51
|
Zhang Z, Zhang Q, Li F, Xin Y, Duan Z. Contributions of HO-1-Dependent MAPK to Regulating Intestinal Barrier Disruption. Biomol Ther (Seoul) 2021; 29:175-183. [PMID: 33093265 PMCID: PMC7921856 DOI: 10.4062/biomolther.2020.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junctions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using monolayers of Caco-2 cells treated with tissue necrosis factor α (TNF-α) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) administration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF-α increased epithelial TJ disruption and cleaved caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF-α-induced increase in epithelial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.
Collapse
Affiliation(s)
- Zhenling Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Qiuping Zhang
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian 116044, China
| | - Yi Xin
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Zhijun Duan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| |
Collapse
|
52
|
Wen Y, Jiang MZ. [Role of vitamin D in pediatric irritable bowel syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:310-314. [PMID: 33691928 PMCID: PMC7969189 DOI: 10.7499/j.issn.1008-8830.2012080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease in children and has the clinical manifestations of recurrent abdominal pain with the changes in defecation frequency or stool form. Many studies have shown that children with IBS have a significantly lower vitamin D level than the healthy population, and vitamin D supplementation can significantly improve the clinical symptoms and quality of life of the children, suggesting that vitamin D supplementation may play a role in the treatment of IBS. This article reviews the association between vitamin D and IBS in children and elaborates on the possible mechanism of action of vitamin D.
Collapse
Affiliation(s)
- Yi Wen
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
| | - Mi-Zu Jiang
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
53
|
Lacerda JF, Lagos AC, Carolino E, Silva-Herdade AS, Silva M, Sousa Guerreiro C. Functional Food Components, Intestinal Permeability and Inflammatory Markers in Patients with Inflammatory Bowel Disease. Nutrients 2021; 13:642. [PMID: 33669400 PMCID: PMC7920414 DOI: 10.3390/nu13020642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 10/28/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by a chronic inflammatory process that affects the intestinal barrier structure. Recent evidence suggests that some food components can influence the integrity of the intestinal barrier and thus its permeability. We aimed at assessing the effect of food components on the intestinal permeability (IP) and on inflammatory markers in individuals with IBD by a single-blind randomized clinical study. Of the 53 individuals included, 47% (n = 25) had been diagnosed with IBD. The participants were divided into 4 groups. IBD patients were allocated to intervention group (n = 14) vs. no intervention group (n = 11), and the same happened with 28 control participants without disease (n = 14 in intervention group vs. n = 14 without intervention). Symptomatology, nutritional status, biochemical parameters (specifically serum zonulin (ZO) to measure IP) were evaluated on all individuals on an eight week period following a diet plan with/without potentially beneficial foods for the IP. At the beginning of the study, there were no significant differences in ZO values between individuals with and without IBD (p > 0.05). The effect of specific food components was inconclusive; however, a trend in the reduction of inflammatory parameters and on the prevalence of gastrointestinal symptomatology was observed. More controlled intervention studies with diet plans, including food components potentially beneficial for the integrity of the intestinal barrier, are of the utmost importance.
Collapse
Affiliation(s)
- Joana Franco Lacerda
- Nutrition Laboratory, Faculty of Medicine, University of Lisbon, 1649-045 Lisbon, Portugal;
- Hospital of Armed Forces Lisbon Pole, 1649-020 Lisbon, Portugal; (A.C.L.); (M.S.)
| | - Ana Catarina Lagos
- Hospital of Armed Forces Lisbon Pole, 1649-020 Lisbon, Portugal; (A.C.L.); (M.S.)
| | - Elisabete Carolino
- H&TRC—Health & Technology Research Center, Polytechnic Institute of Lisbon, School of Health Technology, 1990-096 Lisbon, Portugal;
| | - Ana Santos Silva-Herdade
- Faculty of Medicine University of Lisbon, Institute of Molecular Medicine, University of Lisbon, 1649-045 Lisbon, Portugal;
| | - Manuel Silva
- Hospital of Armed Forces Lisbon Pole, 1649-020 Lisbon, Portugal; (A.C.L.); (M.S.)
| | - Catarina Sousa Guerreiro
- Nutrition Laboratory, Faculty of Medicine, University of Lisbon, 1649-045 Lisbon, Portugal;
- Faculty of Medicine, Institute of Environmental Health, University of Lisbon, 1649-026 Lisbon, Portugal
| |
Collapse
|
54
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
55
|
Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci Rep 2020; 10:21641. [PMID: 33303854 PMCID: PMC7729960 DOI: 10.1038/s41598-020-77806-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency affects approximately 80% of individuals in some countries and has been linked with gut dysbiosis and inflammation. While the benefits of vitamin D supplementation on the gut microbiota have been studied in patients with chronic diseases, its effects on the microbiota of otherwise healthy individuals is unclear. Moreover, whether effects on the microbiota can explain some of the marked inter-individual variation in responsiveness to vitamin D supplementation is unknown. Here, we administered vitamin D to 80 otherwise healthy vitamin D-deficient women, measuring serum 25(OH) D levels in blood and characterizing their gut microbiota pre- and post- supplementation using 16S rRNA gene sequencing. Vitamin D supplementation significantly increased gut microbial diversity. Specifically, the Bacteroidetes to Firmicutes ratio increased, along with the abundance of the health-promoting probiotic taxa Akkermansia and Bifidobacterium. Significant variations in the two-dominant genera, Bacteroides and Prevotella, indicated a variation in enterotypes following supplementation. Comparing supplementation responders and non-responders we found more pronounced changes in abundance of major phyla in responders, and a significant decrease in Bacteroides acidifaciens in non-responders. Altogether, our study highlights the positive impact of vitamin D supplementation on the gut microbiota and the potential for the microbial gut signature to affect vitamin D response.
Collapse
Affiliation(s)
- Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Arun Rawat
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Elham Sharif
- College of Health Sciences, Qatar University, Doha, Qatar.
| | | |
Collapse
|
56
|
Du J, Liao W, Liu W, Deb DK, He L, Hsu PJ, Nguyen T, Zhang L, Bissonnette M, He C, Li YC. N 6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Dev Cell 2020; 55:737-753.e7. [PMID: 33220174 DOI: 10.1016/j.devcel.2020.10.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/12/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Bacterial infection triggers a cytokine storm that needs to be resolved to maintain the host's wellbeing. Here, we report that ablation of m6A methyltransferase subunit METTL14 in myeloid cells exacerbates macrophage responses to acute bacterial infection in mice, leading to high mortality due to sustained production of pro-inflammatory cytokines. METTL14 depletion blunts Socs1 m6A methylation and reduces YTHDF1 binding to the m6A sites, which diminishes SOCS1 induction leading to the overactivation of TLR4/NF-κB signaling. Forced expression of SOCS1 in macrophages depleted of METTL14 or YTHDF1 rescues the hyper-responsive phenotype of these macrophages in vitro and in vivo. We further show that LPS treatment induces Socs1 m6A methylation and sustains SOCS1 induction by promoting Fto mRNA degradation, and forced FTO expression in macrophages mimics the phenotype of METTL14-depleted macrophages. We conclude that m6A methylation-mediated SOCS1 induction is required to maintain the negative feedback control of macrophage activation in response to bacterial infection.
Collapse
Affiliation(s)
- Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA; Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA; Department of Cardiology, Hainan General Hospital, Hainan Clinical Research Institute, Haikou, Hainan, China
| | - Weicheng Liu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Dilip K Deb
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Lei He
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Phillip J Hsu
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tivoli Nguyen
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Linda Zhang
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
57
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
58
|
Kellermann L, Jensen KB, Bergenheim F, Gubatan J, Chou ND, Moss A, Nielsen OH. Mucosal vitamin D signaling in inflammatory bowel disease. Autoimmun Rev 2020; 19:102672. [PMID: 32942038 DOI: 10.1016/j.autrev.2020.102672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Epidemiological studies have identified vitamin D (25(OH)D) deficiency to be highly prevalent among patients with inflammatory bowel disease (IBD), and low serum levels correlate with a higher disease activity and a more complicated disease course. The link to IBD pathogenesis has been subject of investigations, primarily due to the distinct immunological functions of vitamin D signaling, including anti-inflammatory and anti-fibrotic actions. Vitamin D is a pleiotropic hormone that executes its actions on cells through the vitamin D receptor (VDR). A leaky gut, i.e. an insufficient intestinal epithelial barrier, is thought to be central for the pathogenesis of IBD, and emerging data support the concept that vitamin D/VDR signaling in intestinal epithelial cells (IECs) has an important role in controlling barrier integrity. Here we review the latest evidence on how vitamin D promotes the interplay between IECs, the gut microbiome, and immune cells and thereby regulate the intestinal immune response. On the cellular level, vitamin D signaling regulates tight junctional complexes, apoptosis, and autophagy, leading to increased epithelial barrier integrity, and promotes expression of antimicrobial peptides as part of its immunomodulating functions. Further, intestinal VDR expression is inversely correlated with the severity of inflammation in patients with IBD, which might compromise the positive effects of vitamin D signaling in patients with flaring disease. Efforts to reveal the role of vitamin D in the pathophysiology of IBD will pave the road for the invention of more rational treatment strategies of this debilitating disease in the future.
Collapse
Affiliation(s)
- Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark.
| | - Kim Bak Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Fredrik Bergenheim
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Dept. of Medicine, Stanford University School of Medicine, Redwood City, CA, USA
| | - Naomi D Chou
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alan Moss
- Boston Medical Center & Boston University, Boston, MA, USA
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
59
|
Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J 2020; 91:e13357. [PMID: 32219956 PMCID: PMC7187240 DOI: 10.1111/asj.13357] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) play an important role in intestinal barrier function. TJs in intestinal epithelial cells are composed of different junctional molecules, such as claudin and occludin, and regulate the paracellular permeability of water, ions, and macromolecules in adjacent cells. One of the most important roles of the TJ structure is to provide a physical barrier to luminal inflammatory molecules. Impaired integrity and structure of the TJ barrier result in a forcible activation of immune cells and chronic inflammation in different tissues. According to recent studies, the intestinal TJ barrier could be regulated, as a potential target, by dietary factors to prevent and reduce different inflammatory disorders, although the precise mechanisms underlying the dietary regulation remain unclear. This review summarizes currently available information on the regulation of the intestinal TJ barrier by food components.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
60
|
Shi Y, Cui X, Sun Y, Zhao Q, Liu T. Intestinal vitamin D receptor signaling ameliorates dextran sulfate sodium-induced colitis by suppressing necroptosis of intestinal epithelial cells. FASEB J 2020; 34:13494-13506. [PMID: 32779265 DOI: 10.1096/fj.202000143rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
Vitamin D status is closely related to inflammatory bowel disease (IBD), but the mechanism has not been fully elucidated. This study explored the effect of intestinal vitamin D signaling on necroptosis and the underlying mechanism in colitis. Serum 25(OH)D levels and the expression of necroptotic proteins were examined in patients with IBD. Colitis was induced in an intestinal-specific hVDR transgenic model, and the gross manifestation, histological integrity, and intestinal barrier function were tested. The findings were further confirmed in vitro. Immunoprecipitation and colocalization were performed to investigate the association between the vitamin D receptor and necroptotic proteins. We found that serum 25(OH)D decreased in patients with IBD, while the expression of necroptotic proteins increased. The intestinal hVDR transgenic model could largely ameliorate the structural destruction, restore barrier dysfunction, and suppress necroptosis caused by DSS. This was probably achieved by binding to RIPK1/3 necrosomes, as we observed decreased RIPK1/3 necrosome formation and increased VDR expression in the cytosol. This study demonstrated an inhibitory effect of the intestinal vitamin D signaling pathway on necroptosis in DSS-induced colitis. The vitamin D receptor shifts from the nucleus to the cytosol to impede the formation of RIPK1/3. Our findings may offer some theoretical basis for a novel treatment of IBD in clinical practice.
Collapse
Affiliation(s)
- Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yanli Sun
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Qun Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Tianjing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
61
|
Shi Y, Liu Z, Cui X, Zhao Q, Liu T. Intestinal vitamin D receptor knockout protects from oxazolone-induced colitis. Cell Death Dis 2020; 11:461. [PMID: 32541827 PMCID: PMC7296018 DOI: 10.1038/s41419-020-2653-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) actually had different pathological mechanisms, as the former was mainly induced by Th1 and Th17 response and the latter by Th2 response. Our previous study found that oxazolone-induced Th2-mediated colitis could not be attenuated by vitamin D supplementation. This study investigated the influence of intestinal vitamin D receptor (VDR) knockout on oxazolone-induced colitis and explored the possible immunological mechanism. Intestinal VDR knockout mice had milder oxazolone-induced colitis than wildtype controls, as demonstrated by less body weight decrease and faster recovery, more intact local structure, reduced cell apoptosis, and better preserved barrier function. Th2-mediated inflammation was significantly inhibited by VDR deficiency. Meanwhile, the percentage of invariant natural killer T (iNKT) cells did not increase as much in intestinal VDR knockout mice as in wild-type controls, nor did the iNKT cells develop normally as in the controls. Intestinal VDR knockout protected against oxazolone-induced colitis in mice by blocking Th2 cell response and reducing the function of intestinal iNKT cells. Vitamin D status had no influence on the severity of colitis. This study may explain the diverse outcomes after vitamin D supplementation in literature and add some clue to the targeted therapy of IBD.
Collapse
Affiliation(s)
- Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, USA
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qun Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China. .,Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, USA. .,Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
62
|
Fakhoury HMA, Kvietys PR, AlKattan W, Anouti FA, Elahi MA, Karras SN, Grant WB. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 2020; 200:105663. [PMID: 32194242 DOI: 10.1016/j.jsbmb.2020.105663] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D plays a pivotal role in intestinal homeostasis. Vitamin D can impact the function of virtually every cell in the gut by binding to its intracellular receptor (VDR) and subsequently transcribing relevant genes. In the lumen, the mucus layer and the underlying epithelium serve to keep resident microbiota at bay. Vitamin D ensures an appropriate level of antimicrobial peptides in the mucus and maintains epithelial integrity by reinforcing intercellular junctions. Should bacteria penetrate the epithelial layer and enter the interstitium, immune sentinel cells (e.g. macrophages, dendritic cells, and innate lymphoid cells) elicit inflammation and trigger the adaptive immune response by activating Th1/Th17 cells. Vitamin D/VDR signaling in these cells ensures clearance of the bacteria. Subsequently, vitamin D also quiets the adaptive immune system by suppressing the Th1/Th17 cells and favoring Treg cells. The importance of vitamin D/VDR signaling in intestinal homeostasis is evidenced by the development of a chronic inflammatory state (e.g. IBD) when this signaling system is disrupted.
Collapse
Affiliation(s)
- Hana M A Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Peter R Kvietys
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Wael AlKattan
- Department of Surgery, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fatme Al Anouti
- College of Natural and Health Sciences, Department of Public Health and Nutrition, Zayed University, Abu Dhabi, United Arab Emirates
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Spyridon N Karras
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - William B Grant
- Director, Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| |
Collapse
|
63
|
Garcia PM, Moore J, Kahan D, Hong MY. Effects of Vitamin D Supplementation on Inflammation, Colonic Cell Kinetics, and Microbiota in Colitis: A Review. Molecules 2020; 25:molecules25102300. [PMID: 32422882 PMCID: PMC7288056 DOI: 10.3390/molecules25102300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is widely known to regulate bone health, but there is increasing evidence that it may also ameliorate colitis through inflammation, cell proliferation and apoptosis, and the microbiota. The purpose of this review is to systematically examine the mechanisms by which vitamin D reduces colitis. PubMed and Web of Science were searched for articles published between 2008 and 2019 using key words such as "vitamin D," "colitis," "inflammatory bowel disease," "inflammation," "apoptosis," "cell proliferation," and "gut bacteria". Retrieved articles were further narrowed and it was determined whether their title and abstracts contained terminology pertaining to vitamin D in relation to colitis in human clinical trials, animal studies, and cell culture/biopsy studies, as well as selecting the best match sorting option in relation to the research question. In total, 30 studies met the established criteria. Studies consistently reported results showing that vitamin D supplementation can downregulate inflammatory pathways of COX-2, TNF-α, NF-κB, and MAPK, modify cell kinetics, and alter gut microbiome, all of which contribute to an improved state of colitis. Although vitamin D and vitamin D analogs have demonstrated positive effects against colitis, more randomized, controlled human clinical trials are needed to determine the value of vitamin D as a therapeutic agent in the treatment of colitis.
Collapse
|
64
|
Vici G, Camilletti D, Polzonetti V. Possible Role of Vitamin D in Celiac Disease Onset. Nutrients 2020; 12:E1051. [PMID: 32290294 PMCID: PMC7231074 DOI: 10.3390/nu12041051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Beside skeletal system maintenance and protection, possible extra-calcium roles of vitamin D have been recently described. In particular, studies have investigated possible roles of vitamin D as a key modulator of inflammation and immune mechanisms and of the intestinal mucosa barrier. In this regard, vitamin D has been considered as a factor that affects different conditions such as immune-mediated diseases. The new emerging role of vitamin D and its involvement in immune modulation has led it to be considered as a possible key factor involved in celiac disease (CD) onset. CD is a chronic immune-mediated enteropathy of the small intestine that is triggered by dietary gluten protein exposure in individuals who are genetically predisposed. However, along with gluten, other environmental factors are also involved in CD onset. The renewed interest in a molecule that offers great possibilities for new roles has led to an increase in studies, although there remains a lack of studies aimed at contextualizing the role of vitamin D on CD. This review aims to define the possible role of vitamin D in CD onset as it is presently understood, taking into account potential links among vitamin D, the immune system and CD.
Collapse
Affiliation(s)
- Giorgia Vici
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Dalia Camilletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
65
|
Shen H, Liu Q, Huang P, Fan H, Zang F, Liu M, Zhuo L, Wu J, Wu G, Yu R, Yang J. Vitamin D receptor genetic polymorphisms are associated with oral lichen planus susceptibility in a Chinese Han population. BMC Oral Health 2020; 20:26. [PMID: 32000758 PMCID: PMC6993400 DOI: 10.1186/s12903-020-1002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Vitamin D receptor (VDR) is involved in multiple immune-mediated disorders including oral lichen planus (OLP). This study investigated the association between VDR gene polymorphisms and the risk of OLP. METHODS In total, 177 OLP patients and 207 healthy participants were recruited from the Affiliated Hospital of Stomatology, Nanjing Medical University. Eight single nucleotide polymorphisms (SNPs: rs731236, rs739837, rs757343, rs2107301, rs2239185, rs7975232, rs11574129 and rs11568820) in the VDR gene were selected and genotyped. RESULTS The results showed that OLP risk was increased in subjects with the rs2239185 TT genotype (Recessive model: adjusted Odd ratio(OR) = 2.68, 95% Confidence interval(CI) = 1.28-5.62, P = 0.009) and rs7975232 CC genotype (Recessive model: adjusted OR = 2.25, 95% CI = 1.10-4.58, P = 0.026). Moreover, rs2239185 and rs7975232 (P < 0.01) showed significant cumulative effects on OLP risk.Haplotype analysis showed that the CC haplotype (rs2239185-rs7975232) was associated with an increased risk of OLP (OR = 3.11, 95% CI = 1.42-6.83, P = 0.005), compared with the AC haplotype. CONCLUSION The rs2239185 and rs7975232 variants of VDR may influence OLP susceptibility, and VDR gene polymorphisms may be candidate susceptibility regions for OLP in a Chinese Han population.
Collapse
Affiliation(s)
- Hong Shen
- Department of Pediatric and Preventive dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing, 210029, China
| | - Qinglan Liu
- Department of oral mucosal disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing, 210029, China
| | - Peng Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Haozhi Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Zang
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Mei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Lingyun Zhuo
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Guoying Wu
- Department of oral mucosal disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing, 210029, China
| | - Rongbin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing, 210029, China.
| |
Collapse
|
66
|
Vitamin D/VDR signaling induces miR-27a/b expression in oral lichen planus. Sci Rep 2020; 10:301. [PMID: 31942011 PMCID: PMC6962379 DOI: 10.1038/s41598-019-57288-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-27a/b are small non-coding RNAs which are reported to regulate inflammatory response and cell proliferation. Although some studies have demonstrated that miR-27b is down-regulated in the oral specimens of patients suffering with oral lichen planus (OLP), the molecular mechanism of miR-27b decrease remains a large mystery, and the expression of miR-27a in OLP is not well explored. Here, we demonstrated both miR-27a and miR-27b, compared with healthy controls, were reduced in the oral biopsies, serum and saliva samples derived from OLP patients. The reductions of miR-27a/b were also confirmed in the lipopolysaccharide (LPS)- or activated CD4+ T cell-treated human oral keratinocytes (HOKs). Furthermore, we found vitamin D receptor (VDR) binding sites in the promoters of miR-27a/b genes and verified this finding. We also tested miR-27a/b levels in the oral epithelium from paricalcitol-treated, vitamin D deficient or VDR knockout mice. In the rescue experiments, we confirmed vitamin D and VDR inhibited LPS- or activated CD4+ T cell-induced miR-27a/b reductions in HOKs. In sum, our results show that vitamin D/VDR signaling induces miR-27a/b in oral lichen planus.
Collapse
|
67
|
Du J, Gao R, Wang Y, Nguyen T, Yang F, Shi Y, Liu T, Liao W, Li R, Zhang F, Ge X, Zhao B. MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis 2020; 11:15. [PMID: 31907356 PMCID: PMC6944705 DOI: 10.1038/s41419-019-2207-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Oral lichen planus (OLP) is a kind of oral epithelial disorder featured with keratinocyte apoptosis and inflammatory reaction. The pathogenesis of OLP remains an enigma. Herein, we showed that the levels of miR-26a/b were robustly down-regulated in oral mucosal biopsies, serum and saliva in OLP patients compared with healthy control. Moreover, we found the binding sites of vitamin D receptor (VDR) in the promoter regions of miR-26a/b genes and proved that the induction of miR-26a/b was VDR dependent. The reduction of miR-26a/b expression was also detected in the oral epithelium of vitamin D deficient or VDR knockout mice. miR-26a/b inhibitors enhanced apoptosis and Type 1T helper (Th1) cells-related cytokines production in oral keratinocytes, whereas miR-26a/b mimics were protective. Mechanistically, we analyzed miRNA target genes and confirmed that miR-26a/b blocked apoptosis by directly targeting Protein Kinase C δ (PKCδ) which promotes cellular apoptotic processes. Meanwhile, miR-26a/b suppressed Th1-related cytokines secretion through targeting cluster of the differentiation 38 (CD38). In accordant with miR-26a/b decreases, PKCδ and CD38 levels were highly elevated in OLP patients’ samples. Taken together, our present investigations suggest that vitamin D/VDR-induced miR-26a/b take protective functions in OLP via both inhibiting apoptosis and impeding inflammatory response in oral keratinocytes.
Collapse
Affiliation(s)
- Jie Du
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Ruifang Gao
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yimei Wang
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Tivoli Nguyen
- Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Fang Yang
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianjing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, China
| | - Ran Li
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xuejun Ge
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Bin Zhao
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China. .,Department of prosthodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.
| |
Collapse
|
68
|
Li W, Gao M, Han T. Lycium barbarum polysaccharides ameliorate intestinal barrier dysfunction and inflammation through the MLCK-MLC signaling pathway in Caco-2 cells. Food Funct 2020; 11:3741-3748. [PMID: 32314770 DOI: 10.1039/d0fo00030b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Impairment of the intestinal barrier often occurs in inflammatory bowel diseases, and pro-inflammatory factors play a vital role in the pathogenesis of intestinal diseases.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Mingbo Gao
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Ting Han
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| |
Collapse
|
69
|
Tao Y, Yue M, Lv C, Yun X, Qiao S, Fang Y, Wei Z, Xia Y, Dai Y. Pharmacological activation of ERβ by arctigenin maintains the integrity of intestinal epithelial barrier in inflammatory bowel diseases. FASEB J 2019; 34:3069-3090. [PMID: 31908053 DOI: 10.1096/fj.201901638rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Intestinal epithelial barrier dysfunction is deeply involved in the pathogenesis of inflammatory bowel diseases (IBD). Arctigenin, the main active constituent in Fructus Arctii (a traditional Chinese medicine), has previously been found to attenuate colitis induced by dextran sulfate sodium (DSS) in mice. The present study investigated whether and how arctigenin protects against the disruption of the intestinal epithelial barrier in IBD. Arctigenin maintained the intestinal epithelial barrier function of mice with DSS- and TNBS-induced colitis. In Caco-2 and HT-29 cells, arctigenin lowered the monolayer permeability, increased TEER, reversed the abnormal expression of tight junction proteins, and restored the altered localization of F-actin induced by TNF-α and IL-1β. The specific antagonist PHTPP or shRNA of ERβ largely weakened the protective effect of arctigenin on the epithelial barrier function of Caco-2 and HT-29 cells. Molecular docking demonstrated that arctigenin had high affinity for ERβ mainly through hydrogen bonds as well as hydrophobic effects, and the protective effect of arctigenin on the intestinal barrier function was largely diminished in ERβ-mutated (ARG346 and/or GLU305) Caco-2 cells. Moreover, arctigenin-blocked TNF-α induced increase of the monolayer permeability in Caco-2 and HT-29 cells and the activation of myosin light chain kinase (MLCK)/myosin light chain (MLC) pathway in an ERβ-dependent manner. ERβ deletion in colons of mice with DSS-induced colitis resulted in a significant attenuation of the protective effect of arctigenin on the barrier integrity and colon inflammation. Arctigenin maintained the integrity of the intestinal epithelial barrier under IBD by upregulating the expression of tight junction proteins through the ERβ-MLCK/MLC pathway.
Collapse
Affiliation(s)
- Yu Tao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changjun Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinming Yun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Simiao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulai Fang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
70
|
Malaguarnera L. Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects. Int Immunopharmacol 2019; 79:106112. [PMID: 31877495 DOI: 10.1016/j.intimp.2019.106112] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
The gut microbiota is crucial for host immune response, vitamin synthesis, short chain fatty acids (SCFAs) production, intestinal permeability, nutrient digestion energy metabolism and protection from pathogens. Therefore, gut microbiota guarantees the host's predisposition to gastrointestinal diseases. Intestinal microbiota may be damaged by environmental components with negative health conditions. Dysbiosis consisting in alteration in the gut microbiota has been involved in several disorders including inflammation, allergic reactions, autoimmune diseases, heart diseases, obesity, and metabolic syndrome and even in the state of malignant carcinogenesis existing in humans. Several epidemiological studies have shown that inadequate solar exposure results in vitamin D insufficiency/deficiency which has a strong impact on different immune responses and the occurrence of a wide range of pathological conditions. Additionally, new evidence indicates that the vitamin D pathway plays a key role in gut homeostasis. Due to the strong connection between vitamin D and microbiota, herein we focus on the new findings about intestinal bacteria-immune crosstalk and the impact of vitamin D in gut microbiota regulation, in order to offer new clarifications on their interaction. Understanding the mechanism by which vitamin D can affect the gut microbiota composition and its dynamic activities, as well as the innate and adaptive state of the immune system, is not only a fundamental research but also an opportunity to improve health status.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97, Catania, Italy.
| |
Collapse
|
71
|
Li H, Li W, Wang Q. 1,25-dihydroxyvitamin D 3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells. BMC Oral Health 2019; 19:236. [PMID: 31684930 PMCID: PMC6829944 DOI: 10.1186/s12903-019-0935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background Antiinflammatory effect of 1,25-dihydroxyvitamin D3 (1,25D3) has been reported in periodontitis, but the exact mechanisms remain unclear. Oral epithelial cells are recently highlighted as an important regulator of inflammation in this disease. This in vitro study was established to investigate the effect of 1,25D3 on key proinflammatory cytokine IL-6 production and aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB) signaling in oral epithelial cells upon the stimulation of lipopolysaccharide (LPS) from periodontal pathogens. Methods OKF6/TERT-2 oral keratinocytes were incubated with LPS and different concentrations of 1,25D3, and levels of IL-6 production were determined using enzyme-linked immunosorbent assay (ELISA). Expression of vitamin D receptor (VDR), and activation of AhR was examined using western blot analysis, and phosphorylation of NF-κB was detected using cell-based protein phosphorylation ELISA. Results 1,25D3 inhibited LPS-induced IL-6 overexpression in OKF6/TERT-2 cells. Additionally, 1,25D3 increased VDR expression and AhR activation, and repressed NF-κB phosphorylation. Furthermore, 1,25D3 suppressed IL-6 expression and enhanced VDR expression and regulated AhR/NF-κB signaling activation in a dose-dependent manner after 48 h treatment. Conclusions These results suggest that 1,25D3 may inhibit LPS-induced IL-6 overexpression in human oral epithelial cells through AhR/NF-κB signaling. Our findings may provide an explanation for the antiinflammatory effect and therapeutic benefit of 1,25D3 in periodontitis.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China.,Loma Linda University School of Dentistry, 24876 Taylor Street, Loma Linda, CA, 92354, USA
| |
Collapse
|
72
|
Li X, Wei X, Sun Y, Du J, Li X, Xun Z, Li YC. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G453-G462. [PMID: 31411504 DOI: 10.1152/ajpgi.00103.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diets high in animal fats are associated with increased risks of inflammatory bowel disease, but the mechanism remains unclear. In this study, we investigated the effect of high-fat diet (HFD) on the development of experimental colitis in mice. Relative to mice fed low-fat diet (LFD), HFD feeding for 4 wk increased the levels of triglyceride, cholesterol, and free fatty acids in the plasma as well as within the colonic mucosa. In an experimental colitis model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS), mice on 4-wk HFD exhibited more severe colonic inflammation and developed more severe colitis compared with the LFD counterparts. HFD feeding resulted in higher production of mucosal pro-inflammatory cytokines, greater activation of the myosin light chain kinase (MLCK) tight junction regulatory pathway, and greater increases in mucosal barrier permeability in mice following TNBS induction. HFD feeding also induced gp91, an NADPH oxidase subunit, and promoted reactive oxygen species (ROS) production in both colonic epithelial cells and lamina propria cells. In HCT116 cell culture, palmitic acid or palmitic acid and TNF-α combination markedly increased ROS production and induced the MLCK pathway, and these effects were markedly diminished in the presence of a ROS scavenger. Taken together, these data suggest that HFD promotes colitis by aggravating mucosal oxidative stress, which rapidly drives mucosal inflammation and increases intestinal mucosal barrier permeability.NEW & NOTEWORTHY This study demonstrates high-fat diet feeding promotes colitis in a 2,4,6-trinitrobenzenesulfonic acid-induced experimental colitis model in mice. The underlying mechanism is that high-fat diet induces oxidative stress in the colonic mucosa, which increases colonic epithelial barrier permeability and drives colonic mucosal inflammation. These observations provide molecular evidence that diets high in saturated fats are detrimental to patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xue Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xinzhi Wei
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Sun
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | - Xin Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhe Xun
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| |
Collapse
|
73
|
Yao B, He J, Yin X, Shi Y, Wan J, Tian Z. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol Lett 2019; 316:109-118. [PMID: 31472180 DOI: 10.1016/j.toxlet.2019.08.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022]
Abstract
Lithocholic acid (LCA) is both a secondary bile acid and a vitamin D receptor (VDR) ligand. The VDR is activated by 1,25-dihydroxy vitamin D3 and plays an important role in maintaining integrity of the intestinal mucosal barrier. LCA can also substitute for vitamin D to carry out the in vivo functions of vitamin D. However, it is unclear whether activation of the VDR by LCA affects mucosal barrier function. In the present study, we researched the protective effect of LCA on tumor necrosis factor-alpha (TNF-α)-induced intestinal epithelial barrier dysfunction in Caco-2 cells of the human epithelial intestinal adenocarcinoma cell line. Caco-2 cell monolayers were pretreated with LCA and then exposed to 100 ng/mL TNF-α. The results showed that LCA alleviated the decrease in transepithelial electrical resistance and the increase in FITC-Dextran flux induced by TNF-α. LCA ameliorated the TNF-α-induced decrease in protein expression and distribution of ZO-1, E-cadherin, Occludin, and Claudin-1, which are tight junction markers. Additionally, the LCA treatment effectively counteracted TNF-α-mediated downregulation of silent information regulator 1 (SIRT1), nuclear factor erythroid2-related factor 2 (Nrf2), and heme oxygenase-1, which are related to oxidative stress. Increases in NF-κB p-p65 and p-IκB-α induced by TNF-α were significantly inhibited by LCA. Considering all these, the present study indicates that LCA has a significant protective effect on TNF-α-induced injury of intestinal barrier function through the VDR and suggests that suppressing NF-κB signaling and activating the SIRT1/Nrf2 pathway might be one of the mechanisms underlying the protective effect of LCA.
Collapse
Affiliation(s)
- Baiyu Yao
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, Liaoning Province, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, Liaoning Province, China
| | - Xin Yin
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, Liaoning Province, China
| | - Yang Shi
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, Liaoning Province, China
| | - Jun Wan
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, Liaoning Province, China
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
74
|
Hassanshahi M, Anderson PH, Sylvester CL, Stringer AM. Current evidence for vitamin D in intestinal function and disease. Exp Biol Med (Maywood) 2019; 244:1040-1052. [PMID: 31366237 DOI: 10.1177/1535370219867262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vitamin D activity is associated with the modulation of a wide variety of biological systems, in addition to its roles in calcium homeostatic mechanisms. While vitamin D is well known to promote gastrointestinal calcium absorption, vitamin D also plays a role in attenuating and/or preventing the progression of several gastrointestinal diseases including Crohn’s disease, ulcerative colitis, and colorectal cancer, and may also play a role in chemotherapy-induced intestinal mucositis. The pro-differentiation, immunomodulatory, and anti-inflammatory effects of vitamin D, which has been reported in numerous circumstances, are key potential mechanisms of action in the prevention of gastrointestinal disorders. While the debate of the effectiveness of vitamin D to treat bone pathologies continues, the clinical importance of vitamin D therapy to prevent gastrointestinal disorders should be investigated given current evidence, using both nutritional and pharmaceutical intervention approaches.Impact statementThe non-skeletal functions of vitamin D play an important role in health and disease. The anti-inflammatory properties and maintenance of intestinal function fulfilled by vitamin D impact other systems in the body though downstream processing. This review provides insight into the mechanisms underpinning the potential benefits of vitamin D in both maintaining intestinal homeostasis and associated diseased states.
Collapse
Affiliation(s)
| | - Paul H Anderson
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Cyan L Sylvester
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Andrea M Stringer
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.,2 Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
75
|
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2019; 141:1900-1916. [PMID: 29860380 DOI: 10.1093/brain/awy131] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan B Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
76
|
Yang M, Jia W, Wang D, Han F, Niu W, Zhang H, Shih DQ, Zhang X. Effects and Mechanism of Constitutive TL1A Expression on Intestinal Mucosal Barrier in DSS-Induced Colitis. Dig Dis Sci 2019; 64:1844-1856. [PMID: 30949903 DOI: 10.1007/s10620-019-05580-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The role of TL1A in the intestinal mucosa barrier in inflammatory bowel disease (IBD) is still unclear. This study was aimed to investigate the expression levels of tight junction protein (TJ), myosin light chain kinase (MLCK), MyD88 and tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6) and how TL1A influences the intestinal barrier in IBD. METHODS The mouse models of IBD were built using FMS-TL1A-GFP-transgenic mice and wild-type mice. The morphological and histopathological changes, bacterial translocation, permeability of colonic mucosa, and LPS level were assessed. Caco-2 cells were used to further investigate the association between TL1A and TNF-α and LPS. The protein level and mRNA changes of TJ proteins including ZO-1, occluding, JAMA, claudin-1, claudin-2, and claudin-3 were investigated using Western blot and real-time PCR. Protein changes of MLCK, MyD88 and TNF receptor-associated factor-6 (TRAF6), and TNF-α mRNA in the mouse colon were further assessed. RESULTS The IBD models were successfully built. Cooper HS score and histopathological score of the colon were higher in DSS/WT group than in control/WT group (P < 0.05), higher in DSS/Tg group than in control/Tg group (P < 0.05), and higher in DSS/Tg group than in DSS/WT group. PAS, colonic permeability of the colon, and FITC-D examination showed the similar results and trends. Compared with control/WT group, the levels of TL1A and claudin-2 were higher and the levels of ZO-1, occludin, JAMA, claudin-1, and claudin-3 were lower in DSS/WT group (P < 0.05). Compared with control/Tg group, the levels of TL1A and claudin-2 were higher and the levels of ZO-1, occludin, JAMA, claudin-1, and claudin-3 were lower in DSS/Tg group. Compared with Caco-2 + TNF-α group, the expression level of occludin and claudin-1 in Caco-2 + LV-TNFSF15 + TNF-α group was significantly lower (P < 0.05); p-MLC level was significantly higher. Compared with Caco-2 + LPS group, the expression level of occludin and claudin-1 significantly decreased in Caco-2 + LV-TNFSF15 + LPS group; MyD88 and TRAF6 expression level significantly increased. CONCLUSION The results suggested that TL1A could impair intestinal epithelial barrier in the mouse model of IBD and might regulate TJ expression via MLCK/p-MLC pathway and LPS-mediated MyD88/TRAF6 pathway.
Collapse
Affiliation(s)
- Mingyue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Wenxiu Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Fei Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Weiwei Niu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - David Q Shih
- Cedars-Sinai Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, USA
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
77
|
Fan YG, Guo T, Han XR, Liu JL, Cai YT, Xue H, Huang XS, Li YC, Wang ZY, Guo C. Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine 2019; 45:393-407. [PMID: 31303501 PMCID: PMC6642335 DOI: 10.1016/j.ebiom.2019.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies have revealed that vitamin D deficiency may increase the risk of Alzheimer's disease, and vitamin D supplementation may be effective strategy to ameliorate the neurodegenerative process in Alzheimer's disease patients. Paricalcitol (PAL), a low-calcemic vitamin D receptor agonist, is clinically used to treat secondary hyperparathyroidism. However, the potential application of PAL for treating neurodegenerative disorders remains unexplored. METHODS The APP/PS1 mice were intraperitoneally injected with PAL or vehicle every other day for 15 weeks. The β-amyloid (Aβ) production was confirmed using immunostaining and enzyme linked immunosorbent assay. The underlying mechanism was verified by western blot and immunostaining in vivo and in vitro. FINDINGS Long-term PAL treatment clearly reduced β-amyloid (Aβ) generation and neuronal loss in APP/PS1 transgenic mouse brains. PAL stimulated the expression of low-density lipoprotein receptor-related protein 1 (LRP1) possibly through inhibiting sterol regulatory element binding protein-2 (SREBP2); PAL also promoted LRP1-mediated β-site APP cleavage enzyme 1 (BACE1) transport to late endosomes, thus increasing the lysosomal degradation of BACE1. Furthermore, PAL diminished 8-hydroxyguanosine (8-OHdG) generation in neuronal mitochondria via enhancing base excision repair (BER), resulting in the attenuation of calpain-1-mediated neuronal loss. INTERPRETATION The present data demonstrate that PAL can reduce Aβ generation through accelerating BACE1 lysosomal degradation and can inhibit neuronal loss through suppressing mitochondrial 8-OHdG generation. Hence, PAL might be a promising agent for treating Alzheimer's disease. FUND: This study was financially supported by the Natural Science Foundation of China (U1608282).
Collapse
Affiliation(s)
- Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Tian Guo
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Xiao-Ran Han
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yu-Ting Cai
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Han Xue
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yan-Chun Li
- Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, NO.195, Chuangxin Road, Hunnan District, Shenyang 110169, China.
| |
Collapse
|
78
|
He L, Zhou M, Li YC. Vitamin D/Vitamin D Receptor Signaling Is Required for Normal Development and Function of Group 3 Innate Lymphoid Cells in the Gut. iScience 2019; 17:119-131. [PMID: 31272068 PMCID: PMC6610723 DOI: 10.1016/j.isci.2019.06.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) play key roles in protective immunity and mucosal barrier maintenance. Here we showed that vitamin D/vitamin D receptor (VDR) signaling regulates gut ILC3. VDR deletion or 1,25-dihydroxyvitamin D deficiency in mice led to a marked reduction in colonic ILC3 populations at steady state and impaired ILC3 responses following Citrobacter rodentium infection, resulting in substantial increases in intestinal bacterial growth and mouse mortality. VDR regulation of ILC3 was independent of T and B lymphocytes or gut microflora. Correction of 1,25-dihydroxyvitamin D deficiency rescued the ILC3 defects. Mechanistically, VDR deletion or 1,25-dihydroxyvitamin D deficiency markedly reduced colonic Ki67+ ILC3 populations, and in vivo and in vitro studies confirmed that vitamin D hormone directly stimulated ILC3 proliferation. Therefore, vitamin D/VDR signaling is required for ILC3-mediated innate immunity through regulation of ILC3 proliferation. VDR or 1,25(OH)2D3 deficiency reduces ILC3 populations and impairs ILC3 immunity Vitamin D/VDR signaling is required for proper ILC3 proliferation Vitamin D regulation of ILC3 is independent of T and B cells or gut microflora
Collapse
Affiliation(s)
- Lei He
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Min Zhou
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA; Division of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
79
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
80
|
Singh P, Kumar M, Al Khodor S. Vitamin D Deficiency in the Gulf Cooperation Council: Exploring the Triad of Genetic Predisposition, the Gut Microbiome and the Immune System. Front Immunol 2019; 10:1042. [PMID: 31134092 PMCID: PMC6524467 DOI: 10.3389/fimmu.2019.01042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is a fat soluble secosteroid that is primarily synthesized in the skin upon exposure to Ultraviolet B (UVB) sun rays. Vitamin D is essential for the growth and development of bones and helps in reducing inflammation by strengthening muscles and the immune system. Despite the endless supply of sunlight in the Gulf Cooperation Council (GCC) countries which includes United Arab Emirates, Qatar, Kuwait, Bahrain, Saudi Arabia, and Oman, Vitamin D deficiency in the (GCC) general population at various age groups remains alarmingly high. In parallel runs the increasing prevalence of acute and chronic illnesses including, autoimmune diseases, cancer, type 1 diabetes mellitus, cardiovascular disease and Inflammatory bowel disease in the adult as well as the pediatric population of these countries. The exact association between Vitamin D deficiency and chronic disease conditions remains unclear; however, studies have focused on the mechanism of Vitamin D regulation by assessing the role of the Vitamin D associated genes/proteins such as VDR (Vitamin D receptor), VDBP (Vitamin D Binding protein), CYP27B1 as these are integral parts of the Vitamin D signaling pathway. VDR is known to regulate the expression of more than 200 genes across a wide array of tissues in the human body and may play a role in controlling the Vitamin D levels. Moreover, reduced Vitamin D level and downregulation of VDR have been linked to gut dysbiosis, highlighting an intriguing role for the gut microbiome in the Vitamin D metabolism. However, this role is not fully described yet. In this review, we aim to expand our understanding of the causes of Vitamin D deficiency in the GCC countries and explore the potential relationship between the genetic predisposition, Vitamin D levels, immune system and the gut microbiome composition. Trying to unravel this complex interaction may aid in understanding the mechanism by which Vitamin D contributes to various disease conditions and will pave the way toward new therapeutics treatments for Vitamin D deficiency and its associated outcomes.
Collapse
Affiliation(s)
- Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
81
|
Leech B, Schloss J, Steel A. Treatment Interventions for the Management of Intestinal Permeability: A Cross-Sectional Survey of Complementary and Integrative Medicine Practitioners. J Altern Complement Med 2019; 25:623-636. [PMID: 31038350 DOI: 10.1089/acm.2018.0374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: This study aims to explore the treatment interventions complementary and integrative medicine (CIM) practitioners use in the management of an emerging health condition, increased intestinal permeability (IP), and the association these methods have on the observed time to resolve this condition. Design and setting: A cross-sectional survey of Australian naturopaths, nutritionists, and Western herbal medicine practitioners was undertaken (n = 227) through the Practitioner Research and Collaboration Initiative (PRACI) network. Outcome measures: Frequencies and percentages of the treatment methods, including chi-square analysis to examine the associations between treatment methods and observed time to resolve IP. Results: Thirty-six CIM practitioners responded to the survey (response rate 15.9%). CIM practitioners were found to use a multimodal approach in the management of IP with 92.6% of respondents using three or more categories of treatment interventions (nutritional, herbal, dietary, and lifestyle) with a mean total of 43.0 ± 24.89 single treatment interventions frequently prescribed. The main treatments prescribed in the management of IP were zinc (85.2%), probiotics: multistrain (77.8%), vitamin D (75.0%), glutamine (73.1%), Curcuma longa (73.1%), and Saccharomyces boulardii (70.4%). CIM practitioners also advocate patients with IP to reduce alcohol (96.3%), gluten (85.2%), and dairy (75.0%) consumption. Evaluation of antibiotics (75.0%) and nonsteroidal anti-inflammatory drugs (73.1%) prescriptions were frequently advised by CIM practitioners. A longer observed time to resolve IP was seen in CIM practitioners who did not reduce intense exercise in the management of IP (p = 0.02). Conclusions: This study represents the first survey of the treatments prescribed by CIM practitioners for IP and suggests that CIM practitioners use numerous integrative treatment methods for the management of IP. The treatment interventions frequently prescribed by CIM practitioners align with preclinical research, suggesting that CIM practitioners prescribe in accordance with the published literature. The findings of this study contribute to the implementation of clinical research in the management of IP, which considers multiple concurrent treatments.
Collapse
Affiliation(s)
- Bradley Leech
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia.,2 Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Janet Schloss
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia
| | - Amie Steel
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia.,2 Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
82
|
Du J, Jiang S, Hu Z, Tang S, Sun Y, He J, Li Z, Yi B, Wang J, Zhang H, Li YC. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am J Physiol Renal Physiol 2019; 316:F1068-F1077. [PMID: 30864841 DOI: 10.1152/ajprenal.00332.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis characterized by a rapid degradation of renal function. The effect of vitamin D on AKI remains poorly understood. Here, we showed that vitamin D receptor (VDR) activation protects against lipopolysaccharide (LPS)-induced AKI by blocking renal tubular epithelial cell apoptosis. Mice lacking VDR developed more severe AKI than wild-type (WT) control mice after LPS treatment, which was manifested by marked increases in body weight loss and accumulation of serum blood urea nitrogen and creatinine as well as the magnitude of apoptosis of tubular epithelial cells. In the renal cortex, LPS treatment led to more dramatic downregulation of Bcl-2, more robust induction of p53-upregulated modulator of apoptosis (PUMA) and miR-155, and more severe caspase-3 activation in VDR knockout mice compared with WT control mice. Conversely, paricalcitol pretreatment markedly prevented LPS-induced AKI. Paricalcitol ameliorated body weight loss, attenuated serum blood urea nitrogen and creatinine accumulation, blocked tubular cell apoptosis, prevented the suppression of Bcl-2, and reversed PUMA and miR-155 induction and caspase-3 activation in LPS-treated WT mice. In HK2 cells, LPS induced PUMA and miR-155 by activating NF-κB, whereas 1,25(OH)2D3 blocked PUMA and miR-155 induction by repressing NF-κB activation. Both PUMA and miR-155 target Bcl-2 to promote apoptosis; namely, PUMA inhibits Bcl-2 activity, whereas miR-155 promotes Bcl-2 mRNA degradation and inhibits Bcl-2 protein translation. Collectively, these data provide strong evidence that LPS induces tubular cell apoptosis via upregulating PUMA and miR-155, whereas vitamin D/VDR signaling protects against AKI by blocking NF-κB-mediated PUMA and miR-155 upregulation.
Collapse
Affiliation(s)
- Jie Du
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
- Division of Biological Sciences, Department of Medicine, University of Chicago , Chicago, Illinois
| | - Siqing Jiang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhaoxin Hu
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Shiqi Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Yue Sun
- Institute of Health Sciences, China Medical University , Shenyang, Liaoning , China
| | - Jinrong He
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhi Li
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Bin Yi
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Jianwen Wang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Hao Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Yan Chun Li
- Division of Biological Sciences, Department of Medicine, University of Chicago , Chicago, Illinois
| |
Collapse
|
83
|
Yoo JS, Park CY, Seo YK, Woo SH, Kim DY, Han SN. Vitamin D supplementation partially affects colonic changes in dextran sulfate sodium-induced colitis obese mice but not lean mice. Nutr Res 2019; 67:90-99. [PMID: 30995974 DOI: 10.1016/j.nutres.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) often accompanies vitamin D deficiency, and vitamin D supplementation ameliorates IBD symptoms in animal models and humans. Because altered vitamin D metabolism has been reported in obesity, we hypothesized that the effects of vitamin D on the development of IBD would be different between obese and control mice. Five-week-old male C57BL/6N mice were divided into 4 groups and fed a diet differing in fat content (10% or 45%, normal diet [ND] or high-fat diet [HFD]) and vitamin D content (1000 or 10 000 IU/kg of diet, vDC or vDS) for 14 weeks. At week 13, colitis was induced by administration of 2% dextran sodium sulfate for 7 days. Histology score tended to be lower in the HFD-vDS group than HFD-vDC group, but there was no effect of vitamin D on the ND group. Colonic Cldn1 and Cyp27b1 mRNA levels were higher in the HFD-vDS than HFD-vDC group, but these effects of vitamin D were not observed in the ND group. The serum 25-hydroxy vitamin D levels were negatively correlated with the histology score in the HFD group but not in the ND group. Overall, these results suggest that vitamin D supplementation partially prevents the histological damage of the colon in obese mice but not in control mice. This effect might be mediated by increased colonic Cyp27b1 levels, leading to upregulation of local 1,25-dihydroxy vitamin D production.
Collapse
Affiliation(s)
- Ji Su Yoo
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Chan Yoon Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Yeon Kyung Seo
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Sang Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Dae Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
84
|
Nobile S, Tenace MA, Pappa HM. The Role of Vitamin D in the Pathogenesis of Inflammatory Bowel Disease. GASTROINTESTINAL DISORDERS 2019; 1:231-240. [DOI: 10.3390/gidisord1010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin D has a complex role in the pathogenesis of inflammatory bowel disease (IBD), which is still under investigation. We conducted a literature search using PubMed through December 2018 through the use of relevant search terms. We found an abundance of evidence to support the role of vitamin D in regulating the innate and adaptive arms of the immune system. The pathogenesis of IBD implicates the immune dysregulation of these immune system components. Proof of concept of the vitamin’s role in the pathogenesis of IBD is the mapping of the vitamin D receptor in a region of chromosome 12, where IBD is also mapped, and specific VDR polymorphisms’ link to IBD phenotypes. Further research is needed to better delineate vitamin D’s role in preventing IBD and its potential as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Stefano Nobile
- Department of Mother and Child Health, Salesi Children’s Hospital, via F. Corridoni 11, 60123 Ancona, Italy
| | - Michela A. Tenace
- Department of Mother and Child Health, Salesi Children’s Hospital, via F. Corridoni 11, 60123 Ancona, Italy
| | - Helen M. Pappa
- Division of Pediatric Gastroenterology and Hepatology, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
85
|
Ge X, Wang L, Li M, Xu N, Yu F, Yang F, Li R, Zhang F, Zhao B, Du J. Vitamin D/VDR signaling inhibits LPS-induced IFNγ and IL-1β in Oral epithelia by regulating hypoxia-inducible factor-1α signaling pathway. Cell Commun Signal 2019; 17:18. [PMID: 30813930 PMCID: PMC6391768 DOI: 10.1186/s12964-019-0331-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is known as a chronic inflammatory disease. Our recent studies have suggested that vitamin D/vitamin D receptor (VDR) signaling exerts its protective effects on oral keratinocyte apoptosis by regulating microRNA-802 and p53-upregulated modulator of apoptosis (PUMA), but its roles in oral epithelial inflammatory responses in OLP are still unknown. Herein, we identify lipopolysaccharide (LPS) is able to enhance interferon gamma (IFNγ) and interleukin-1 beta (IL-1β) productions in human oral keratinocytes (HOKs) dependent on hypoxia-inducible factor-1α (HIF-1α). METHODS HIF-1α and cytokines levels in HOKs were investigated by real-time PCR and western blotting after LPS challenge. The effects of 1,25(OH)2D3 on LPS-induced HIF-1α and cytokines were tested by real-time PCR, western blotting, siRNA-interference and plasmids transfection techniques. The roles of 1,25(OH)2D3 in regulating HIF-1α levels were investigated using western blotting, siRNA-interference, plasmids transfection and Chromatin Immunoprecipitation (ChIP) assays. Finally, HIF-1α, IFNγ and IL-1β expressions in oral epithelia derived from mice and individuals were measured by real-time PCR, western blotting and immunohistochemical staining. RESULTS As a critical regulator, vitamin D suppresses LPS-induced HIF-1α to block IFNγ and IL-1β productions. Mechanistically, vitamin D inactivates nuclear factor-κB (NF-κB) pathway and up-regulates von Hippel-Lindau (VHL) levels, leading to HIF-1α reduction. Moreover, HIF-1α status of oral epithelia is elevated in VDR-/- mie as well as in VDR-deficient human biopsies, accompanied with increased IFNγ and IL-1β. CONCLUSION Collectively, this study uncovers an unrecognized roles of vitamin D/VDR signaling in regulating cytokines in oral keratinocytes and reveals the molecular basis of it.
Collapse
Affiliation(s)
- Xuejun Ge
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Lixiang Wang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Mengdi Li
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Na Xu
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Feiyan Yu
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Fang Yang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Ran Li
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Fang Zhang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Bin Zhao
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jie Du
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, NO. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
86
|
Correlation of Intestinal Mucosal Healing and Tight Junction Protein Expression in Ulcerative Colitis Patients. Am J Med Sci 2018; 357:195-204. [PMID: 30638599 DOI: 10.1016/j.amjms.2018.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of this study was to investigate the relationship between intestinal mucosal healing and tight junction (TJ) protein expression in patients with ulcerative colitis (UC). MATERIALS AND METHODS A total of 40 patients with UC were included as an experimental group and UC disease activity was evaluated using the Mayo clinic score (MCS) and 8 patients with normal distal colon served as the control group. The expression of TJ proteins including occludin, ZO-1 and claudin-2 were determined by immunohistochemistry and their correlation with clinical characteristics were also analyzed. RESULTS Statistically significant differences regarding the MCS and Mayo endoscopic subscore (MES) were observed in both groups (P < 0.01). The Geboes index was significantly increased in patients with active UC compared to patients with quiescent UC and normal controls (P < 0.01). Patients with active and quiescent UC had upregulated expression of claudin-2 and reduced expression of occludin and ZO-1 compared to those of normal controls. The expression of ZO-1 was significantly higher in patients with quiescent UC with mucosa healing (P < 0.05) compared with those without mucosal healing. The expression of ZO-1 and occludin was negatively correlated with MCS, MES, Geboes, C-reaction protein and erythrocyte sedimentation rate. The expression of claudin-2 was positively correlated with MCS, MES, Geboes, C-reaction protein and erythrocyte sedimentation rate. CONCLUSIONS These findings suggest that TJ proteins play a crucial role in mucosal healing, and may be a potential marker of response when evaluating therapeutic interventions.
Collapse
|
87
|
Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018; 10:nu10111656. [PMID: 30400332 PMCID: PMC6266123 DOI: 10.3390/nu10111656] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
The classical functions of vitamin D are to regulate calcium-phosphorus homeostasis and control bone metabolism. However, vitamin D deficiency has been reported in several chronic conditions associated with increased inflammation and deregulation of the immune system, such as diabetes, asthma, and rheumatoid arthritis. These observations, together with experimental studies, suggest a critical role for vitamin D in the modulation of immune function. This leads to the hypothesis of a disease-specific alteration of vitamin D metabolism and reinforces the role of vitamin D in maintaining a healthy immune system. Two key observations validate this important non-classical action of vitamin D: first, vitamin D receptor (VDR) is expressed by the majority of immune cells, including B and T lymphocytes, monocytes, macrophages, and dendritic cells; second, there is an active vitamin D metabolism by immune cells that is able to locally convert 25(OH)D3 into 1,25(OH)2D3, its active form. Vitamin D and VDR signaling together have a suppressive role on autoimmunity and an anti-inflammatory effect, promoting dendritic cell and regulatory T-cell differentiation and reducing T helper Th 17 cell response and inflammatory cytokines secretion. This review summarizes experimental data and clinical observations on the potential immunomodulating properties of vitamin D.
Collapse
|
88
|
Chetcuti Zammit S, Ellul P, Girardin G, Valpiani D, Nielsen KR, Olsen J, Goldis A, Lazar D, Shonová O, Nováková M, Sebastian S, Whitehead E, Carmona A, Martinez-Cadilla J, Dahlerup JF, Kievit ALH, Thorsgaard N, Katsanos KH, Christodoulou DK, Magro F, Salupere R, Pedersen N, Kjeldsen J, Carlsen K, Ioannis K, Bergemalm D, Halfvarson J, Duricova D, Bortlik M, Collin P, Oksanen P, Kiudelis G, Kupcinskas L, Kudsk K, Andersen V, O'Morain C, Bailey Y, Doron S, Shmuel O, Almer S, Arebi N, Misra R, Čuković-Čavka S, Brinar M, Munkholm P, Vegh Z, Burisch J. Vitamin D deficiency in a European inflammatory bowel disease inception cohort: an Epi-IBD study. Eur J Gastroenterol Hepatol 2018; 30:1297-1303. [PMID: 30134383 DOI: 10.1097/meg.0000000000001238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Serum vitamin D level is commonly low in patients with inflammatory bowel disease (IBD). Although there is a growing body of evidence that links low vitamin D level to certain aspects of IBD such as disease activity and quality of life, data on its prevalence and how it varies across disease phenotype, smoking status and treatment groups are still missing. MATERIALS AND METHODS Patients diagnosed with IBD between 2010 and 2011 were recruited. Demographic data and serum vitamin D levels were collected. Variance of vitamin D level was then assessed across different treatment groups, disease phenotype, disease activity and quality of life scores. RESULTS A total of 238 (55.9% male) patients were included. Overall, 79% of the patients had either insufficient or deficient levels of vitamin D at diagnosis. Patients needing corticosteroid treatment at 1 year had significantly lower vitamin D levels at diagnosis (median 36.0 nmol/l) (P=0.035). Harvey-Bradshaw Index (P=0.0001) and Simple Clinical Colitis Activity Index scores (P=0.0001) were significantly lower in patients with higher vitamin D level. Serum vitamin D level correlated significantly with SIBQ score (P=0.0001) and with multiple components of SF12. Smokers at diagnosis had the lowest vitamin D levels (vitamin D: 34 nmol/l; P=0.053). CONCLUSION This study demonstrates the high prevalence of low vitamin D levels in treatment-naive European IBD populations. Furthermore, it demonstrates the presence of low vitamin D levels in patients with IBD who smoke.
Collapse
Affiliation(s)
| | - Pierre Ellul
- Gastroenterology Division, Mater Dei Hospital, Malta
| | - Giulia Girardin
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua
| | - Daniela Valpiani
- U.O. Gastroenterologia ed Endoscopia Digestiva, Ospedale Morgagni, Pierantoni, Forlì, Italy
| | - Kári R Nielsen
- Medical Department, The National Hospital of the Faroe Islands, Torshavn, Faroe Islands
| | - Jóngerð Olsen
- Medical Department, The National Hospital of the Faroe Islands, Torshavn, Faroe Islands
| | - Adrian Goldis
- Clinic of Gastroenterology, University of Medicine 'Victor Babes', Timisoara, Romania, Balkans
| | - Daniela Lazar
- Clinic of Gastroenterology, University of Medicine 'Victor Babes', Timisoara, Romania, Balkans
| | | | | | | | | | | | - Jesus Martinez-Cadilla
- Department of Gastroenterology, Instituto de Investigación Biomédica Galicia Sur. Estrutura Organizativa de Xestión Integrada de Vigo, Spain
| | - Jens F Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus
| | | | | | | | | | - Fernando Magro
- Gastroenterology Department, Hospital São João
- Institute of Pharmacology and Therapeutics Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Riina Salupere
- Tartu University Hospital, University of Tartu, Tartu, Estonia
| | | | - Jens Kjeldsen
- Gastroenterology Department, Odense University Hospital, Odense C
| | - Katrine Carlsen
- Department of Pediatrics, Hvidovre Hospital, University of Copenhagen, Hvidovre
| | | | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro
| | - Dana Duricova
- IBD Clinical and Research Centre Iscare, Prague, Czech Republic
| | - Martin Bortlik
- IBD Clinical and Research Centre Iscare, Prague, Czech Republic
| | - Pekka Collin
- Pekka Collin Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Pia Oksanen
- Pekka Collin Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Gediminas Kiudelis
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Limas Kupcinskas
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Karen Kudsk
- Medical Department, Viborg Regional Hospital, Viborg
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa
| | - Colm O'Morain
- Department of Gastroenterology, Adelaide and Meath Hospital, TCD, Dublin, Ireland
| | - Yvonne Bailey
- Department of Gastroenterology, Adelaide and Meath Hospital, TCD, Dublin, Ireland
| | - Schwartz Doron
- Department of Gastroenterology and Hepatology, Soroka Medical Centre, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Odes Shmuel
- Department of Gastroenterology and Hepatology, Soroka Medical Centre, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet
- Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Naila Arebi
- IBD Department St Mark's Hospital, London, UK
| | - Ravi Misra
- IBD Department St Mark's Hospital, London, UK
| | - Silvija Čuković-Čavka
- University Hospital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marko Brinar
- University Hospital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Pia Munkholm
- Department of Gastroenterology, North Zealand University Hospital, Roskilde, Denmark
| | | | - Johan Burisch
- Department of Gastroenterology, North Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
89
|
Zheng L, Jiang WD, Feng L, Wu P, Tang L, Kuang SY, Zeng YY, Zhou XQ, Liu Y. Selenium deficiency impaired structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 82:408-420. [PMID: 30142391 DOI: 10.1016/j.fsi.2018.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
This study focused on the effects of dietary selenium deficiency on structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (mean weight 226.48 ± 0.68 g) were randomly divided into six groups and fed six separate diets with graded dietary levels of selenium (0.025-1.049 mg/kg diet) for 80 days. Results showed that selenium deficiency (1) caused oxidative damage in part by reducing the activities of antioxidant enzymes (such as SOD, CAT, GPx, GST and GR) and glutathione (GSH) content, down-regulating the transcript abundances of antioxidant enzymes (except GSTp1) partly related to Kelch-like-ECH-associated protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2) signalling; (2) aggravated apoptosis in part by up-regulating the mRNA levels of caspase-2, -3, -7, -8 and -9, which were partially related to p38MAPK/FasL/caspase-8 signalling and JNK/(BAX, Bcl-2, Mcl-1b, IAP)/(Apaf1, caspase-9) signalling; (3) damaged the tight junctions in part by down-regulating the mRNA levels of ZO-1 (except spleen), ZO-2 (except spleen), claudin-c, -f, -7, -11 and claudin-15, and up-regulating the mRNA levels of claudin-12, which were partially related to myosin light chain kinase (MLCK) signalling. Interesting, selenium deficiency failed to affect the expression of GSTp1, Keap1a, occludin, claudin-b, claudin-3c, ZO-1 (spleen only) and ZO-2 (spleen only) in the head kidney, spleen and skin of grass carp. Finally, based on the activities of glutathione peroxidase (GPx) and reactive oxygen species (ROS) content in the head kidney, spleen and skin, the dietary selenium requirements for young grass carp were estimated to be 0.558-0.588 mg/kg diet.
Collapse
Affiliation(s)
- Lin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
90
|
Xiang T, Ge S, Wen J, Xie J, Yang L, Wu X, Cheng N. The possible association between AQP9 in the intestinal epithelium and acute liver injury‑induced intestinal epithelium damage. Mol Med Rep 2018; 18:4987-4993. [PMID: 30320400 PMCID: PMC6236304 DOI: 10.3892/mmr.2018.9542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the expression and function of aquaporin (AQP)9 in the intestinal tract of acute liver injury rat models. A total of 20 Sprague Dawley rats were randomly divided into four groups: Normal control (NC) group and acute liver injury groups (24, 48 and 72 h). Acute liver injury rat models were established using D-amino galactose, and the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (Tbil) and albumin were determined using an automatic biochemical analyzer. Proteins levels of myosin light chain kinase (MLCK) in rat intestinal mucosa were investigated via immunohistochemistry. Pathological features were observed using hematoxylin and eosin (H&E) staining. MLCK, AQP9 and claudin-1 protein expression levels were detected via western blotting. Levels of ALT and AST in acute liver injury rats were revealed to steadily increase between 24 and 48 h time intervals, reaching a peak level at 48 h. Furthermore, TBil levels increased significantly until 72 h. Levels of ALT were revealed to significantly increase until the 48 h time interval, and then steadily decreased until the 72 h time interval. The acute liver injury 72 h group exhibited the greatest levels of MLCK expression among the three acute liver injury groups; however, all three acute liver injury groups exhibited enhanced levels of MLCK expression compared with the NC group. Protein levels of AQP9 and claudin-1 were enhanced in the NC group compared with the three acute liver injury groups. H&E staining demonstrated that terminal ileum mucosal layer tissues obtained from the acute liver injury rats exhibited visible neutrophil infiltration. Furthermore, the results revealed that levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-10 serum cytokines were significantly increased in the acute liver injury groups. In addition, AQP9 protein expression was suppressed in acute liver injury rats, which induced pathological alterations in terminal ileum tissues may be associated with changes of claudin-1 and MLCK protein levels.
Collapse
Affiliation(s)
- Tianxin Xiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shanfei Ge
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiangxiong Wen
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junfeng Xie
- Department of Gastroenterology, the People's Hospital of Ganzhou City, Ganzhou, Jiangxi 341000, P.R. China
| | - Lixia Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoping Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Cheng
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
91
|
Zhao B, Xu N, Li R, Yu F, Zhang F, Yang F, Ge X, Li YC, Du J. Vitamin D/VDR signaling suppresses microRNA-802-induced apoptosis of keratinocytes in oral lichen planus. FASEB J 2018; 33:1042-1050. [PMID: 30074824 DOI: 10.1096/fj.201801020rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is known to play a protective role in inflammatory diseases. Although the suppressive effect of vitamin D/vitamin D receptor (VDR) signaling has been shown in the context of oral lichen planus (OLP), the molecular basis of its regulatory function remains poorly understood. Herein, we reported that miR-802 overexpression in OLP could aggravate apoptosis of oral keratinocytes by targeting B-cell lymphoma 2 mRNA. In addition, vitamin D/VDR signaling was able to suppress miR-802 expression in LPS-treated or activated CD4+ T cell-stimulated human oral keratinocytes by blocking NF-κB pathways, thereby inhibiting OLP apoptosis. Consistent with the results in vitro, we showed that miR-802 expression was enhanced in oral keratinocytes from VDR-/- mice, and an inverse correlation between VDR and miR-802 was found in human biopsy specimens of OLP. Collectively, our data suggest that vitamin D/VDR signaling suppresses oral keratinocyte apoptosis by targeting miR-802.-Zhao, B., Xu, N., Li, R., Yu, F., Zhang, F., Yang, F., Ge, X., Li, Y. C., Du, J. Vitamin D/VDR signaling suppresses microRNA-802-induced apoptosis of keratinocytes in oral lichen planus.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Na Xu
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Ran Li
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Feiyan Yu
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Fang Zhang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Fang Yang
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Xuejun Ge
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and
| | - Yan Chun Li
- Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Jie Du
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; and.,Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
92
|
Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel) 2018; 10:toxins10070298. [PMID: 30029474 PMCID: PMC6071212 DOI: 10.3390/toxins10070298] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
The kidneys are key contributors to body homeostasis, by virtue of controlled excretion of excessive fluid, electrolytes, and toxic waste products. The syndrome of uremia equals the altered physiology due to irreversible loss of kidney function that is left uncorrected for, despite therapeutic intervention(s). The intestines and its microbial content are prime contributors to this syndrome. The intestinal barrier separates the self (or the so-called “milieu intérior”) from the environment. In the large intestine, the intestinal barrier keeps apart human physiology and the microbiota. The enterocytes and the extracellular mucin layer functions form a complex multilayered structure, facilitating complex bidirectional metabolic and immunological crosstalk. The current review focuses on the intestinal barrier in chronic kidney disease (CKD). Loss of kidney function results in structural and functional alterations of the intestinal barrier, contribution to the syndrome of uremia.
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW The aim of this review is to explore the protective role of vitamin D on the gastrointestinal tract, summarize the epidemiology of vitamin D deficiency in inflammatory bowel disease (IBD), and highlight recent studies examining the impact of low vitamin D and vitamin D supplementation on IBD clinical outcomes. RECENT FINDINGS Vitamin D protects the gut barrier by regulating tight junction proteins and inhibiting intestinal apoptosis. Vitamin D enhances innate immunity by inducing antimicrobial peptides and regulates adaptive immunity by promoting anti-inflammatory T cells and cytokines. Vitamin D may also alter the gut microbiota. The prevalence of vitamin D deficiency in IBD is 30-40%. Predictors of vitamin D deficiency in IBD include non-white ethnicity, IBD-related surgery, BMI more than 30, female sex, and pregnancy. Low vitamin D is associated with increased disease activity, inflammation, and clinical relapse. The effect of vitamin D supplementation on IBD clinical outcomes is inconclusive. SUMMARY Vitamin D plays a protective role on gut health. Vitamin D deficiency in IBD is prevalent and associated with poor outcomes. The benefits of vitamin D supplementation in IBD is unclear. Measuring novel vitamin D metabolites and vitamin D absorption in IBD patients may help guide future studies.
Collapse
|
94
|
Abstract
The biological functions of 1α,25-dihydroxyvitamin D3 are regulated by nuclear receptor vitamin D receptor (VDR). The expression level of VDR is high in intestine. VDR is an essential regulator of intestinal cell proliferation, barrier function, and immunity. Vitamin D/VDR plays a protective role in inflammatory bowel diseases (IBDs), both ulcerative colitis and Crohn's disease. Emerging evidence demonstrates low VDR expression and dysfunction of vitamin D/VDR signaling in patients with IBD. Here, we summarize the progress made in vitamin D/VDR signaling in genetic regulation, immunity, and the microbiome in IBD. We cover the mechanisms of intestinal VDR in regulating inflammation through inhibiting the NF-ĸB pathway and activating autophagy. Recent studies suggest that the association of VDR single nucleotide polymorphisms with immune and intestinal pathology may be sex dependent. We emphasize the tissue specificity of VDR and its sex- and time-dependent effects. Furthermore, we discuss potential clinical application and future direction of vitamin D/VDR in preventing and treating IBD.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois,Address correspondence to: Jun Sun, PhD, Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Room 704 CSB, MC716, Chicago, IL 60612 ()
| |
Collapse
|
95
|
Abstract
Inflammatory bowel disease [IBD], including ulcerative colitis and Crohn's disease, is a chronic and unpredictable condition characterised by alternating periods of remission interspersed with relapses. In recent years, accumulating support for an immunomodulating effect of vitamin D on both the innate and the adaptive immune systems has been presented. Through the vitamin D receptor, the active form of vitamin D, 1,25[OH]2D, induces antimicrobial peptide secretion, decreases dendritic cell activity, and promotes Th2 and regulatory T cell development and activity. In addition, vitamin D promotes an increased ratio of anti-inflammatory cytokines to pro-inflammatory cytokines. Studies in IBD point to a role for vitamin D in ameliorating disease outcome. Suboptimal circulating levels of 25-hydroxyvitamin D are common in IBD and appear to be associated with an increased risk of flares, IBD-related hospitalisations and surgeries, an inadequate response to tumour necrosis factor [TNF] inhibitors, a deterioration in quality of life, and low bone mineral density. With only few available randomised double-blind, placebo-controlled studies investigating therapeutic effects of vitamin D related to IBD, further research is necessary to determine the true therapeutic potential of vitamin D, as well as to define its optimal range in serum to achieve and maintain quiescence of disease. This review aims to summarise the latest knowledge on the extraskeletal effects of vitamin D in IBD, and outlines the potential deleterious consequences of vitamin D deficiency in this patient cohort.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alan C Moss
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| |
Collapse
|
96
|
Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, Larcombe AN, Kicic A, Hart PH. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol Rep 2018; 5:5/15/e13371. [PMID: 28774952 PMCID: PMC5555896 DOI: 10.14814/phy2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Luke J Berry
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Vanessa S Fear
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
97
|
Shi Y, Liu T, Zhao X, Yao L, Hou A, Fu J, Xue X. Vitamin D ameliorates neonatal necrotizing enterocolitis via suppressing TLR4 in a murine model. Pediatr Res 2018; 83:1024-1030. [PMID: 29281615 DOI: 10.1038/pr.2017.329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
Abstract
BackgroundThe toll-like receptor 4 (TLR4) has been reported to play an important role in necrotizing enterocolitis (NEC). As an established regulator of TLR4, vitamin D has been demonstrated to be intestinal-protective. This study aims at finding out whether the vitamin D/vitamin D receptor (VDR) pathway ameliorates NEC by regulating TLR4.MethodsSerum 25-hydrovitamin D (25(OH)D) was tested and compared in 15 preterm infants with NEC, 12 preterm infants without known complications and 20 healthy term infants. Neonatal Wistar rats were grouped and NEC was induced through formula feeding and cold/asphyxia stress. Vitamin D and the vehicle were administered to compare the microscopic structure, apoptotic protein expression, intestinal barrier function, inflammatory response, and TLR4 expression.ResultsPreterm infants with NEC had significantly lower 25(OH)D levels than those without NEC and healthy subjects. VDR expression was suppressed, whereas TLR4 expression was elevated in the NEC intestine. Vitamin D may increase the survival rate, alleviate structure damage, and preserve intestinal barrier function. These were achieved partly through restoration of VDR and suppression of TLR4.ConclusionNEC infants have lower levels of vitamin D. The vitamin D/VDR pathway protects against intestinal injury of NEC partly through suppressing the expression of TLR4.
Collapse
Affiliation(s)
- Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tianjing Liu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
98
|
Opstelten JL, Chan SSM, Hart AR, van Schaik FDM, Siersema PD, Lentjes EGWM, Khaw KT, Luben R, Key TJ, Boeing H, Bergmann MM, Overvad K, Palli D, Masala G, Racine A, Carbonnel F, Boutron-Ruault MC, Tjønneland A, Olsen A, Andersen V, Kaaks R, Kühn T, Tumino R, Trichopoulou A, Peeters PHM, Verschuren WMM, Witteman BJM, Oldenburg B. Prediagnostic Serum Vitamin D Levels and the Risk of Crohn's Disease and Ulcerative Colitis in European Populations: A Nested Case-Control Study. Inflamm Bowel Dis 2018; 24:633-640. [PMID: 29462382 DOI: 10.1093/ibd/izx050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Indexed: 12/12/2022]
Abstract
Background A low vitamin D status has been put forward as a potential risk factor for the development of inflammatory bowel disease (IBD). This study investigated the association between prediagnostic circulating vitamin D concentrations and dietary intakes of vitamin D, and the risk of Crohn's disease (CD) and ulcerative colitis (UC). Methods Among 359,728 participants of the European Prospective Investigation into Cancer and Nutrition cohort, individuals who developed CD or UC after enrollment were identified. Each case was matched with2 controls by center, gender, age, date of recruitment, and follow-up time. At cohort entry, blood samples were collected and dietary vitamin D intakes were obtained from validated food frequency questionnaires. Serum 25-hydroxyvitamin D levels were measured using liquid chromatography-tandem mass spectrometry. Conditional logistic regression was performed to determine the odds of CD and UC. Results Seventy-two participants developed CD and 169 participants developed UC after a median follow-up of 4.7 and 4.1 years, respectively. Compared with the lowest quartile, no associations with the 3 higher quartiles of vitamin D concentrations were observed for CD (p trend = 0.34) or UC (p trend = 0.66). Similarly, no associations were detected when serum vitamin D levels were analyzed as a continuous variable. Dietary vitamin D intakes were not associated with CD (p trend = 0.39) or UC (p trend = 0.83). Conclusions Vitamin D status was not associated with the development of CD or UC. This does not suggest a major role for vitamin D deficiency in the etiology of IBD, although larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Jorrit L Opstelten
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Simon S M Chan
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Department of Gastroenterology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Andrew R Hart
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Department of Gastroenterology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Fiona D M van Schaik
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eef G W M Lentjes
- Department of Clinical Chemistry and Hematology, University Medical Center, Utrecht, the Netherlands
| | - Kay-Tee Khaw
- Strangeways Research Laboratory, Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | - Robert Luben
- Strangeways Research Laboratory, Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Manuela M Bergmann
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Antoine Racine
- Center for Research in Epidemiology and Population Health, French Institute of Health and Medical Research (Inserm), Institut Gustave Roussy, Villejuif, France
- Department of Gastroenterology, University Hospital of Bicêtre, Assistance Publique - Hôpitaux de Paris, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Franck Carbonnel
- Center for Research in Epidemiology and Population Health, French Institute of Health and Medical Research (Inserm), Institut Gustave Roussy, Villejuif, France
- Department of Gastroenterology, University Hospital of Bicêtre, Assistance Publique - Hôpitaux de Paris, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Marie-Christine Boutron-Ruault
- Center for Research in Epidemiology and Population Health, French Institute of Health and Medical Research (Inserm), Institut Gustave Roussy, Villejuif, France
| | - Anne Tjønneland
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Olsen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vibeke Andersen
- Institute of Regional Research-Center Sønderjylland, University of Southern Denmark, Odense, Denmark
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P. Arezzo" Hospital, Ragusa, Italy
| | | | - Petra H M Peeters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ben J M Witteman
- Department of Gastroenterology and Hepatology, Gelderse Vallei Hospital, Ede, the Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
99
|
He L, Liu T, Shi Y, Tian F, Hu H, Deb DK, Chen Y, Bissonnette M, Li YC. Gut Epithelial Vitamin D Receptor Regulates Microbiota-Dependent Mucosal Inflammation by Suppressing Intestinal Epithelial Cell Apoptosis. Endocrinology 2018; 159:967-979. [PMID: 29228157 PMCID: PMC5788002 DOI: 10.1210/en.2017-00748] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Recent studies show that colonic vitamin D receptor (VDR) signaling protects the mucosal epithelial barrier and suppresses colonic inflammation, but the underlying molecular mechanism remains to be fully understood. To investigate the implication of colonic VDR downregulation seen in patients with inflammatory bowel disease, we assessed the effect of gut epithelial VDR deletion on colonic inflammatory responses in an experimental colitis model. In a 2,4,6-trinitrobenzenesulfonic acid-induced colitis model, mice carrying VDR deletion in gut epithelial cells [VDRflox/flox (VDRf/f);Villin-Cre or VDRΔIEC] or in colonic epithelial cells (VDRf/f;CDX2-Cre or VDRΔCEC) developed more severe clinical colitis than VDRf/f control mice, characterized by more robust T-helper (TH)1 and TH17 responses, with greater increases in mucosal interferon (IFN)-γ+, interleukin (IL)-17+, and IFN-γ+IL-17+ T cells. Accompanying the severe mucosal inflammation was more profound colonic epithelial cell apoptosis in the mutant mice. Treatment with caspase inhibitor Q-VD-OPh dramatically reduced colitis severity and attenuated TH1 and TH17 responses in VDRΔCEC mice. The blockade of cell apoptosis also prevented the increase in mucosal CD11b+CD103+ dendritic cells (DCs), known to be critical for TH17-cell activation. Moreover, depletion of gut commensal bacteria with antibiotics eliminated the robust TH1 and TH17 responses and CD11b+CD103+ DC induction. Taken together, these observations demonstrate that gut epithelial VDR deletion aggravates epithelial cell apoptosis, resulting in increases in mucosal barrier permeability. Consequently, invading luminal bacteria activate CD11b+CD103+ DCs, which promote mucosal TH1 and TH17 responses. Therefore, gut epithelial VDR signaling controls mucosal inflammation by suppressing epithelial cell apoptosis.
Collapse
Affiliation(s)
- Lei He
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| | - Tianjing Liu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yongyan Shi
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Feng Tian
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Huiyuan Hu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- College of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Dilip K. Deb
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| | - Yinyin Chen
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Nephrology, Hunan Provincial People’s Hospital, Changsha, Hunan 410005, China
| | - Marc Bissonnette
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
100
|
LPS-induced Vitamin D Receptor Decrease in Oral Keratinocytes Is Associated With Oral Lichen Planus. Sci Rep 2018; 8:763. [PMID: 29335479 PMCID: PMC5768778 DOI: 10.1038/s41598-018-19234-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
The suppressive function of vitamin D on oral lichen planus (OLP) have been documented previously. Vitamin D receptor (VDR) expression is down-regulated in OLP, but the molecular mechanism of its decrease and the related anti-inflammatory contributor of epithelial VDR signaling is unclear. Herein, we demonstrated that lipopolysaccharide (LPS) remarkedly down-regulated VDR expression of keratinocytes, and the reduced regulation was dependent on tumor necrosis factor alpha (TNFα)-miR-346 pathway. In human specimen studies, VDR levels of oral mucosal epithelia from OLP patients decreased substantially accompanied with robust TNFα and miR-346 induction, compared to the normal tissues. In addition, vitamin D/VDR signaling inhibited LPS-induced p53-upregulated modulator of apoptosis (PUMA) induction in keratinocytes via impeding nuclear factor-κB (NF-κB) activation, resulting in keratinocytes apoptosis reduction. Importantly, PUMA activity was up-regulated strongly in diseased epithelium, reversely correlated with VDR expression. Totally, our data indicate that LPS is responsible for VDR downregulation in oral keratinocytes, which is associated with OLP development.
Collapse
|