51
|
Kirk B, Miller S, Zanker J, Duque G. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas 2020; 140:27-33. [PMID: 32972632 DOI: 10.1016/j.maturitas.2020.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Advances in medicine have paved the way for older persons to live longer, but with more years spent living with disability and dependency. Many older persons are living with comorbidities such as osteoporosis (loss of bone mass) and sarcopenia (loss of muscle mass and function), two diseases that, when concurrent, form osteosarcopenia, a newly identified musculoskeletal syndrome. Osteosarcopenia impedes mobility and diminishes independence and thus quality of life. Evidence suggests the pathology of this syndrome comprises genetic polymorphisms, alterations in mechanotransduction, and localized or systemic crosstalk between growth factors and other proteins (myokines, osteokines, adipokines). As a direct result of an aging society, health outcomes such as falls and fractures will rise as the prevalence of osteosarcopenia increases. Two major risk factors for osteosarcopenia (other than age itself) are physical inactivity and poor nutrition. Addressing these modifiable risk factors can prevent, or at least delay, the onset of osteosarcopenia. Pharmaceutical treatments for osteosarcopenia are currently unavailable, although research trials are underway. This review provides an update from basic and clinical sciences on the biology, epidemiology (prevalence, risk factors and diagnosis) and treatments for osteosarcopenia, and recommends future research priorities to improve health outcomes for those living with or at risk of osteosarcopenia.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Sarah Miller
- London North West University Healthcare, United Kingdom
| | - Jesse Zanker
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia
| | - Gustavo Duque
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Melbourne, VIC, Australia.
| |
Collapse
|
52
|
Jennings A, Mulligan AA, Khaw KT, Luben RN, Welch AA. A Mediterranean Diet Is Positively Associated with Bone and Muscle Health in a Non-Mediterranean Region in 25,450 Men and Women from EPIC-Norfolk. Nutrients 2020; 12:E1154. [PMID: 32326165 PMCID: PMC7231007 DOI: 10.3390/nu12041154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/25/2022] Open
Abstract
Research on Mediterranean diet (MD) adherence and musculoskeletal health is limited. The current study determined if adherence to the alternative MD score (aMED) and MD score (MDS), quantified from 7-d food diaries, was associated with fracture incidence, bone density (calcaneal broadband ultrasound attenuation (BUA)) and fat free mass (expressed over BMI (FFMBMI) using bioelectrical impedance) in 25,450 men and women recruited to the European Prospective Investigation into Cancer study in Norfolk, UK. During 17.4 years of follow up (443,178 total person years) 2195 incident fractures occurred. Higher aMED adherence was associated with 23% reduced total (Q5-Q1 HR 0.77; 95% CI 0.67, 0.88; p-trend < 0.01) and 21% reduced hip (Q5-Q1 HR 0.79; 95% CI 0.65, 0.96; p-trend = 0.01) fracture incidence, and significantly higher BUA (Q5-Q1 1.0 dB/MHz 95% CI 0.2, 1.9; p-trend < 0.01) and FFMBMI (Q5-Q1 0.05 kg/(kg/m2) 95% CI 0.04, 0.06; p-trend < 0.01), comparing extreme adherence quintiles. Higher MDS was also associated with reduced total fractures (Q5-Q1 HR 0.83; 95% CI 0.71, 0.96; p-trend = 0.03) and significantly higher BUA (Q5-Q1 1.4 dB/MHz 95% CI 0.5, 2.3; p-trend < 0.01) and FFMBMI (Q5-Q1 0.03 kg/(kg/m2) 95% CI 0.01, 0.04; p-trend < 0.01). This evidence supports the need to develop interventions to enhance MD adherence, particularly in women, where evidence for associations was stronger.
Collapse
Affiliation(s)
- Amy Jennings
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Angela A. Mulligan
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK; (A.A.M.); (K.-T.K.); (R.N.L.)
- NIHR BRC Diet, Anthropometry and Physical Activity Group, MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK
| | - Kay-Tee Khaw
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK; (A.A.M.); (K.-T.K.); (R.N.L.)
| | - Robert N. Luben
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK; (A.A.M.); (K.-T.K.); (R.N.L.)
| | - Ailsa A. Welch
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7UQ, UK;
| |
Collapse
|
53
|
Shahen VA, Gerbaix M, Koeppenkastrop S, Lim SF, McFarlane KE, Nguyen ANL, Peng XY, Weiss NB, Brennan-Speranza TC. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus. Cytokine Growth Factor Rev 2020; 55:109-118. [PMID: 32354674 DOI: 10.1016/j.cytogfr.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Bones undergo continuous cycles of bone remodelling that rely on the balance between bone formation and resorption. This balance allows the bone to adapt to changes in mechanical loads and repair microdamages. However, this balance is susceptible to upset in various conditions, leading to impaired bone remodelling and abnormal bones. This is usually indicated by abnormal bone mineral density (BMD), an indicator of bone strength. Despite this, patients with type 2 diabetes mellitus (T2DM) exhibit normal to high BMD, yet still suffer from an increased risk of fractures. The activity of the bone cells is also altered as indicated by the reduced levels of bone turnover markers in T2DM observed in the circulation. The underlying mechanisms behind these skeletal outcomes in patients with T2DM remain unclear. This review summarises recent findings regarding inflammatory cytokine factors associated with T2DM to understand the mechanisms involved and considers potential therapeutic interventions.
Collapse
Affiliation(s)
- V A Shahen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - M Gerbaix
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - S Koeppenkastrop
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - S F Lim
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - K E McFarlane
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Amanda N L Nguyen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - X Y Peng
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - N B Weiss
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - T C Brennan-Speranza
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; School of Public Health, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight the deficits in muscle and bone in children with cerebral palsy (CP), discuss the muscle-bone relationship in the CP population, and identify muscle-based intervention strategies that may stimulate an improvement in their bone development. RECENT FINDINGS The latest research suggests that muscle and bone are both severely underdeveloped and weak in children with CP, even in ambulatory children with mild forms of the disorder. The small and low-performing muscles and limited participation in physical activity are likely the major contributors to the poor bone development in children with CP. However, the muscle-bone relationship may be complicated by other factors, such as a high degree of fat and collagen infiltration of muscle, atypical muscle activation, and muscle spasticity. Muscle-based interventions, such as resistance training, vibration, and nutritional supplementation, have the potential to improve bone development in children with CP, especially if they are initiated before puberty. Studies are needed to identify the muscle-related factors with the greatest influence on bone development in children with CP. Identifying treatment strategies that capitalize on the relationship between muscle and bone, while also improving balance, coordination, and physical activity participation, is an important step toward increasing bone strength and minimizing fractures in children with CP.
Collapse
Affiliation(s)
- Christopher M Modlesky
- Department of Kinesiology, University of Georgia, 330 River Road, Room 353, Athens, GA, 30602, USA.
| | - Chuan Zhang
- Department of Kinesiology, University of Georgia, 330 River Road, Room 353, Athens, GA, 30602, USA
| |
Collapse
|
55
|
Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Commun Biol 2020; 3:39. [PMID: 31969651 PMCID: PMC6976694 DOI: 10.1038/s42003-020-0766-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a highly prevalent chronic aging-related disease that frequently is only detected after fracture. We hypothesized that aminobutyric acids could serve as biomarkers for osteoporosis. We developed a quick, accurate, and sensitive screening method for aminobutyric acid isomers and enantiomers yielding correlations with bone mineral density (BMD) and osteoporotic fracture. In serum, γ-aminobutyric acid (GABA) and (R)-3-aminoisobutyric acid (D-BAIBA) have positive associations with physical activity in young lean women. D-BAIBA positively associated with hip BMD in older individuals without osteoporosis/osteopenia. Lower levels of GABA were observed in 60–80 year old women with osteoporotic fractures. Single nucleotide polymorphisms in seven genes related to these metabolites associated with BMD and osteoporosis. In peripheral blood monocytes, dihydropyrimidine dehydrogenase, an enzyme essential to D-BAIBA generation, exhibited positive association with physical activity and hip BMD. Along with their signaling roles, BAIBA and GABA might serve as biomarkers for diagnosis and treatments of osteoporosis. Wang et al. develop an LC/MS based screening method to separate and quantify aminobutyric acids isoforms. Applying it to osteoporosis clinical studies, their method yields important correlations with bone mineral density and osteoporotic fracture and highlight the role of γ-aminobutyric acid and β-aminoisobutyric acid as biomarkers for osteoporosis.
Collapse
|
56
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
57
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
58
|
Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 2019; 18:3562-3580. [PMID: 31735119 PMCID: PMC6927711 DOI: 10.1080/15384101.2019.1691796] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and vice versa. Recently, enhanced FGF9 production was observed in the OmGFP66 osteogenic cell line. To test its role in myogenic differentiation, C2C12 myoblasts were treated with recombinant FGF9. FGF9 as low as 10 ng/mL inhibited myogenic differentiation, suggesting that FGF9 might be a potential inhibitory factor produced from bone cells with effects on muscle cells. FGF9 (10–50 ng/mL) significantly decreased mRNA expression of MyoG and Mhc while increasing the expression of Myostatin. Consistent with the phenotype, RT-qPCR array revealed that FGF9 (10 ng/mL) increased the expression of Icam1 while decreased the expression of Wnt1 and Wnt6 decreased, respectively. FGF9 decreased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and reduced the expression of genes (i.e. Cacna1s, RyR2, Naftc3) directly associated with intracellular Ca2+ homeostasis. Myogenic differentiation in human skeletal muscle cells was similarly inhibited by FGF9 but required higher doses of 200 ng/mL FGF9. FGF9 was also shown to stimulate C2C12 myoblast proliferation. FGF2 and the FGF9 subfamily members FGF16 and FGF20 also inhibited C2C12 myoblast differentiation and enhanced proliferation. Intriguingly, the differentiation inhibition was independent of proliferation enhancement. These findings suggest that FGF9 may modulate myogenesis via a complex signaling mechanism.
Collapse
Affiliation(s)
- Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN USA
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
59
|
Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT. Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Curr Osteoporos Rep 2019; 17:235-249. [PMID: 31428977 PMCID: PMC6817749 DOI: 10.1007/s11914-019-00522-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Bone and muscle mass increase in response to mechanical loading and biochemical cues. Bone-forming osteoblasts differentiate into early osteocytes which ultimately mature into late osteocytes encapsulated in stiff calcified matrix. Increased muscle mass originates from muscle stem cells (MuSCs) enclosed between their plasma membrane and basal lamina. Stem cell fate and function are strongly determined by physical and chemical properties of their microenvironment, i.e., the cell niche. RECENT FINDINGS The cellular niche is a three-dimensional structure consisting of extracellular matrix components, signaling molecules, and/or other cells. Via mechanical interaction with their niche, osteocytes and MuSCs are subjected to mechanical loads causing deformations of membrane, cytoskeleton, and/or nucleus, which elicit biochemical responses and secretion of signaling molecules into the niche. The latter may modulate metabolism, morphology, and mechanosensitivity of the secreting cells, or signal to neighboring cells and cells at a distance. Little is known about how mechanical loading of bone and muscle tissue affects osteocytes and MuSCs within their niches. This review provides an overview of physicochemical niche conditions of (early) osteocytes and MuSCs and how these are sensed and determine cell fate and function. Moreover, we discuss how state-of-the-art imaging techniques may enhance our understanding of these conditions and mechanisms.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Kwak MK, Kim BJ, Kim JS, Lee SH, Koh JM. The Local and Systemic Interactions Between Muscle and Bone in Postmenopausal Korean Women. Calcif Tissue Int 2019; 105:373-382. [PMID: 31346666 DOI: 10.1007/s00223-019-00585-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Despite many studies about local and systemic interactions between bone and muscle, the more dominant interaction remains unclear. We aimed to compare the association of skeletal muscle mass with bone mineral density (BMD) at the femur, which seemed more likely affected by local interaction, and the association of skeletal muscle mass with BMD at the lumbar spine (LS-BMD) and the trabecular bone score (TBS), which seemed more likely affected by systemic interaction. In 279 women, we measured the femoral neck BMD (FN-BMD), total hip BMD (TH-BMD), LS-BMD, and TBS. Appendicular skeletal muscle mass (ASM), lean mass (LM), and other LM (OLM; remaining LM excluding ASM) were measured using bioelectrical impedance analysis. ASM (β = 0.008-0.014, p < 0.001-0.014), OLM (β = 0.006-0.011, p < 0.001-0.044), and LM (β = 0.004-0.007, p < 0.001-0.020) were positively associated with FN-BMD and TH-BMD, but not with LS-BMD or TBS. The positive association of ASM, but not of OLM, was stronger than that of LM (p = 0.023). Odd ratios (ORs) with 95% confidence intervals (95% CIs) for osteoporosis were statistically significant for ASM (OR 0.74, 95% CI 0.59-0.93) and marginally significant for OLM (OR 0.80, 95% CI 0.64-1.01) in the femur, but not in the LS. The direct and indirect (through OLM) effects of ASM on BMD were 69.1-72.2% and 27.8-30.9%, respectively. In the conclusion, ASM was more positively associated with FN-BMD, but not with LS-BMD and TBS, than OLM. This suggests stronger effects of local interaction than systemic interaction between muscle and bone.
Collapse
Affiliation(s)
- Mi Kyung Kwak
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jae Seung Kim
- Division of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
61
|
Kirk B, Al Saedi A, Duque G. Osteosarcopenia: A case of geroscience. Aging Med (Milton) 2019; 2:147-156. [PMID: 31942528 PMCID: PMC6880711 DOI: 10.1002/agm2.12080] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many older persons lose their mobility and independence due to multiple diseases occurring simultaneously. Geroscience is aimed at developing innovative approaches to better identify relationships among the biological processes of aging. Osteoporosis and sarcopenia are two of the most prevalent chronic diseases in older people, with both conditions sharing overlapping risk factors and pathogenesis. When occurring together, these diseases form a geriatric syndrome termed "osteosarcopenia," which increases the risk of frailty, hospitalizations, and death. Findings from basic and clinical sciences aiming to understand osteosarcopenia have provided evidence of this syndrome as a case of geroscience. Genetic, endocrine, and mechanical stimuli, in addition to fat infiltration, sedentarism, and nutritional deficiencies, affect muscle and bone homeostasis to characterize this syndrome. However, research is in its infancy regarding accurate diagnostic markers and effective treatments with dual effects on muscle and bone. To date, resistance exercise remains the most promising strategy to increase muscle and bone mass, while sufficient quantities of protein, vitamin D, calcium, and creatine may preserve these tissues with aging. More recent findings, from rodent models, suggest treating ectopic fat in muscle and bone marrow as a possible avenue to curb osteosarcopenia, although this needs testing in human clinical trials.
Collapse
Affiliation(s)
- Ben Kirk
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| | - Ahmed Al Saedi
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| | - Gustavo Duque
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| |
Collapse
|
62
|
Roh YH, Hong SW, Chung SW, Lee YS. Altered gene and protein expressions of vitamin D receptor in skeletal muscle in sarcopenic patients who sustained distal radius fractures. J Bone Miner Metab 2019; 37:920-927. [PMID: 30790083 DOI: 10.1007/s00774-019-00995-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022]
Abstract
Despite the presence of vitamin D receptor (VDR) in skeletal muscle cells, the relationship between VDR expressions and muscle mass or function has not been well studied. The purpose of this study was to compare VDR gene and protein expression in the forearm muscle between sarcopenic and non-sarcopenic individuals who have sustained distal radius fractures. Twenty samples of muscle tissue from sarcopenic patients (mean age 63.4 ± 8.1 years) and 20 age- and sex-matched control tissues (62.1 ± 7.9 years) were acquired from the edge of dissected pronator quadratus muscle during surgery for distal radius fractures. The mRNA expression levels of VDR as well as the myokines of interest that may be associated with muscle mass change (myogenin and myostatin) were analyzed with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot assay and immunohistochemistry for VDR were performed. Sarcopenic patients showed a significantly lower level of gene expression for VDR and myogenin, but a greater level of gene expression for myostatin than the controls according to qRT-PCR analysis. The density of VDR protein expressions was 2.1 times greater, while that of myostatin was 2.6 times lower, in the control group than in the sarcopenic group according to Western blot analysis. On immunohistochemical analysis, the density of the cells expressing VDR was significantly decreased in the sarcopenic patients. Sarcopenic patients who sustained distal radius fractures presented lower vitamin D receptor gene and protein expression in skeletal muscles compared to non-sarcopenic individuals.
Collapse
Affiliation(s)
- Young Hak Roh
- Department of Orthopaedic Surgery, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
| | - Seok Woo Hong
- Department of Orthopaedic Surgery, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 143-729, South Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 143-729, South Korea
| |
Collapse
|
63
|
Praksch D, Sandor B, Kovacs D, Petrovics P, Kovacs K, Toth K, Szabados E. Impact of home- and center- based physical training program on cardio-metabolic health and IGF-1 level in elderly women. Eur Rev Aging Phys Act 2019; 16:13. [PMID: 31417661 PMCID: PMC6688290 DOI: 10.1186/s11556-019-0220-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Background Data in the literature concerning the effects of physical activity on lipid and IGF-1levels are controversial in postmenopausal women. The aim of the present study was to determine the combined effects of a 12 weeks home-based walking program aiming to achieve 10,000 steps daily and a center- based aerobic exercise training on functional capacity, some important cardio-metabolic parameters, IGF-1 level and psychological items among elderly female patients. Sixty female patients (67.4 ± 5 years) with moderate to high cardiovascular risk were randomly assigned either to an exercise training program for 12 weeks or to the control group. Results Our organized training program resulted in a significantly improved daily physical activity (4232 [IQR: 3162–7219] to 8455 [IQR: 6757–11,488]; p < 0.001 ft-steps), functional capacity (MET) (8.17 ± 1.57 to 8.87 ± 1.76) (p = 0.002), metabolic status including total cholesterol (5.17 ± 1.13 to 4.77 ± 1.12 mmol/l), LDL cholesterol (3.37 ± 1.05 to 2.81 ± 0.98 mmol/l), triglyceride (1.68 ± 0.71 to 1.28 ± 0.71 mmol/l) and HgbA1c (6.24 ± 0.67 to 6.06 ± 0.58 mmol/l), as well as IGF-1 (59.68 ± 27.37 to 66.79 ± 22.74 ng/ml) levels (p < 0.05) in the training group. From psychological tests only physical functionality improved significantly (p = 0.03) in the training group. The training group significantly differed from the control group in four parameters including MET (p = 0.003), LDL-cholesterol (p = 0.046), triglyceride (p = 0.001) and IGF-1 levels (p < 0.001) after the intervention. Conclusion The applied home-, and- center based training program effectively increased the daily physical activity of the elderly female patients and improved several cardio-metabolic parameters. Further investigations are needed on larger patient population to establish our findings and examine how these positive changes may decrease CV events and mortality.
Collapse
Affiliation(s)
- Dora Praksch
- 1First Department of Medicine, Division of Cardiology and Angiology, University of Pécs, Medical School, Pécs, Hungary
| | - Barbara Sandor
- 1First Department of Medicine, Division of Cardiology and Angiology, University of Pécs, Medical School, Pécs, Hungary
| | - David Kovacs
- 1First Department of Medicine, Division of Cardiology and Angiology, University of Pécs, Medical School, Pécs, Hungary
| | - Peter Petrovics
- 2First Department of Medicine, Division of Preventive Cardiology and Rehabilitation, University of Pécs, Medical School, Rákóczi Street 2, Pécs, H-7624 Hungary
| | - Krisztina Kovacs
- 3Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Kalman Toth
- 1First Department of Medicine, Division of Cardiology and Angiology, University of Pécs, Medical School, Pécs, Hungary
| | - Eszter Szabados
- 2First Department of Medicine, Division of Preventive Cardiology and Rehabilitation, University of Pécs, Medical School, Rákóczi Street 2, Pécs, H-7624 Hungary
| |
Collapse
|
64
|
Abstract
Neurological and mental illnesses account for a considerable proportion of the global burden of disease. Exercise has many beneficial effects on brain health, contributing to decreased risks of dementia, depression and stress, and it has a role in restoring and maintaining cognitive function and metabolic control. The fact that exercise is sensed by the brain suggests that muscle-induced peripheral factors enable direct crosstalk between muscle and brain function. Muscle secretes myokines that contribute to the regulation of hippocampal function. Evidence is accumulating that the myokine cathepsin B passes through the blood-brain barrier to enhance brain-derived neurotrophic factor production and hence neurogenesis, memory and learning. Exercise increases neuronal gene expression of FNDC5 (which encodes the PGC1α-dependent myokine FNDC5), which can likewise contribute to increased brain-derived neurotrophic factor levels. Serum levels of the prototype myokine, IL-6, increase with exercise and might contribute to the suppression of central mechanisms of feeding. Exercise also increases the PGC1α-dependent muscular expression of kynurenine aminotransferase enzymes, which induces a beneficial shift in the balance between the neurotoxic kynurenine and the neuroprotective kynurenic acid, thereby reducing depression-like symptoms. Myokine signalling, other muscular factors and exercise-induced hepatokines and adipokines are implicated in mediating the exercise-induced beneficial impact on neurogenesis, cognitive function, appetite and metabolism, thus supporting the existence of a muscle-brain endocrine loop.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
65
|
Moriwaki K, Matsumoto H, Tanishima S, Tanimura C, Osaki M, Nagashima H, Hagino H. Association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults: a cross-sectional study. BMC Musculoskelet Disord 2019; 20:276. [PMID: 31164134 PMCID: PMC6549364 DOI: 10.1186/s12891-019-2650-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Understanding interactions between bone and muscle based on endocrine factors may help elucidate the relationship between osteoporosis and sarcopenia. However, whether the abundance or activity of these endocrine factors is affected by age and sex or whether these factors play a causal role in bone and muscle formation and function is unclear. We aimed to evaluate the association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults. METHODS In all, 254 residents (97 men, 157 women) participated in this cross-sectional study conducted in Japan. The calcaneal speed of sound (SOS) was evaluated by quantitative ultrasound examination. Skeletal muscle mass index (SMI) was calculated by bioelectrical impedance analysis. Grip strength was measured using a dynamometer. Gait speed was measured by optical-sensitive gait analysis. Serum sclerostin, osteocalcin (OC), insulin-like growth factor-1 (IGF-1), myostatin, and tartrate-resistant acid phosphatase-5b (TRACP-5b) concentrations were measured simultaneously. The difference by sex was determined using t test. Correlations between serum bone- and muscle-derived factors and age, BMI, SOS, SMI, grip strength, gait speed, and TRACP-5b in men and women were determined based on Pearson's correlation coefficients. Multiple regression analysis was performed using the stepwise method. RESULTS There was no significant difference with regard to age between men (75.0 ± 8.9 years) and women (73.6 ± 8.1 years). Sclerostin was significantly higher in men than in women and tended to increase with age in men; it was significantly associated with SOS and TRACP-5b levels. OC was significantly higher in women than in men and was significantly associated with TRACP-5b levels and age. IGF-1 tended to decrease with age in both sexes and was significantly associated with SOS and body mass index. Myostatin did not correlate with any assessed variables. CONCLUSIONS Sclerostin was significantly associated with sex, age, and bone metabolism, although there was no discernable relationship between serum sclerostin levels and muscle function. There was no obvious relationship between OC and muscle parameters. This study suggests that IGF-1 is an important modulator of muscle mass and function and bone metabolism in community-dwelling middle-aged and elderly adults.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan.
| | - Hiromi Matsumoto
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Matsushima 288, Kurashiki, Okayama, 701-0193, Japan
| | - Shinji Tanishima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Chika Tanimura
- School of Health Science, Faculty of Medicine, Tottori University, Nishicho 86, Yonago, Tottori, 683-8504, Japan
| | - Mari Osaki
- Rehabilitation Division, Tottori University Hospital, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hideki Nagashima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hiroshi Hagino
- School of Health Science, Faculty of Medicine, Tottori University, Nishicho 86, Yonago, Tottori, 683-8504, Japan.,Rehabilitation Division, Tottori University Hospital, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
66
|
Kim HJ, Moon JH, Oh YH, Kong MH, Huh JS. Association between urinary incontinence and bone health in Korean elderly women based on data from the Korea National Health and Nutrition Examination Survey. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/99586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Adhikary S, Choudhary D, Tripathi AK, Karvande A, Ahmad N, Kothari P, Trivedi R. FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation. Life Sci 2019; 229:261-276. [PMID: 31082400 DOI: 10.1016/j.lfs.2019.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
AIM Myokines are associated with regulation of bone and muscle mass. However, limited information is available regarding the impact of myokines on glucocorticoid (GC) mediated adverse effects on the musculoskeletal system. This study investigates the role of myokine fibroblast growth factor-2 (FGF-2) in regulating GC-induced deleterious effects on bone and skeletal muscle. METHODS Primary osteoblast cells and C2C12 myoblast cell line were treated with FGF-2 and then exposed to dexamethasone (GC). FGF-2 mediated attenuation of the inhibitory effect of GC on osteoblast and myoblast differentiation and muscle atrophy was assessed through quantitative PCR and western blot analysis. Further, FGF-2 was administered subcutaneously to dexamethasone treated mice to collect bone and skeletal muscle tissue for in vivo analysis of bone microarchitecture, mechanical strength, histomorphometry and for histological alterations in treated tissue samples. KEY FINDINGS FGF-2 abrogated the dexamethasone induced inhibitory effect on osteoblast differentiation by modulating BMP-2 pathway and inhibiting Wnt antagonist sclerostin. Further, dexamethasone induced atrophy in C2C12 cells was mitigated by FGF-2 as evident from down regulation of atrogenes expression. FGF-2 prevented GC-induced impairment of mineral density, biomechanical strength, trabecular bone volume, cortical thickness and bone formation rate in mice. Additionally, skeletal muscle tissue from GC treated mice displayed weak myostatin immunostaining and reduced expression of atrogenes following FGF-2 treatment. SIGNIFICANCE FGF-2 mitigated GC induced effects through inhibition of sclerostin and myostatin expression in bone and muscle respectively. Taken together, this study exhibited the role of exogenous FGF-2 in sustaining osteoblastogenesis and inhibiting muscle atrophy in presence of glucocorticoid.
Collapse
Affiliation(s)
- Sulekha Adhikary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Choudhary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirudha Karvande
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naseer Ahmad
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
68
|
Fulzele S, Mendhe B, Khayrullin A, Johnson M, Kaiser H, Liu Y, Isales CM, Hamrick MW. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY) 2019; 11:1791-1803. [PMID: 30910993 PMCID: PMC6461183 DOI: 10.18632/aging.101874] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are known to play important roles in cell-cell communication. Here we investigated the role of muscle-derived EVs and their microRNAs in the loss of bone stem cell populations with age. Aging in male and female C57BL6 mice was associated with a significant increase in expression of the senescence-associated microRNA miR-34a-5p (miR-34a) in skeletal muscle and in serum -derived EVs. Muscle-derived, alpha-sarcoglycan positive, EVs isolated from serum samples also showed a significant increase in miR-34a with age. EVs were isolated from conditioned medium of C2C12 mouse myoblasts and primary human myotubes after cells were treated with hydrogen peroxide to simulate oxidative stress. These EVs were shown to have elevated levels of miR-34a, and these EVs decreased viability of bone marrow mesenchymal (stromal) cells (BMSCs) and increased BMSC senescence. A lentiviral vector system was used to overexpress miR-34a in C2C12 cells, and EVs isolated from these transfected cells were observed to home to bone in vivo and to induce senescence and decrease Sirt1 expression of primary bone marrow cells ex vivo. These findings suggest that aged skeletal muscle is a potential source of circulating, senescence-associated EVs that may directly impact stem cell populations in tissues such as bone via their microRNA cargo.
Collapse
Affiliation(s)
- Sadanand Fulzele
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bharati Mendhe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Andrew Khayrullin
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maribeth Johnson
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Helen Kaiser
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Carlos M. Isales
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
69
|
Wallner C, Huber J, Drysch M, Schmidt SV, Wagner JM, Dadras M, Dittfeld S, Becerikli M, Jaurich H, Lehnhardt M, Behr B. Activin Receptor 2 Antagonization Impairs Adipogenic and Enhances Osteogenic Differentiation in Mouse Adipose-Derived Stem Cells and Mouse Bone Marrow-Derived Stem Cells In Vitro and In Vivo. Stem Cells Dev 2019; 28:384-397. [PMID: 30654712 DOI: 10.1089/scd.2018.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tumors, traumata, burn injuries or surgeries can lead to critical-sized bony defects which need to be reconstructed. Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell lineages and thus present a promising alternative for use in tissue engineering and reconstruction. However, there is an ongoing debate whether all MSCs are equivalent in their differentiation and proliferation ability. The goal of this study was to assess osteogenic and adipogenic characteristic changes of adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMSCs) upon Myostatin inhibition with Follistatin in vitro and in vivo. We harvested ASCs from mice inguinal fat pads and BMSCs from tibiae of mice. By means of histology, real-time cell analysis, immunohistochemistry, and PCR osteogenic and adipogenic proliferation and differentiation in the presence or absence of Follistatin were analyzed. In vivo, osteogenic capacity was investigated in a tibial defect model of wild-type (WT) mice treated with mASCs and mBMSCs of Myo-/- and WT origin. In vitro, we were able to show that inhibition of Myostatin leads to markedly reduced proliferative capacity in mBMSCs and mASCs in adipogenic differentiation and reduced proliferation in osteogenic differentiation in mASCs, whereas proliferation in mBMSCs in osteogenic differentiation was increased. Adipogenic differentiation was inhibited in mASCs and mBMSCs upon Follistatin treatment, whereas osteogenic differentiation was increased in both cell lineages. In vivo, we could demonstrate increased osteoid formation in WT mice treated with mASCs and mBMSCs of Myo-/- origin and enhanced osteogenic differentiation and proliferation of mASCs of Myo-/- origin. We could demonstrate that the osteogenic potential of mASCs could be raised to a level comparable to mBMSCs upon inhibition of Myostatin. Moreover, Follistatin treatment led to inhibition of adipogenesis in both lineages.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Julika Huber
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Sonja Verena Schmidt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Henriette Jaurich
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
70
|
Lombardi G, Ziemann E, Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front Endocrinol (Lausanne) 2019; 10:60. [PMID: 30792697 PMCID: PMC6374307 DOI: 10.3389/fendo.2019.00060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Bone tissue can be seen as a physiological hub of several stimuli of different origin (e.g., dietary, endocrine, nervous, immune, skeletal muscle traction, biomechanical load). Their integration, at the bone level, results in: (i) changes in mineral and protein composition and microarchitecture and, consequently, in shape and strength; (ii) modulation of calcium and phosphorous release into the bloodstream, (iii) expression and release of hormones and mediators able to communicate the current bone status to the rest of the body. Different stimuli are able to act on either one or, as usual, more levels. Physical activity is the key stimulus for bone metabolism acting in two ways: through the biomechanical load which resolves into a direct stimulation of the segment(s) involved and through an indirect load mediated by muscle traction onto the bone, which is the main physiological stimulus for bone formation, and the endocrine stimulation which causes homeostatic adaptation. The third way, in which physical activity is able to modify bone functions, passes through the immune system. It is known that immune function is modulated by physical activity; however, two recent insights have shed new light on this modulation. The first relies on the discovery of inflammasomes, receptors/sensors of the innate immunity that regulate caspase-1 activation and are, hence, the tissue triggers of inflammation in response to infections and/or stressors. The second relies on the ability of certain tissues, and particularly skeletal muscle and adipose tissue, to synthesize and secrete mediators (namely, myokines and adipokines) able to affect, profoundly, the immune function. Physical activity is known to act on both these mechanisms and, hence, its effects on bone are also mediated by the immune system activation. Indeed, that immune system and bone are tightly connected and inflammation is pivotal in determining the bone metabolic status is well-known. The aim of this narrative review is to give a complete view of the exercise-dependent immune system-mediated effects on bone metabolism and function.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
- *Correspondence: Giovanni Lombardi
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
71
|
Bain SD, Huber P, Ausk BJ, Kwon RY, Gardiner EM, Srinivasan S, Gross TS. Neuromuscular dysfunction, independent of gait dysfunction, modulates trabecular bone homeostasis in mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:79-93. [PMID: 30839306 PMCID: PMC6454260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To clarify the effects of neuromuscular dysfunction on hindlimb loading, muscle atrophy, and bone homeostasis. METHODS We quantified changes to hindlimb loading, muscle atrophy, and bone morphology following either Botulinum toxin A (BTxA) induced muscle paralysis or peripheral nerve injury (PNI) in mice; two in vivo models that we anticipated would differently alter gait and mechanical loading patterns due to their distinct effects on neuromuscular signaling. To confirm the expected behavioral effects of PNI, we assessed mechanical allodynia of the ipsilateral hindlimb using von Frey testing and activity (distance traveled and speed) was monitored in both groups using open field testing. Peak vertical ground reaction forces (GRF) and ankle and knee kinematics during normal locomotion were quantified and used to estimate peak mid-diaphyseal normal strains. Muscle atrophy and trabecular and cortical bone morphology were assessed via high-resolution microCT imaging. RESULTS BTxA-induced calf paralysis caused severe muscle atrophy and altered gait kinetics and kinematics and reduced gait-induced normal strains. PNI increased mechanical allodynia but did not alter gait, nor did it cause muscle atrophy. We observed that muscle paralysis and PNI both led to severe trabecular bone loss but only BTxA-induced paralysis increased cortical bone resorption. CONCLUSIONS While mechanical stimuli clearly have essential functions in bone development and adaptation, these data emphasize that neuromuscular signaling, independent of load-induced mechanical strains, may modulate trabecular bone homeostasis in normal and disease states.
Collapse
Affiliation(s)
- Steven D. Bain
- Department of Orthopaedics and Sports Medicine, University of Washington,Corresponding author: Steven D. Bain, Ph.D., Department of Orthopaedics and Sports Medicine, University of Washington, Box 359798, 325 9th Ave, Seattle, WA 98104 E-mail:
| | | | | | | | | | | | | |
Collapse
|
72
|
Haas GJ, Dunn AJ, Marcinczyk M, Talovic M, Schwartz M, Scheidt R, Patel AD, Hixon KR, Elmashhady H, McBride-Gagyi SH, Sell SA, Garg K. Biomimetic sponges for regeneration of skeletal muscle following trauma. J Biomed Mater Res A 2018; 107:92-103. [PMID: 30394640 DOI: 10.1002/jbm.a.36535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Abstract
Skeletal muscle is inept in regenerating after traumatic injuries due to significant loss of basal lamina and the resident satellite cells. To improve regeneration of skeletal muscle, we have developed biomimetic sponges composed of collagen, gelatin, and laminin (LM)-111 that were crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Collagen and LM-111 are crucial components of the muscle extracellular matrix and were chosen to impart bioactivity whereas gelatin and EDC were used to provide mechanical strength to the scaffold. Morphological and mechanical evaluation of the sponges showed porous structure, water-retention capacity and a compressive modulus of 590-808 kPa. The biomimetic sponges supported the infiltration and viability of C2 C12 myoblasts over 5 days of culture. The myoblasts produced higher levels of myokines such as VEGF, IL-6, and IGF-1 and showed higher expression of myogenic markers such as MyoD and myogenin on the biomimetic sponges. Biomimetic sponges implanted in a mouse model of volumetric muscle loss (VML) supported satellite, endothelial, and inflammatory cell infiltration but resulted in limited myofiber regeneration at 2 weeks post-injury. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 92-103, 2019.
Collapse
Affiliation(s)
- Gabriel J Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Andrew J Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Mark Schwartz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Robert Scheidt
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Anjali D Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Katherine R Hixon
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Sarah H McBride-Gagyi
- Department of Orthopedic Surgery, Saint Louis University, St. Louis, Missouri, 63103
| | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| |
Collapse
|
73
|
Furuichi Y, Manabe Y, Takagi M, Aoki M, Fujii NL. Evidence for acute contraction-induced myokine secretion by C2C12 myotubes. PLoS One 2018; 13:e0206146. [PMID: 30356272 PMCID: PMC6200277 DOI: 10.1371/journal.pone.0206146] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is considered a secretory organ that produces bioactive proteins known as myokines, which are released in response to various stimuli. However, no experimental evidence exists regarding the mechanism by which acute muscle contraction regulates myokine secretion. Here, we present evidence that acute contractions induced myokine secretion from C2C12 myotubes. Changes in the cell culture medium unexpectedly triggered the release of large amounts of proteins from the myotubes, and these proteins obscured the contraction-induced myokine secretion. Once protein release was abolished, the secretion of interleukin-6 (IL-6), the best-known regulatory myokine, increased in response to a 1-hour contraction evoked by electrical stimulation. Using this experimental condition, intracellular calcium flux, rather than the contraction itself, triggered contraction-induced IL-6 secretion. This is the first report to show an evidence for acute contraction-induced myokine secretion by skeletal muscle cells.
Collapse
Affiliation(s)
- Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- * E-mail: (YM); (NLF)
| | - Mayumi Takagi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Miho Aoki
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Nobuharu L. Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- * E-mail: (YM); (NLF)
| |
Collapse
|
74
|
Papageorgiou M, Martin D, Colgan H, Cooper S, Greeves JP, Tang JCY, Fraser WD, Elliott-Sale KJ, Sale C. Bone metabolic responses to low energy availability achieved by diet or exercise in active eumenorrheic women. Bone 2018; 114:181-188. [PMID: 29933113 DOI: 10.1016/j.bone.2018.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE We aimed to explore the effects of low energy availability (EA)[15 kcal·kg lean body mass (LBM)-1·d-1] achieved by diet or exercise on bone turnover markers in active, eumenorrheic women. METHODS By using a crossover design, ten eumenorrheic women (VO2 peak: 48.1 ± 3.3 ml·kg-1·min-1) completed all three, 3-day conditions in a randomised order: controlled EA (CON; 45 kcal·kgLBM-1·d-1), low EA through dietary energy restriction (D-RES; 15 kcal·kgLBM-1·d-1) and low EA through increasing exercise energy expenditure (E-RES; 15 kcal·kgLBM-1·d-1), during the follicular phase of three menstrual cycles. In CON, D-RES and E-RES, participants consumed diets providing 45, 15 and 45 kcal·kgLBM-1·d-1. In E-RES only, participants completed supervised running sessions (129 ± 10 min·d-1) at 70% of their VO2 peak that resulted in an exercise energy expenditure of 30 kcal·kg LBM-1·d-1. Blood samples were collected at baseline (BASE) and at the end of the 3-day period (D6) and analysed for bone turnover markers (β-CTX and P1NP), markers of calcium metabolism (PTH, albumin-adjusted Ca, Mg and PO4) and hormones (IGF-1, T3, insulin, leptin and 17β-oestradiol). RESULTS In D-RES, P1NP concentrations at D6 decreased by 17% (BASE: 54.8 ± 12.7 μg·L-1, D6: 45.2 ± 9.3 μg·L-1, P < 0.001, d = 0.91) and were lower than D6 concentrations in CON (D6: 52.5 ± 11.9 μg·L-1, P = 0.001). P1NP did not change significantly in E-RES (BASE: 55.3 ± 14.4 μg·L-1, D6: 50.9 ± 15.8 μg·L-1, P = 0.14). β-CTX concentrations did not change following D-RES (BASE: 0.48 ± 0.18 μg·L-1, D6: 0.55 ± 0.17 μg·L-1) or E-RES (BASE: 0.47 ± 0.24 μg·L-1, D6: 0.49 ± 0.18 μg·L-1) (condition × time interaction effect, P = 0.17). There were no significant differences in P1NP (P = 0.25) or β-CTX (P = 0.13) responses between D-RES and E-RES. Both conditions resulted in reductions in IGF-1 (-13% and - 23% from BASE in D-RES and E-RES, both P < 0.01) and leptin (-59% and - 61% from BASE in D-RES and E-RES, both P < 0.001); T3 decreased in D-RES only (-15% from BASE, P = 0.002) and PO4 concentrations decreased in E-RES only (-9%, P = 0.03). CONCLUSIONS Low EA achieved through dietary energy restriction resulted in a significant decrease in bone formation but no change in bone resorption, whereas low EA achieved through exercise energy expenditure did not significantly influence bone metabolism. Both low EA conditions elicited significant and similar changes in hormone concentrations.
Collapse
Affiliation(s)
- Maria Papageorgiou
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK; Academic Diabetes, Endocrinology and Metabolism, Hull Medical School, University of Hull, Brocklehurst Building, Hull Royal Infirmary, Anlaby Road, Hull HU3 2RW, UK.
| | - Daniel Martin
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK; School of Sport and Exercise Science, University of Lincoln, LN6 7TS, UK.
| | - Hannah Colgan
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK.
| | - Simon Cooper
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK.
| | - Julie P Greeves
- Army Personnel Research Capability, HQ Army, Monxton Road, Andover, Hampshire, SP11 8HT, UK.
| | - Jonathan C Y Tang
- Norwich Medical School, University of East Anglia, UK, Norfolk and Norwich University Hospital, Norfolk, NR4 7UQ, UK.
| | - William D Fraser
- Norwich Medical School, University of East Anglia, UK, Norfolk and Norwich University Hospital, Norfolk, NR4 7UQ, UK.
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK.
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK.
| |
Collapse
|
75
|
Ziemkiewicz N, Talovic M, Madsen J, Hill L, Scheidt R, Patel A, Haas G, Marcinczyk M, Zustiak SP, Garg K. Laminin-111 functionalized polyethylene glycol hydrogels support myogenic activity in vitro. ACTA ACUST UNITED AC 2018; 13:065007. [PMID: 30089708 DOI: 10.1088/1748-605x/aad915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle has a remarkable regenerative capability following mild physical or chemical insult. However, following a critical loss of muscle tissue, the regeneration process is impaired due to the inadequate myogenic activity of muscle resident stem cells (i.e., satellite cells). Laminin (LM) is a heterotrimeric structural protein in the satellite cell niche that is crucial for maintaining its function. In this study, we created hydrogels composed of poly (ethylene glycol) (PEG) and LM-111 to provide an elastic substrate for satellite cell proliferation at the site of injury. The PEG-LM111 conjugates were mixed with 5% and 10% (w/v) pure PEG-diacrylate (PEGDA) and photopolymerized to form 5% and 10% PEGLM gels. Pure 5% and 10% PEGDA gels were used as controls. The modulus of both hydrogels containing 10% (w/v) PEGDA was significantly higher than the hydrogels containing 5% (w/v) PEGDA. The 5% PEGLM hydrogels showed significantly higher swelling in aqueous medium suggesting a more porous structure. C2C12 myoblasts cultured on the softer 5% PEGLM hydrogels showed a flat and spread-out morphology when compared to the rounded, multicell clusters formed on the 5% PEGDA, 10% PEGDA, and 10% PEGLM hydrogels. The 5% PEGLM hydrogels also promoted a significant increase in both vascular endothelial growth factor and interleukin-6 (IL-6) production from the myoblasts. Additionally, the expression of MyoD was significantly higher while that of myogenin and α-actinin trended higher on the 5% PEGLM hydrogels compared to 5% PEGDA on day 5. Our data suggests that the introduction of LM-111 into compliant PEG hydrogels promoted myoblast adhesion, survival, pro-regenerative growth factor production, and myogenic activity.
Collapse
Affiliation(s)
- Natalia Ziemkiewicz
- Parks College of Engineering, Aviation and Technology, Saint Louis University, St Louis, MO 63103, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int 2018; 29:1713-1720. [PMID: 29777277 PMCID: PMC7861141 DOI: 10.1007/s00198-018-4570-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Bone fractures in older adults are often preceded by a loss of muscle mass and strength. Likewise, bone loss with prolonged bed rest, spinal cord injury, or with exposure to microgravity is also preceded by a rapid loss of muscle mass. Recent studies using animal models in the setting of hindlimb unloading or botulinum toxin (Botox) injection also reveal that muscle loss can induce bone loss. Moreover, muscle-derived factors such as irisin and leptin can inhibit bone loss with unloading, and knockout of catabolic factors in muscle such as the ubiquitin ligase Murf1 or the myokine myostatin can reduce osteoclastogenesis. These findings suggest that therapies targeting muscle in the setting of disuse atrophy may potentially attenuate bone loss, primarily by reducing bone resorption. These potential therapies not only include pharmacological approaches but also interventions such as whole-body vibration coupled with resistance exercise and functional electric stimulation of muscle.
Collapse
Affiliation(s)
- T Bettis
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - B-J Kim
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
- ASAN Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - M W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA.
| |
Collapse
|
77
|
Abstract
Multiply injured patients with severe extremity trauma are at risk of acute systemic complications and are at high risk of developing longer term orthopaedic complications including soft-tissue infection, osteomyelitis, posttraumatic osteoarthritis, and nonunion. It is becoming increasingly recognized that injury magnitude and response to injury have major jurisdiction pertaining to patient outcomes and complications. The complexities of injury and injury response that affect outcomes present opportunities to apply precision approaches to understand and quantify injury magnitude and injury response on a patient-specific basis. Here, we present novel approaches to measure injury magnitude by adopting methods that quantify both mechanical and ischemic tissue injury specific to each patient. We also present evolving computational approaches that have provided new insight into the complexities of inflammation and immunologic response to injury specific to each patient. These precision approaches are on the forefront of understanding how to stratify individualized injury and injury response in an effort to optimize titrated orthopaedic surgical interventions, which invariably involve most of the multiply injured patients. Finally, we present novel methods directed at mangled limbs with severe soft-tissue injury that comprise severely injured patients. Specifically, methods being developed to treat mangled limbs with volumetric muscle loss have the potential to improve limb outcomes and also mitigate uncompensated inflammation that occurs in these patients.
Collapse
|
78
|
Schindeler A, Mills RJ, Bobyn JD, Little DG. Preclinical models for orthopedic research and bone tissue engineering. J Orthop Res 2018; 36:832-840. [PMID: 29205478 DOI: 10.1002/jor.23824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
In this review, we broadly define and discuss the preclinical rodent models that are used for orthopedics and bone tissue engineering. These range from implantation models typically used for biocompatibility testing and high-throughput drug screening, through to fracture and critical defect models used to model bone healing and severe orthopedic injuries. As well as highlighting the key methods papers describing these techniques, we provide additional commentary based on our substantive practical experience with animal surgery and in vivo experimental design. This review also briefly touches upon the descriptive and functional outcome measures and power calculations that are necessary for an informative study. Obtaining informative and relevant research outcomes can be very dependent on the model used, and we hope this evaluation of common models will serve as a primer for new researchers looking to undertake preclinical bone studies. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:832-840, 2018.
Collapse
Affiliation(s)
- Aaron Schindeler
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Rebecca J Mills
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia
| | - Justin D Bobyn
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
79
|
Buehring B, Siglinsky E, Krueger D, Evans W, Hellerstein M, Yamada Y, Binkley N. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing. Osteoporos Int 2018; 29:675-683. [PMID: 29198074 DOI: 10.1007/s00198-017-4315-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022]
Abstract
UNLABELLED DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. INTRODUCTION Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. METHODS Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. RESULTS Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p < 0.0001) from one another with DXA total body less head being highest at 37.8 (7.3) kg, D3-C muscle mass at 21.1 (4.6) kg, and BIS total body intracellular water at 17.4 (3.5) kg. All mass assessment methods correlated with grip strength and jump power (R = 0.35-0.63, p < 0.0002), but not with gait speed or repeat chair rise. Lean mass measures were unrelated to the serum biomarkers measured. CONCLUSIONS These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.
Collapse
Affiliation(s)
- B Buehring
- University of Wisconsin Osteoporosis Clinical Research Program, 2870 University Avenue, Suite 100, Madison, WI, 53705, USA
| | - E Siglinsky
- University of Wisconsin Osteoporosis Clinical Research Program, 2870 University Avenue, Suite 100, Madison, WI, 53705, USA
| | - D Krueger
- University of Wisconsin Osteoporosis Clinical Research Program, 2870 University Avenue, Suite 100, Madison, WI, 53705, USA
| | - W Evans
- University of California, Berkeley, CA, USA
| | | | - Y Yamada
- National Institute of Health & Nutrition, Tokyo, Japan
| | - N Binkley
- University of Wisconsin Osteoporosis Clinical Research Program, 2870 University Avenue, Suite 100, Madison, WI, 53705, USA.
| |
Collapse
|
80
|
Dolan E, Swinton PA, Sale C, Healy A, O'Reilly J. Influence of adipose tissue mass on bone mass in an overweight or obese population: systematic review and meta-analysis. Nutr Rev 2018; 75:858-870. [PMID: 29028271 DOI: 10.1093/nutrit/nux046] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Context The scientific literature shows conflicting evidence about the relationship between adiposity and bone mass in overweight and obese populations. The aim of this review was to quantify the correlation between adipose mass (absolute and relative) and bone mineral density (BMD) in overweight and obese populations. Three databases were searched electronically. In addition, reference lists of relevant articles were screened. A total of 16 studies, comprising 2587 participants and 75 correlation coefficients were selected for inclusion in the review. Data were extracted from each study using a standardized form. Multilevel modeling indicated opposing relationships between BMD and adiposity: absolute adiposity correlated positively, and relative adiposity negatively, with BMD. Sex and age were the primary moderators of these relationships. Strong evidence supported a negative relationship between relative adipose mass and BMD in men (R = -0.37; 95%CI, -0.57 to -0.12) and in those aged less than 25 years (R = -0.28; 95%CI, -0.45 to -0.08). To prevent bone loss in overweight and obese populations, nutrition- and exercise-based interventions that focus on a controlled reduction of adipose mass with concomitant preservation of lean mass are recommended. : PROSPERO no. CRD42015024313.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Aoife Healy
- CSHER, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - John O'Reilly
- Department of Sport Science and Physical Education, Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
81
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
82
|
Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol 2017; 31:203-217. [PMID: 29224697 DOI: 10.1016/j.berh.2017.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
This review aims to provide a summary of current concepts of ageing in relation to the musculoskeletal system, highlighting recent advances in the understanding of the mechanisms involved in the development of age-related changes in bone, skeletal muscle, chondroid and fibrous tissues. The key components of the musculoskeletal system and their functions are introduced together with a general overview of the molecular hallmarks of ageing. A brief description of the normal architecture of each of these tissue types is followed by a summary of established and developing concepts of mechanisms contributing to the age-related alterations in each. Extensive detailed description of these changes is beyond the scope of this review; instead, we aim to highlight some of the most significant processes and, where possible, the molecular changes underlying these and refer the reader to in-depth, subspecialist reviews of the individual components for further details.
Collapse
|
83
|
Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, Dallas SL, Johnson ML, Jähn K, Bonewald LF, Brotto M. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway. JBMR Plus 2017; 1:86-100. [PMID: 29104955 DOI: 10.1002/jbm4.10015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We examined the effects of osteocyte secreted factors on myogenesis and muscle function. MLO-Y4 osteocyte-like cell conditioned media (CM) (10%) increased ex vivo soleus muscle contractile force by ~25%. MLO-Y4 and primary osteocyte CM (1-10%) stimulated myogenic differentiation of C2C12 myoblasts, but 10% osteoblast CMs did not enhance C2C12 cell differentiation. Since WNT3a and WNT1 are secreted by osteocytes, and the expression level of Wnt3a is increased in MLO-Y4 cells by fluid flow shear stress, both were compared, showing WNT3a more potent than WNT1 in inducing myogenesis. Treatment of C2C12 myoblasts with WNT3a at concentrations as low as 0.5ng/mL mirrored the effects of both primary osteocyte and MLO-Y4 CM by inducing nuclear translocation of β-catenin with myogenic differentiation, suggesting that Wnts might be potential factors secreted by osteocytes that signal to muscle cells. Knocking down Wnt3a in MLO-Y4 osteocytes inhibited the effect of CM on C2C12 myogenic differentiation. Sclerostin (100ng/mL) inhibited both the effects of MLO-Y4 CM and WNT3a on C2C12 cell differentiation. RT-PCR array results supported the activation of the Wnt/β-catenin pathway by MLO-Y4 CM and WNT3a. These results were confirmed by qPCR showing up-regulation of myogenic markers and two Wnt/β-catenin downstream genes, Numb and Flh1. We postulated that MLO-Y4 CM/WNT3a could modulate intracellular calcium homeostasis as the trigger mechanism for the enhanced myogenesis and contractile force. MLO-Y4 CM and WNT3a increased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and the expression of genes directly associated with intracellular Ca2+ signaling and homeostasis. Together, these data show that in vitro and ex vivo, osteocytes can stimulate myogenesis and enhance muscle contractile function and suggest that Wnts could be mediators of bone to muscle signaling, likely via modulation of intracellular Ca2+ signaling and the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Jian Huang
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sandra Romero-Suarez
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nuria Lara
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Chenglin Mo
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Simon Kaja
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Leticia Brotto
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Katharina Jähn
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Marco Brotto
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
84
|
Hart N, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton R. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:114-139. [PMID: 28860414 PMCID: PMC5601257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.
Collapse
Affiliation(s)
- N.H. Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
| | - S. Nimphius
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth, W.A., Australia
| | - T. Rantalainen
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - A. Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - A. Siafarikas
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Department of Endocrinology, Princess Margaret Hospital, Perth, W.A., Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, W.A., Australia
- Institute of Health Research, University of Notre Dame Australia, Perth, W.A., Australia
| | - R.U. Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
| |
Collapse
|
85
|
Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep 2017; 7:9878. [PMID: 28852138 PMCID: PMC5575348 DOI: 10.1038/s41598-017-10404-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Metabolic diseases like diabetes mellitus cause bone healing deficiencies. We found significant impairment of bone regeneration, osteogenic differentiation and proliferation in diabetic bone. Moreover recent studies suggest a highly underestimated importance of GDF8 (Myostatin) in bone metabolism. Our goal was to analyze the role of GDF8 as a regulator of osteogenic differentiation, proliferation and bone regeneration. We used a murine tibial defect model in diabetic (Leprdb-/-) mice. Myostatin-Inhibitor Follistatin was administered in tibial bony defects of diabetic mice. By means of histology, immunohistochemistry and QRT-PC osteogenesis, differentiation and proliferation were analyzed. Application of Myostatin-inhibitor showed a significant improvement in diabetic bone regeneration compared to the control group (6.5 fold, p < 0.001). Immunohistochemistry revealed a significantly higher proliferation (7.7 fold, p = 0.009), osteogenic differentiation (Runx-2: 3.7 fold, p = 0.011, ALP: 9.3 fold, p < 0.001) and calcification (4.9 fold, p = 0.024) in Follistatin treated diabetic animals. Therapeutical application of Follistatin, known for the importance in muscle diseases, plays an important role in bone metabolism. Diabetic bone revealed an overexpression of the catabolic protein Myostatin. Antagonization of Myostatin in diabetic animals leads to a restoration of the impaired bone regeneration and represents a promising therapeutic option.
Collapse
|
86
|
Marcinczyk M, Elmashhady H, Talovic M, Dunn A, Bugis F, Garg K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017; 141:233-242. [PMID: 28697464 DOI: 10.1016/j.biomaterials.2017.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Faiz Bugis
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA.
| |
Collapse
|
87
|
Hurtgen BJ, Ward CL, Leopold Wager CM, Garg K, Goldman SM, Henderson BEP, McKinley TO, Greising SM, Wenke JC, Corona BT. Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol Rep 2017; 5:e13362. [PMID: 28747511 PMCID: PMC5532491 DOI: 10.14814/phy2.13362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
The deleterious impact of concomitant muscle injury on fracture healing and limb function is commonly considered part of the natural sequela of orthopedic trauma. Recent reports suggest that heightened inflammation in the surrounding traumatized musculature is a primary determinant of fracture healing. Relatedly, there are emerging potential therapeutic approaches for severe muscle trauma (e.g., volumetric muscle loss [VML] injury), such as autologous minced muscle grafts (1 mm3 pieces of muscle; GRAFT), that can partially prevent chronic functional deficits and appear to have an immunomodulatory effect within VML injured muscle. The primary goal of this study was to determine if repair of VML injury with GRAFT rescues impaired fracture healing and improves the strength of the traumatized muscle in a male Lewis rat model of tibia open fracture. The most salient findings of the study were: (1) tibialis anterior (TA) muscle repair with GRAFT improved endogenous healing of fractured tibia and improved the functional outcome of muscle regeneration; (2) GRAFT repair attenuated the monocyte/macrophage (CD45+CDllb+) and T lymphocyte (CD3+) response to VML injury; (3) TA muscle protein concentrations of MCP1, IL-10, and IGF-1 were augmented in a proregenerative manner by GRAFT repair; (4) VML injury concomitant with osteotomy induced a heightened systemic presence of alarmins (e.g., soluble RAGE) and leukocytes (e.g., monocytes), and depressed IGF-1 concentration, which GRAFT repair ameliorated. Collectively, these data indicate that repair of VML injury with a regenerative therapy can modulate the inflammatory and regenerative phenotype of the treated muscle and in association improve musculoskeletal healing.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Chrissy M Leopold Wager
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
88
|
Hurtgen BJ, Henderson BEP, Ward CL, Goldman SM, Garg K, McKinley TO, Greising SM, Wenke JC, Corona BT. Impairment of early fracture healing by skeletal muscle trauma is restored by FK506. BMC Musculoskelet Disord 2017; 18:253. [PMID: 28606129 PMCID: PMC5469075 DOI: 10.1186/s12891-017-1617-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Heightened local inflammation due to muscle trauma or disease is associated with impaired bone regeneration. Methods We hypothesized that FK506, an FDA approved immunomodulatory compound with neurotrophic and osteogenic effects, will rescue the early phase of fracture healing which is impaired by concomitant muscle trauma in male (~4 months old) Lewis rats. FK506 (1 mg/kg; i.p.) or saline was administered systemically for 14 days after an endogenously healing tibia osteotomy was created and fixed with an intermedullary pin, and the overlying tibialis anterior (TA) muscle was either left uninjured or incurred volumetric muscle loss injury (6 mm full thickness biopsy from middle third of the muscle). Results The salient observations of this study were that 1) concomitant TA muscle trauma impaired recovery of tibia mechanical properties 28 days post-injury, 2) FK506 administration rescued the recovery of tibia mechanical properties in the presence of concomitant TA muscle trauma but did not augment mechanical recovery of an isolated osteotomy (no muscle trauma), 3) T lymphocytes and macrophage presence within the traumatized musculature were heightened by trauma and attenuated by FK506 3 days post-injury, and 4) T lymphocyte but not macrophage presence within the fracture callus were attenuated by FK506 at 14 days post-injury. FK506 did not improve TA muscle isometric torque production Conclusion Collectively, these findings support the administration of FK506 to ameliorate healing of fractures with severe muscle trauma comorbidity. The results suggest one potential mechanism of action is a reduction in local T lymphocytes within the injured musculoskeletal tissue, though other mechanisms to include direct osteogenic effects of FK506 require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1617-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
89
|
Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, Wu Y, Divieti Pajevic P, Bonewald LF, Bauman WA, Qin W. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem 2017; 292:11021-11033. [PMID: 28465350 DOI: 10.1074/jbc.m116.770941] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication.
Collapse
Affiliation(s)
- Yiwen Qin
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468
| | - Yuanzhen Peng
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468
| | - Wei Zhao
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468
| | - Jianping Pan
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468
| | | | - Christopher Cardozo
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468.,the Departments of Medicine.,Rehabilitation Medicine, and
| | - Yingjie Wu
- the Departments of Medicine.,Institute of Gene Engineering Animal Models for Human Diseases, Dalian Medical University, Dalian 116044, China
| | - Paola Divieti Pajevic
- the Department of Molecular and Cell Biology, Boston University, Boston, Massachusetts 02215, and
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - William A Bauman
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468.,the Departments of Medicine.,Rehabilitation Medicine, and
| | - Weiping Qin
- From the National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468, .,the Departments of Medicine
| |
Collapse
|
90
|
Hamrick MW. Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging. J Bone Metab 2017; 24:1-8. [PMID: 28326295 PMCID: PMC5357607 DOI: 10.11005/jbm.2017.24.1.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
The cytokine-like hormone leptin is a classic adipokine that is secreted by adipocytes, increases with weight gain, and decreases with weight loss. Additional studies have, however, shown that leptin is also produced by skeletal muscle, and leptin receptors are abundant in both skeletal muscle and bone-derived mesenchymal (stromal) stem cells. These findings suggest that leptin may play an important role in muscle-bone crosstalk. Leptin treatment in vitro increases the expression of myogenic genes in primary myoblasts, and leptin treatment in vivo increases the expression of microRNAs involved in myogenesis. Bone marrow adipogenesis is associated with low bone mass in humans and rodents, and leptin can reduce marrow adipogenesis centrally through its receptors in the hypothalamus as well as directly via its receptors in bone marrow stem cells. Yet, central leptin resistance can increase with age, and low circulating levels of leptin have been observed among the frail elderly. Thus, aging appears to significantly alter leptin-mediated crosstalk among various organs and tissues. Aging is associated with bone loss and muscle atrophy, contributing to frailty, postural instability, and the incidence of falls. Therapeutic interventions such as protein and amino acid supplementation that can increase muscle mass and muscle-derived leptin may have multiple benefits for the elderly that can potentially reduce the incidence of falls and fractures.
Collapse
Affiliation(s)
- Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
91
|
Bonetto A, Kays JK, Parker VA, Matthews RR, Barreto R, Puppa MJ, Kang KS, Carson JA, Guise TA, Mohammad KS, Robling AG, Couch ME, Koniaris LG, Zimmers TA. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia. Front Physiol 2017; 7:679. [PMID: 28123369 PMCID: PMC5225588 DOI: 10.3389/fphys.2016.00679] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia.
Collapse
Affiliation(s)
- Andrea Bonetto
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Department of Otolaryngology, Head and Neck Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University-Purdue University at Indianapolis, Center for Cachexia Research, Innovation and Therapy, Indiana University School of MedicineIndianapolis, IN, USA
| | - Joshua K Kays
- Department of Surgery, Indiana University School of Medicine Indianapolis, IN, USA
| | - Valorie A Parker
- Department of Surgery, Indiana University School of Medicine Indianapolis, IN, USA
| | - Ryan R Matthews
- Department of Surgery, Indiana University School of Medicine Indianapolis, IN, USA
| | - Rafael Barreto
- Department of Surgery, Indiana University School of Medicine Indianapolis, IN, USA
| | - Melissa J Puppa
- Department of Exercise Science, University of South Carolina Columbia, SC, USA
| | - Kyung S Kang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - James A Carson
- Department of Exercise Science, University of South Carolina Columbia, SC, USA
| | - Theresa A Guise
- Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA; Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| | - Khalid S Mohammad
- Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA; Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Marion E Couch
- Department of Otolaryngology, Head and Neck Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University-Purdue University at Indianapolis, Center for Cachexia Research, Innovation and Therapy, Indiana University School of MedicineIndianapolis, IN, USA
| | - Leonidas G Koniaris
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University-Purdue University at Indianapolis, Center for Cachexia Research, Innovation and Therapy, Indiana University School of MedicineIndianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Department of Otolaryngology, Head and Neck Surgery, Indiana University School of MedicineIndianapolis, IN, USA; Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA; Indiana University-Purdue University at Indianapolis, Center for Cachexia Research, Innovation and Therapy, Indiana University School of MedicineIndianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
92
|
Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci 2016; 18:ijms18010008. [PMID: 28025491 PMCID: PMC5297643 DOI: 10.3390/ijms18010008] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Obesity and type II diabetes are characterized by insulin resistance in peripheral tissues. A high caloric intake combined with a sedentary lifestyle is the leading cause of these conditions. Whole-body insulin resistance and its improvement are the result of the combined actions of each insulin-sensitive organ. Among the fundamental molecular mechanisms by which each organ is able to communicate and engage in cross-talk are cytokines or peptides which stem from secretory organs. Recently, it was reported that several cytokines or peptides are secreted from muscle (myokines), adipose tissue (adipokines) and liver (hepatokines) in response to certain nutrition and/or physical activity conditions. Cytokines exert autocrine, paracrine or endocrine effects for the maintenance of energy homeostasis. The present review is focused on the relationship and cross-talk amongst muscle, adipose tissue and the liver as secretory organs in metabolic diseases.
Collapse
Affiliation(s)
- Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
93
|
Tarantino U, Baldi J, Scimeca M, Piccirilli E, Piccioli A, Bonanno E, Gasbarra E. The role of sarcopenia with and without fracture. Injury 2016; 47 Suppl 4:S3-S10. [PMID: 27496721 DOI: 10.1016/j.injury.2016.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bone and muscle tissues are in a close relationship. They are linked from a biological and functional point of view and both are related to an increased fracture risk in the elderly. The aging process is involved in the loss of functionality of both bones and muscles. In particular, aging-induced decline in muscle size and quality accompanies catabolic alterations in bone tissue; furthermore, age-related changes in bone alter its response to muscle-derived stimulation. The increased fracture risk in individuals with sarcopenia and osteoporosis is due to the decline of muscle mass and strength, the decrease in bone mineral density (BMD) and limited mobility. In this study, we investigated the role of sarcopenia and the main age-related bone diseases, osteoporosis (OP) and osteoarthritis (OA). METHODS Muscular performance status was evaluated using the Physical Activity Scale for the Elderly (PASE) test in 27 female patients with OP who underwent total hip arthroplasty for hip fracture, and in 27 age-matched female patients with OA who underwent total hip arthroplasty. Dual-energy X-ray absorptiometry (DEXA) was performed and the T-score values were used to discriminate between OP and OA patients. Body Mass Index (BMI) was calculated. As part of a multiparametric model of evaluation, biopsies of vastus lateralis muscle were analysed by immunohistochemical reaction to find a correlation with the above mentioned functional index. RESULTS The PASE test showed that the OP patients had a low or moderate level of physical activity before fracture occurred, whereas the OA patients had more intensive pre-fracture physical performances. Histological analysis showed that osteoporosis is characterised by a preferential type II fibre atrophy; in particular, data correlation showed that lower PASE test scores were related to lower diameter of type II fibres. No correlation was found between bone mineral density (BMD) and PASE test results. DISCUSSION AND CONCLUSION Osteoporosis is closely related to sarcopenia before and after fracture. Bone remodelling is influenced by muscle morphological and functional impairment and sarcopenia is considered one of the major factors for functional limitation and motor dependency in elderly osteoporotic individuals. Therefore, physical activity should be strongly recommended for OP patients at diagnosis.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy.
| | - Jacopo Baldi
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy; School of Specialisation in Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; "Multidisciplinary Study of the Effects of Microgravity on Bone Cells" Project, Italian Space Agency (ASI), Spatial Biomedicine Center, Via del Politecnico snc, 00133 Rome, Italy
| | - Eleonora Piccirilli
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy; School of Specialisation in Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy
| | - Andrea Piccioli
- Oncologic Centre, "Palazzo Baleani", Azienda Policlinico Umberto I, Corso Vittorio Emanuele II 244, Rome, Italy
| | - Elena Bonanno
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133 Rome, Italy
| |
Collapse
|
94
|
Ost M, Coleman V, Kasch J, Klaus S. Regulation of myokine expression: Role of exercise and cellular stress. Free Radic Biol Med 2016; 98:78-89. [PMID: 26898145 DOI: 10.1016/j.freeradbiomed.2016.02.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
Exercise training is well known to improve physical fitness and to combat chronic diseases and aging related disorders. Part of this is thought to be mediated by myokines, muscle derived secretory proteins (mainly cytokines) that elicit auto/paracrine but also endocrine effects on organs such as liver, adipose tissue, and bone. Today, several hundred potential myokines have been identified most of them not exclusive to muscle cells. Strenuous exercise is associated with increased production of free radicals and reactive oxidant species (ROS) as well as endoplasmic reticulum (ER)-stress which at an excessive level can lead to muscle damage and cell death. On the other hand, transient elevations in oxidative and ER-stress are thought to be necessary for adaptive improvements by regular exercise through a hormesis action termed mitohormesis since mitochondria are essential for the generation of energy and tightly connected to ER- and oxidative stress. Exercise induced myokines have been identified by various in vivo and in vitro approaches and accumulating evidence suggests that ROS and ER-stress linked pathways are involved in myokine induction. For example, interleukin (IL)-6, the prototypic exercise myokine is also induced by oxidative and ER-stress. Exercise induced expression of some myokines such as irisin and meteorin-like is linked to the transcription factor PGC-1α and apparently not related to ER-stress whereas typical ER-stress induced cytokines such as FGF-21 and GDF-15 are not exercise myokines under normal physiological conditions. Recent technological advances have led to the identification of numerous potential new myokines but for most of them regulation by oxidative and ER-stress still needs to be unraveled.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Juliane Kasch
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
95
|
Petrie MA, Kimball AL, McHenry CL, Suneja M, Yen CL, Sharma A, Shields RK. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans. PLoS One 2016; 11:e0160594. [PMID: 27486743 PMCID: PMC4972309 DOI: 10.1371/journal.pone.0160594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/21/2016] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.
Collapse
Affiliation(s)
- Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Amy L. Kimball
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Colleen L. McHenry
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
| | - Chu-Ling Yen
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Arpit Sharma
- Department of Biochemistry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
96
|
Bilski J, Mazur-Bialy A, Brzozowski B, Magierowski M, Zahradnik-Bilska J, Wójcik D, Magierowska K, Kwiecien S, Mach T, Brzozowski T. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacol Rep 2016; 68:827-836. [PMID: 27255494 DOI: 10.1016/j.pharep.2016.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
The inflammatory bowel disease (IBD) consisting of Crohn's disease (CD) and ulcerative colitis (UC) are defined as idiopathic, chronic and relapsing intestinal disorders occurring in genetically predisposed individuals exposed to environmental risk factors such as diet and microbiome changes. Since conventional drug therapy is expensive and not fully efficient, there is a need for alternative remedies that can improve the outcome in patients suffering from IBD. Whether exercise, which has been proposed as adjunct therapy in IBD, can be beneficial in patients with IBD remains an intriguing question. In this review, we provide an overview of the effects of exercise on human IBD and experimental colitis in animal models that mimic human disease, although the information on exercise in human IBD are sparse and poorly understood. Moderate exercise can exert a beneficial ameliorating effect on IBD and improve the healing of experimental animal colitis due to the activity of protective myokines such as irisin released from working skeletal muscles. CD patients with higher levels of exercise were significantly less likely to develop active disease at six months. Moreover, voluntary exercise has been shown to exert a positive effect on IBD patients' mood, weight maintenance and osteoporosis. On the other hand, depending on its intensity and duration, exercise can evoke transient mild systemic inflammation and enhances pro-inflammatory cytokine release, thereby exacerbating the gastrointestinal symptoms. We discuss recent advances in the mechanism of voluntary and strenuous exercise affecting the outcome of IBD in patients and experimental animal models.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Janina Zahradnik-Bilska
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Wójcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Mach
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
97
|
Verroken C, Zmierczak HG, Goemaere S, Kaufman JM, Lapauw B. Association of Jumping Mechanography-Derived Indices of Muscle Function with Tibial Cortical Bone Geometry. Calcif Tissue Int 2016; 98:446-55. [PMID: 26671019 DOI: 10.1007/s00223-015-0094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Jumping mechanography has been developed to estimate maximum voluntary muscle forces. This study assessed associations of jumping mechanography-derived force and power measurements with tibial cortical bone geometry, compared to other estimates of muscle mass, size, and function. Healthy men (n = 181; 25-45 years) were recruited in a cross-sectional, population-based sibling-pair study. Muscle parameters include isokinetic peak torque of the quadriceps, DXA-derived leg lean mass, mechanography-derived peak jump force and power, and pQCT-derived mid-tibial (66 %) muscle cross-sectional area (CSA). Mid-tibial cortical bone parameters were assessed by pQCT. In age, height, and weight-adjusted analyses, jump force and power correlated positively with cortical bone area, cortical thickness, and polar strength-strain index (SSIp) (β = 0.23-0.34, p ≤ 0.001 for force; β = 0.25-0.30, p ≤ 0.007 for power) and inversely with endosteal circumference adjusted for periosteal circumference (ECPC) (β = -0.16, p < 0.001 for force; β = -0.13, p = 0.007 for power). Force but not power correlated with cortical over total bone area ratio (β = 0.25, p = 0.002). Whereas leg lean mass correlated with all cortical parameters except cortical over total bone area ratio (β = 0.25-0.62, p ≤ 0.004), muscle CSA only correlated with cortical bone area, periosteal circumference, and SSIp (β = 0.21-0.26, p ≤ 0.001), and quadriceps torque showed no significant correlations with the bone parameters. Multivariate models indicated that leg lean mass was independently associated with overall bone size and strength reflected by periosteal and endosteal circumference and SSIp (β = 0.32-0.55, p ≤ 0.004), whereas jump force was independently associated with cortical bone size reflected by ECPC, cortical thickness, and cortical over total bone area ratio (β = 0.13-0.28; p ≤ 0.002). These data indicate that jumping mechanography provides relevant information about the relationship of muscle with bone geometry.
Collapse
Affiliation(s)
- Charlotte Verroken
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium.
| | - Hans-Georg Zmierczak
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| | - Stefan Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| | - Jean-Marc Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| | - Bruno Lapauw
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| |
Collapse
|
98
|
Abou-Khalil R, Yang F, Lieu S, Julien A, Perry J, Pereira C, Relaix F, Miclau T, Marcucio R, Colnot C. Role of muscle stem cells during skeletal regeneration. Stem Cells 2016; 33:1501-11. [PMID: 25594525 DOI: 10.1002/stem.1945] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/07/2014] [Indexed: 01/20/2023]
Abstract
Although the importance of muscle in skeletal regeneration is well recognized clinically, the mechanisms by which muscle supports bone repair have remained elusive. Muscle flaps are often used to cover the damaged bone after traumatic injury yet their contribution to bone healing is not known. Here, we show that direct bone-muscle interactions are required for periosteum activation and callus formation, and that muscle grafts provide a source of stem cells for skeletal regeneration. We investigated the role of satellite cells, the muscle stem cells. Satellite cells loss in Pax7(-/-) mice and satellite cell ablation in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice impaired bone regeneration. Although satellite cells did not contribute as a large source of cells endogenously, they exhibited a potential to contribute to bone repair after transplantation. The fracture healing phenotype in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice was associated with decreased bone morphogenetic proteins (BMPs), insulin-like growth factor 1, and fibroblast growth factor 2 expression that are normally upregulated in response to fracture in satellite cells. Exogenous rhBMP2 improved bone healing in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice further supporting the role of satellite cells as a source of growth factors. These results provide the first functional evidence for a direct contribution of muscle to bone regeneration with important clinical implications as it may impact the use of muscle flaps, muscle stem cells, and growth factors in orthopedic applications.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Xiao B, Cui LQ, Chen TM, Lian B. Stochastic effects in adaptive reconstruction of body damage: implied the creativity of natural selection. J Cell Mol Med 2015; 19:2521-9. [PMID: 26153081 PMCID: PMC4627558 DOI: 10.1111/jcmm.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/02/2015] [Indexed: 12/28/2022] Open
Abstract
After an injury occurs, mechanical/biochemical loads on muscles influence the composition and structure of recovering muscles; this effect likely occurs in other tissues, cells and biological molecules as well owing to the similarity, interassociation and interaction among biochemical reactions and molecules. The 'damage and reconstruction' model provides an explanation for how an ideal cytoarchitecture is created by reducing components not suitable for bearing loads; in this model, adaptive changes are induced by promoting the stochasticity of biochemical reactions. Biochemical and mechanical loads can direct the stochasticity of biochemical reactions, which can in turn induce cellular changes. Thus, mechanical and biochemical loads, under natural selection pressure, modify the direction of cell- and tissue-level changes and guide the formation of new structures and traits, thereby influencing microevolution. In summary, the 'damage and reconstruction' model accounts for the role of natural selection in the formation of new organisms, helps explain punctuated equilibrium, and illustrates how macroevolution arises from microevolution.
Collapse
Affiliation(s)
- Bo Xiao
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Li-Qiang Cui
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Tian-Ming Chen
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Bin Lian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Lab for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
100
|
Pasco JA, Holloway KL, Brennan-Olsen SL, Moloney DJ, Kotowicz MA. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study. BMC Musculoskelet Disord 2015; 16:124. [PMID: 26003407 PMCID: PMC4493811 DOI: 10.1186/s12891-015-0586-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/18/2015] [Indexed: 01/13/2023] Open
Abstract
Background Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26–97 years. Methods This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Results Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. Conclusions There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.
Collapse
Affiliation(s)
- Julie A Pasco
- Epi-Centre for Healthy Ageing, IMPACT SRC, School of Medicine, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia. .,Department of Medicine, NorthWest Academic Centre, The University of Melbourne, St Albans, VIC, Australia. .,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia.
| | - Kara L Holloway
- Epi-Centre for Healthy Ageing, IMPACT SRC, School of Medicine, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia.
| | - Sharon L Brennan-Olsen
- Epi-Centre for Healthy Ageing, IMPACT SRC, School of Medicine, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia. .,Department of Medicine, NorthWest Academic Centre, The University of Melbourne, St Albans, VIC, Australia.
| | - David J Moloney
- Epi-Centre for Healthy Ageing, IMPACT SRC, School of Medicine, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia.
| | - Mark A Kotowicz
- Epi-Centre for Healthy Ageing, IMPACT SRC, School of Medicine, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia. .,Department of Medicine, NorthWest Academic Centre, The University of Melbourne, St Albans, VIC, Australia. .,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia.
| |
Collapse
|