments is an expanding field in veterinary science, not just for the measurement of pain, but for other chronic diseases, and it has a wide application in pharmaceutical research and clinical practice to improve patient care. This review highlights the challenges involved in creating such measures for dogs and cats, seeking to provide the reader with an understanding of their development process. It then provides an overview of the current status with regard to acute and chronic pain measurement.
Collapse
Affiliation(s)
- J Reid
- NewMetrica Ltd., 19 Woodside Place, Glasgow G3 7QL, UK.
| | - A M Nolan
- Edinburgh Napier University, Sighthill Campus, Sighthill Court, EH 11 4BN, UK
| | - E M Scott
- School of Mathematics and Statistics, 15 University Gardens, University of Glasgow, Gl2 8QW, UK
| |
Collapse
|
72
|
Klinck MP, Gruen ME, del Castillo JR, Guillot M, Thomson AE, Heit M, Lascelles BDX, Troncy E. Development and preliminary validity and reliability of the montreal instrument for cat arthritis testing, for use by caretaker/owner, MI-CAT(C), via a randomised clinical trial. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
Thompson K, Moore S, Tang S, Wiet M, Purmessur D. The chondrodystrophic dog: A clinically relevant intermediate-sized animal model for the study of intervertebral disc-associated spinal pain. JOR Spine 2018; 1:e1011. [PMID: 29984354 PMCID: PMC6018624 DOI: 10.1002/jsp2.1011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) is the leading cause of disability worldwide, with an estimated 80% of the American population suffering from a painful back condition at some point during their lives. The most common cause of LBP is intervertebral disc (IVD) degeneration (IVDD), a condition that can be difficult to treat, either surgically or medically, with current available therapies. Thus, understanding the pathological mechanisms of IVDD and developing novel treatments are critical for improving outcome and quality of life in people living with LBP. While experimental animal models provide valuable mechanistic insight, each model has limitations that complicate translation to the clinical setting. This review focuses on the chondrodystrophic canine clinical model of IVDD as a promising model to assess IVD-associated spinal pain and translational therapeutic strategies for LBP. The canine IVD, while smaller in size than human, goat, ovine, and bovine IVDs, is larger than most other small animal IVDD models and undergoes maturational changes similar to those of the human IVD. Furthermore, both dogs and humans develop painful IVDD as a spontaneous process, resulting in similar characteristic pathologies and clinical signs. Future exploration of the canine model as a model of IVD-associated spinal pain and biological treatments using the canine clinical model will further demonstrate its translational capabilities with the added ethical benefit of treating an existing veterinary patient population with IVDD.
Collapse
Affiliation(s)
- Kelly Thompson
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Sarah Moore
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Shirley Tang
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Matthew Wiet
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Devina Purmessur
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
- Department of Orthopedics, College of MedicineThe Ohio State UniversityColumbusOhio
| |
Collapse
|
74
|
Tsai HC, Chen TL, Chen YP, Chen RM. Traumatic osteoarthritis-induced persistent mechanical hyperalgesia in a rat model of anterior cruciate ligament transection plus a medial meniscectomy. J Pain Res 2017; 11:41-50. [PMID: 29317848 PMCID: PMC5743113 DOI: 10.2147/jpr.s154038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage degeneration, subchondral bone changes, osteophyte formation, and synovitis. A major symptom is pain that is triggered by peripheral and central changes within the pain pathways. Some surgery-induced joint instability rat models of OA were described to mimic traumatic OA. Several behavioral tests were developed to access OA-induced pain. However, follow-up in most studies usually only occurred for about 4 weeks. Since traumatic OA is a chronic disease which gradually develops after trauma, the pattern of pain might differ between early and late stages after the trauma. Purpose To observe the time-dependent development of hypersensitivity after traumatic OA and to determine the best timing and methods to investigate traumatic OA-induced pain. Methods Anterior cruciate ligament transection plus medial meniscectomy was used to induce traumatic OA in Sprague-Dawley rats. Traumatic OA-induced pain was evaluated using four different behavioral tests for 15 weeks. Results A significant difference in mechanical hypersensitivity developed throughout the observational period. It was worst in the first 3 weeks after the operation, then became less significant after 5 weeks but persisted. There were no differences in thermal hyperalgesia or motor coordination. Conclusion Traumatic OA induced mechanical hyperalgesia but did not cause thermal hyperalgesia or influence motor coordination. Furthermore, to investigate chronic pain induced by OA, the observational period should be at least 5 weeks after the intervention. These findings may help in further research and improve our understanding of traumatic OA-induced pain mechanisms.
Collapse
Affiliation(s)
- Hsiao-Chien Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Liang Chen
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
75
|
Kang JWM. Intentional and unintentional impacts of anaesthesia: insights from experiments in pain and injury. Neural Regen Res 2017; 12:1985-1986. [PMID: 29323035 PMCID: PMC5784344 DOI: 10.4103/1673-5374.221153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- James W M Kang
- Department of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|