51
|
Hellmuth J, Valcour V, Spudich S. CNS reservoirs for HIV: implications for eradication. J Virus Erad 2015; 1:67-71. [PMID: 26430703 PMCID: PMC4586130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Controversy exists as to whether the central nervous system (CNS) serves as a reservoir site for HIV, in part reflecting the varying perspectives on what constitutes a 'reservoir' versus a mere site of latent viral integration. However, if the CNS proves to be a site of HIV persistence capable of replicating and reseeding the periphery, leading to failure of virological control, this privileged anatomical site would need dedicated consideration during the development of HIV cure strategies. In this review we discuss the current literature focused on the question of the CNS as a reservoir for HIV, covering the clinical evidence for continued CNS involvement despite suppressive therapy, the theorised dynamics of HIV integration into the CNS, as well as studies indicating that HIV can replicate independently and compartmentalise in the CNS. The unique cellular and anatomical sites of HIV integration in the CNS are also reviewed, as are the potential implications for HIV cure strategies.
Collapse
Affiliation(s)
- Joanna Hellmuth
- Department of Neurology,
University of California,
San Francisco,
CA,
USA
| | - Victor Valcour
- Department of Neurology,
University of California,
San Francisco,
CA,
USA
| | - Serena Spudich
- Department of Neurology,
Yale University,
New Haven,
CT,
USA
| |
Collapse
|
52
|
|
53
|
Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 2015; 12:16-24. [PMID: 25604237 PMCID: PMC4741099 DOI: 10.1007/s11904-014-0255-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early in the HIV epidemic, the central nervous system (CNS) was recognized as a target of infection and injury in the advanced stages of disease. Though the most severe forms of HIV-associated neurocognitive disorder (HAND) related to severe immunosuppression are rare in the current era of widespread combination antiretroviral therapy (cART), evidence now supports pathological involvement of the CNS throughout the course of infection. Recent work suggests that the stage for HIV neuropathogenesis may be set with initial viral entry into the CNS, followed by initiation of pathogenetic processes including neuroinflammation and neurotoxicity, and establishment of local, compartmentalized HIV replication that may reflect a tissue reservoir for HIV. Key questions still exist as to when HIV establishes local infection in the CNS, which CNS cells are the primary targets of HIV, and what mechanistic processes underlie the injury to neurons that produce clinical symptoms of HAND. Advances in these areas will provide opportunities for improved treatment of patients with established HAND, prevention of neurological disease in those with early stage infection, and understanding of HIV tissue reservoirs that will aid efforts at HIV eradication.
Collapse
Affiliation(s)
- Zaina Zayyad
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA,
| | | |
Collapse
|
54
|
Neuroinflammation and virus replication in the spinal cord of simian immunodeficiency virus-infected macaques. J Neuropathol Exp Neurol 2015; 74:38-47. [PMID: 25470348 DOI: 10.1097/nen.0000000000000148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies of neurologic diseases induced by simian immunodeficiency virus (SIV) in Asian macaques have contributed greatly to the current understanding of human immunodeficiency virus pathogenesis in the brain and peripheral nervous system. Detailed investigations into SIV-induced alterations in the spinal cord, a critical sensorimotor relay point between the brain and the peripheral nervous system, have yet to be reported. In this study, lumbar spinal cords from SIV-infected pigtailed macaques were examined to quantify SIV replication and associated neuroinflammation. In untreated SIV-infected animals, there was a strong correlation between amount of SIV RNA in the spinal cord and expression of the macrophage marker CD68 and the key proinflammatory mediators tumor necrosis factor and CCL2. We also found a significant correlation between SIV-induced alterations in the spinal cord and the degree of distal epidermal nerve fiber loss among untreated animals. Spinal cord changes (including elevated glial fibrillary acidic protein immunostaining and enhanced CCL2 gene expression) also were present in SIV-infected antiretroviral drug-treated animals despite SIV suppression. A fuller understanding of the complex virus and host factor dynamics in the spinal cord during human immunodeficiency virus infection will be critical in the development of new treatments for human immunodeficiency virus-associated sensory neuropathies and studies aimed at eradicating the virus from the central nervous system.
Collapse
|
55
|
Progressive increase in central nervous system immune activation in untreated primary HIV-1 infection. J Neuroinflammation 2014; 11:199. [PMID: 25465205 PMCID: PMC4263211 DOI: 10.1186/s12974-014-0199-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Central nervous system (CNS) inflammation is a mediator of brain injury in HIV infection. To study the natural course of CNS inflammation in the early phase of infection, we analyzed longitudinal levels of soluble and cellular markers of inflammation in cerebrospinal fluid (CSF) and blood, beginning with primary HIV-1 infection (PHI). Methods Antiretroviral-naïve subjects identified as having PHI (less than one year since HIV transmission) participated in phlebotomy and lumbar puncture at baseline and at variable intervals thereafter. Mixed-effects models were used to analyze longitudinal levels of CSF neopterin and percentages of activated cluster of differentiation (CD)4+ and CD8+ T-cells (co-expressing CD38 and human leukocyte antigen-D-related (HLA-DR)) in blood and CSF. Results A total of 81 subjects were enrolled at an average of 100 days after HIV transmission and had an average follow-up period of 321 days, with the number of visits ranging from one to 13. At baseline, the majority of subjects had CSF neopterin concentrations above the upper limit of normal. The baseline concentration was associated with the longitudinal trajectory of CSF neopterin. In subjects with baseline levels of less than 21 nmol/L, a cutoff value obtained from a mixed-effects model, CSF neopterin increased by 2.9% per 10 weeks (n = 33; P <0.001), whereas it decreased by 6.7% in subjects with baseline levels of more than 21 nmol/L (n = 11; P = 0.001). In a subset with available flow cytometry data (n = 42), the percentages of activated CD4+ and CD8+ T-cells in CSF increased by 0.8 (P <0.001) and 0.73 (P = 0.02) per 10 weeks, respectively. Conclusions Neopterin levels and the percentages of activated CD4+ and CD8+ T-cells in CSF progressively increase in most subjects without treatment during early HIV-1 infection, suggesting an accrual of intrathecal inflammation, a major contributor to neuropathology in HIV infection.
Collapse
|
56
|
Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 2014; 28:2251-8. [PMID: 25022595 DOI: 10.1097/qad.0000000000000400] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE AND DESIGN Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. METHODS CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. RESULTS CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. CONCLUSION Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.
Collapse
|
57
|
Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognitive disease (HAND). J Neurovirol 2014; 20:571-82. [PMID: 25227930 DOI: 10.1007/s13365-014-0279-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/21/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) continues to be prevalent (30-50%) despite plasma HIV-RNA suppression with combination antiretroviral therapy (cART). There is no proven therapy for individuals on suppressive cART with HAND. We have shown that the degree of HIV reservoir burden (HIV DNA) in monocytes appear to be linked to cognitive outcomes. HIV infection of monocytes may therefore be critical in the pathogenesis of HAND. A single arm, open-labeled trial was conducted to examine the effect of maraviroc (MVC) intensification on monocyte inflammation and neuropsychological (NP) performance in 15 HIV subjects on stable 6-month cART with undetectable plasma HIV RNA (<48 copies/ml) and detectable monocyte HIV DNA (>10 copies/10(6) cells). MVC was added to their existing cART regimen for 24 weeks. Post-intensification change in monocytes was assessed using multiparametric flow cytometry, monocyte HIV DNA content by PCR, soluble CD163 (sCD163) by an ELISA, and NP performance over 24 weeks. In 12 evaluable subjects, MVC intensification resulted in a decreased proportion of circulating intermediate (median; 3.06% (1.93, 6.45) to 1.05% (0.77, 2.26)) and nonclassical (5.2% (3.8, 7.9) to 3.2% (1.8, 4.8)) CD16-expressing monocytes, a reduction in monocyte HIV DNA content to zero log10 copies/10(6) cells and in levels of sCD163 of 43% by 24 weeks. This was associated with significant improvement in NP performance among six subjects who entered the study with evidence of mild to moderate cognitive impairment. The results of this study suggest that antiretroviral therapy with potency against monocytes may have efficacy against HAND.
Collapse
|
58
|
Costiniuk CT, Jenabian MA. Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. J Gen Virol 2014; 95:2346-2355. [PMID: 25146006 DOI: 10.1099/vir.0.069641-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major research priority for HIV eradication is the elucidation of the events involved in HIV reservoir establishment and persistence. Cell-to-cell transmission of HIV represents an important area of study as it allows for the infection of cell types which are not easily infected by HIV, leading to the establishment of long-lived viral reservoirs. This phenomenon enables HIV to escape elimination by the immune system. This process may also enable HIV to escape suppressive effects of anti-retroviral drugs. During cell-to-cell transmission of HIV, a dynamic series of events ensues at the virological synapse that promotes viral dissemination. Cell-to-cell transmission involves various types of cells of the immune system and this mode of transmission has been shown to have an important role in sexual and mother-to-child transmission of HIV and spread of HIV within the central nervous system and gut-associated lymphoid tissues. There is also evidence that cell-to-cell transmission of HIV occurs between thymocytes and renal tubular cells. Herein, following a brief review of the processes involved at the virological synapse, evidence supporting the role for cell-to-cell transmission of HIV in the maintenance of the HIV reservoir will be highlighted. Therapeutic considerations and future directions for this area of research will also be discussed.
Collapse
Affiliation(s)
- Cecilia T Costiniuk
- Department of Medicine, Divisions of Infectious Diseases/Chronic Viral Illness Service and Lachine Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
59
|
Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS 2014; 28:1579-91. [PMID: 24752083 PMCID: PMC4086755 DOI: 10.1097/qad.0000000000000303] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging.
Collapse
|
60
|
Spudich SS. CROI 2014: Neurologic complications of HIV infection. TOPICS IN ANTIVIRAL MEDICINE 2014; 22:594-601. [PMID: 24901885 PMCID: PMC6148910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
A shift in focus in the field of neuroHIV was clearly manifest at the 2014 Conference on Retroviruses and Opportunistic Infections (CROI), where a major emphasis was on the milder forms of neurologic morbidity, including cognitive impairment, seen in well-treated patients. Mechanisms of this persistent abnormality were investigated, including extensive analysis of the prevalence and associations of persistent HIV detection in cerebrospinal fluid (CSF) and characterization of persistent CNS immune activation. Another key emphasis was the early establishment of HIV replication and inflammation within the central nervous system (CNS) and the potentially salutary effect of very early HIV diagnosis and treatment in protecting the CNS from HIV-related injury. Mitochondrial function was identified as a potential mediator of a number of aspects of HIV-associated CNS dysfunction, including neurotoxicity associated with efavirenz, host genetic determinants of HIV-associated neurocognitive disorders (HAND), associations with direct measures of mitochondria in CSF, and metabolomic screening of CSF in HIV-infected subjects and those with HAND. Many studies employed laboratory rather than neuropsychologic end points, with a major focus on CSF biomarkers. Overall, neuroHIV presentations at CROI 2014 provided new insights into pathogenesis and treatment of the CNS, raising new challenges for researchers and practitioners aiming to optimize the status of the brain in people living with HIV infection.
Collapse
|
61
|
Harbison C, Zhuang K, Gettie A, Blanchard J, Knight H, Didier P, Cheng-Mayer C, Westmoreland S. Giant cell encephalitis and microglial infection with mucosally transmitted simian-human immunodeficiency virus SHIVSF162P3N in rhesus macaques. J Neurovirol 2014; 20:62-72. [PMID: 24464410 DOI: 10.1007/s13365-013-0229-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/17/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
Neurocognitive disorders such as dementia and cognitive/motor impairments are among the most significant complications associated with human immunodeficiency virus (HIV) infection, especially in aging populations, yet the pathogenesis remains poorly understood. Activated macrophages and microglia in white matter along with the hallmark multinucleated giant cells are prominent features of HIV encephalitis (HIVE) and of several simian immunodeficiency virus (SIV) models. While infected microglia have been demonstrated in HIVE, this feature is not routinely seen in experimental infections in rhesus macaques using SIV or chimeric simian/HIV (SHIV) strains, limiting utility in HIV-1 pathogenesis and treatment studies. Here, 50 rhesus macaques were inoculated with the CCR5 (R5)-tropic SHIVSF162P3N virus by one of three routes: intravenously (n = 9), intrarectally (n = 17), or intravaginally (n = 24). Forty-three monkeys became viremic, 26 developed AIDS, and 7 (7/26, 27 %) developed giant cell SIV encephalitis (SIVE). Rapid progressor phenotype was evident in five of seven (71 %) macaques with SIVE, and expansion to utilize the CXCR4 coreceptor (X4 coreceptor switch) was observed in four out of seven (57 %). SIVE lesions were present in gray and white matter in the cerebrum, cerebellum, thalamus, and brain stem of affected animals. Lesions were composed of virally infected CD68(+), CD163(+), and HLA-DR(+) macrophages accompanied by white matter damage, necrosis, and astroglial and microglial activation. Importantly, microglial infection was observed, which makes R5 SHIVSF162P3N infection of macaques an attractive animal model not only to study transmission and HIVE pathogenesis but also to conduct preclinical evaluation of therapeutic interventions aimed at eradicating HIV-1 from the central nervous system (CNS).
Collapse
Affiliation(s)
- Carole Harbison
- Division of Comparative Medicine and Pathology, New England Primate Research Center, Harvard Medical School, Southborough, MA, 01772, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Neopterin in Diagnosis and Monitoring of Infectious Diseases. J Biomark 2013; 2013:196432. [PMID: 26317013 PMCID: PMC4437389 DOI: 10.1155/2013/196432] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/28/2013] [Indexed: 12/01/2022] Open
Abstract
Neopterin is produced by activated monocytes, macrophages, and dendritic cells upon stimulation by interferon gamma produced by T-lymphocytes. Quantification of neopterin in body fluids has been achieved by standard high-performance liquid chromatography, radioimmunoassays, and enzyme-linked immunosorbent assays. Neopterin levels predict HIV-related mortality more efficiently than clinical manifestations. Successful highly active antiretroviral therapy is associated with a decrease in neopterin levels. Elevated neopterin levels were associated with hepatitis by hepatitis A, B, and C viruses. Serum neopterin levels were found to be a predictor of response to treatment of chronic HCV infection with pegylated interferon combined with ribavirin. Neopterin levels of patients with pulmonary tuberculosis were found to be higher in patients with more extensive radiological changes. Elimination of blood donors with elevated neopterin levels to reduce risk of transmission of infections with known and unknown viral pathogens has been undertaken. Neopterin measurement is hereby more cost effective but less sensitive than screening using polymerase chain reaction based assays. In conclusion neopterin is a nonspecific marker of activated T-helper cell 1 dominated immune response. It may be a useful marker for monitoring of infectious disease activity during treatment and for more accurate estimation of extent of disease and prognosis.
Collapse
|
63
|
Abstract
The spectrum of HIV-associated neurocognitive disorder (HAND) has been dramatically altered in the setting of widely available effective antiretroviral therapy (ART). Once culminating in dementia in many individuals infected with HIV, HAND now typically manifests as more subtle, though still morbid, forms of cognitive impairment in persons surviving long-term with treated HIV infection. Despite the substantial improvement in severity of this disorder, the fact that neurologic injury persists despite ART remains a challenge to the community of patients, providers and investigators aiming to optimize quality of life for those living with HIV. Cognitive dysfunction in treated HIV may reflect early irreversible CNS injury accrued before ART is typically initiated, ongoing low-level CNS infection and progressive injury in the setting of ART, or comborbidities including effects of treatment which may confound the beneficial reduction in viral replication and immune activation effected by ART.
Collapse
|
64
|
Milush JM, Chen HL, Atteberry G, Sodora DL. Early detection of simian immunodeficiency virus in the central nervous system following oral administration to rhesus macaques. Front Immunol 2013; 4:236. [PMID: 23966995 PMCID: PMC3743037 DOI: 10.3389/fimmu.2013.00236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/31/2013] [Indexed: 12/05/2022] Open
Abstract
The timing of HIV dissemination to the central nervous system (CNS) has the potential to have important implications regarding HIV disease progression and treatment. The earlier HIV enters the CNS the more difficult it might be to remove with antiretroviral therapy. Alternatively, HIV may only enter the CNS later in the course of disease as a result of disruption of the blood-brain-barrier. We utilized the simian immunodeficiency virus (SIV) infection of rhesus macaques to evaluate the oral route of infection and the subsequent spread of SIV to the CNS during the acute infection phase. A high dose oral SIV challenge was utilized to ensure a successful infection and permit the evaluation of CNS spread during the first 1–14 days post-infection. Ultrasensitive nested PCR was used to detect SIV gag DNA in the brains of macaques at 1–2 days post-infection and identified SIV gag DNA in the brain tissues from three of four macaques. This SIV DNA was also present following perfusion of the macaque brains, providing evidence that it was not residing in the circulating blood but in the brain tissue itself. The diversity of the viral envelope V1–V2 region at early times post-infection indicated that the brain viral variants were similar to variants obtained from lymph nodes. This genetic similarity between SIV obtained from lymphoid and brain tissues suggests that the founder population of viral species entered and subsequently spread without any evidence of brain-specific SIV selection. The relatively rapid appearance of SIV within the CNS tissue following oral transmission may also occur during HIV transmission where it may impact disease course as well as representing a challenge for long-term therapies and future viral eradication modalities.
Collapse
Affiliation(s)
- Jeffrey M Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco , San Francisco, CA , USA
| | | | | | | |
Collapse
|
65
|
Price RW, Peterson J, Fuchs D, Angel TE, Zetterberg H, Hagberg L, Spudich S, Smith RD, Jacobs JM, Brown JN, Gisslen M. Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection. J Neuroimmune Pharmacol 2013; 8:1147-58. [PMID: 23943280 PMCID: PMC3889225 DOI: 10.1007/s11481-013-9491-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco General Hospital, Bldg 1 Room 101, Potrero Avenue, Box 0870 1001, San Francisco, CA, 94110, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Yilmaz A, Yiannoutsos CT, Fuchs D, Price RW, Crozier K, Hagberg L, Spudich S, Gisslén M. Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy. J Neuroinflammation 2013; 10:62. [PMID: 23664008 PMCID: PMC3657550 DOI: 10.1186/1742-2094-10-62] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022] Open
Abstract
Background Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. Methods CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Results Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. Conclusions After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation.
Collapse
Affiliation(s)
- Aylin Yilmaz
- Department of Infectious Diseases, University of Gothenburg, Journalvagen 10, Gothenburg, 416 50, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Marked increase of the astrocytic marker S100B in the cerebrospinal fluid of HIV-infected patients on LPV/r-monotherapy. AIDS 2013; 27:203-10. [PMID: 23032410 DOI: 10.1097/qad.0b013e32835a9a4a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To determine changes of cerebrospinal fluid (CSF) biomarkers of patients on monotherapy with lopinavir/ritonavir. DESIGN The Monotherapy Switzerland/Thailand study (MOST) trial compared monotherapy with ritonavir-boosted lopinavir with continued therapy. The trial was prematurely stopped due to virological failure in six patients on monotherapy. It, thus, offers a unique opportunity to assess brain markers in the early stage of HIV virological escape. METHODS : Sixty-five CSF samples (34 on continued therapy and 31 on monotherapy) from 49 HIV-positive patients enrolled in MOST. Using enzyme-linked immunosorbent assay, we determined the CSF concentration of S100B (astrocytosis), neopterin (inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-β 1-42 (Aβ), the latter three indicating neuronal damage. Controls were CSF samples of 29 HIV-negative patients with Alzheimer dementia. RESULTS In the CSF of monotherapy, concentrations of S100B and neopterin were significantly higher than in continued therapy (P = 0.006 and P = 0.013, respectively) and Alzheimer dementia patients (P < 0.0001 and P = 0.0005, respectively). In Alzheimer dementia, concentration of Aβ was lower than in monotherapy (P = 0.005) and continued therapy (P = 0.016) and concentrations of tTau were higher than in monotherapy (P = 0.019) and continued therapy (P = 0.001). There was no difference in pTau among the three groups. After removal of the 16 CSF with detectable viral load in the blood and/or CSF, only S100B remained significantly higher in monotherapy than in the two other groups. CONCLUSION Despite full viral load-suppression in blood and CSF, antiretroviral monotherapy with lopinavir/ritonavir can raise CSF levels of S100B, suggesting astrocytic damage.
Collapse
|
68
|
Abstract
Severe HIV-associated neurocognitive disorders (HAND), such as HIV-associated dementia, and opportunistic CNS infections are now rare complications of HIV infection due to comprehensive highly active antiretroviral therapy (HAART). By contrast, mild to moderate neurocognitive disorders remain prevalent, despite good viral control in peripheral compartments. HIV infection seems to provoke chronic CNS injury that may evade systemic HAART. Penetration of antiretroviral drugs across the blood-brain barrier might be crucial for the treatment of HAND. This review identifies and evaluates the available clinical evidence on CSF penetration properties of antiretroviral drugs, addressing methodological issues and discussing the clinical relevance of drug concentration assessment. Although a substantial number of studies examined CSF concentrations of antiretroviral drugs, there is a need for adequate, well designed trials to provide more valid drug distribution profiles. Neuropsychological benefits and neurotoxicity of potentially CNS-active drugs require further investigation before penetration characteristics will regularly influence therapeutic strategies and outcome.
Collapse
Affiliation(s)
- Christine Eisfeld
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | | | | | | |
Collapse
|
69
|
Nyamweya S, Townend J, Zaman A, Steele SJ, Jeffries D, Rowland-Jones S, Whittle H, Flanagan KL, Jaye A. Are plasma biomarkers of immune activation predictive of HIV progression: a longitudinal comparison and analyses in HIV-1 and HIV-2 infections? PLoS One 2012; 7:e44411. [PMID: 22970212 PMCID: PMC3438191 DOI: 10.1371/journal.pone.0044411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/02/2012] [Indexed: 11/21/2022] Open
Abstract
Background Chronic immune activation is a hallmark of HIV infection and has been associated with disease progression. Assessment of soluble biomarkers indicating immune activation provide clues into pathogenesis and hold promise for the development of point-of-care monitoring of HIV in resource-poor-settings. Their evaluation in cohort resources is therefore needed to further their development and use in HIV research. Methodology/Principal Findings Longitudinal evaluation of βeta-2 microglobulin (β-2 m), neopterin and suPAR soluble urokinase-type plasminogen activator receptor (suPAR) was performed with archived plasma samples to predict disease progression and provided the first direct comparison of levels in HIV-1 and HIV-2 infections. At least 2095 samples from 137 HIV-1 and 198 HIV-2 subjects with starting CD4% of ≥28 and median follow up of 4 years were analysed. All biomarkers were correlated negatively to CD4% and positively to viral load and to each other. Analyses in subjects living for ≥5 years revealed increases in median β-2 m and neopterin and decreases in CD4% over this period and the odds of death within 5 years were positively associated with baseline levels of β-2 m and neopterin. ROC analyses strengthened the evidence of elevation of biomarkers in patients approaching death in both HIV-1 and HIV-2 infections. Regression models showed that rates of biomarker fold change accelerated from 6–8 years before death with no significant differences between biomarker levels in HIV-1 and HIV-2 at equal time points prior to death.An ‘immune activation index’ analysis indicative of biomarker levels at equivalent viral loads also showed no differences between the two infections. Conclusions/Significance Our results suggest that β-2 m and neopterin are useful tools for disease monitoring in both HIV-1 and HIV-2 infections, whereas sUPAR performed less well. Levels of immune activation per amount of virus were comparable in HIV-1 and HIV-2 infected subjects.
Collapse
Affiliation(s)
- Samuel Nyamweya
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | - John Townend
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | - Akram Zaman
- Medical Research Council (UK), Banjul, The Gambia, West Africa
- Centre for Infections, Health Protection Agency, London, United Kingdom
| | | | - David Jeffries
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | | | - Hilton Whittle
- Medical Research Council (UK), Banjul, The Gambia, West Africa
| | | | - Assan Jaye
- Medical Research Council (UK), Banjul, The Gambia, West Africa
- * E-mail: .
| |
Collapse
|
70
|
Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr 2012; 60:234-43. [PMID: 22569268 DOI: 10.1097/qai.0b013e318256f3bc] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Activated monocytes/macrophages play a role in severe forms of HIV-associated neurocognitive disorders (HAND), but little is known about the mechanisms driving milder forms that are prevalent despite combination antiretroviral therapy (cART). To examine relationships of monocyte activation markers to HAND of varying severity, we compared plasma and cerebrospinal fluid (CSF) biomarker levels with neurocognitive test scores in HIV+ subjects. METHODS Plasma and CSF soluble CD14 (sCD14), CCL2, and interleukin (IL) 6 were measured by enzyme-linked immunosorbent assay in 67 HIV+ subjects with nadir CD4 <300, and CSF inflammatory biomarkers were measured by multiplex assay in 14 subjects on suppressive cART. RESULTS Eighty-two percent were on cART, with 31% having undetectable plasma viral load (VL). CSF sCD14 was increased in subjects with impaired neurocognitive testing (P = 0.02), correlated inversely with global T scores in subjects with detectable but not undetectable plasma VL (P = 0.02), and yielded higher area under the receiver operating characteristic curve values for predicting impaired T scores (0.659) than plasma or CSF VL and current or nadir CD4 counts in single-marker and multivariate models. CSF sCD14, IL-6, IL-8, CCL2, CCL3, CXCL10, and interferon (IFN) gamma were increased in subjects on suppressive cART regardless of cognitive status and predicted patient class in unsupervised analyses, with IL-8, CCL2, and IFNγ explaining most of the variance. CONCLUSIONS CSF sCD14 is associated with impaired neurocognitive testing in patients with HIV on nonsuppressive cART, suggesting potential utility as a biomarker to monitor HAND progression. CSF sCD14, IL-6, IL-8, CCL2, CCL3, CXCL10, and IFNγ remain elevated in patients on suppressive cART regardless of cognitive status, implying ongoing intrathecal inflammation even in the absence of clinical manifestations.
Collapse
|
71
|
Virological Response in Cerebrospinal Fluid to Antiretroviral Therapy in a Large Italian Cohort of HIV-Infected Patients with Neurological Disorders. AIDS Res Treat 2012; 2012:708456. [PMID: 22957220 PMCID: PMC3432519 DOI: 10.1155/2012/708456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/29/2012] [Accepted: 07/11/2012] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to analyse the effect of antiretroviral (ARV) therapy and single antiretroviral drugs on cerebrospinal fluid (CSF) HIV-RNA burden in HIV-infected patients affected by neurological disorders enrolled in a multicentric Italian cohort. ARVs were considered “neuroactive” from literature reports. Three hundred sixty-three HIV-positive patients with available data from paired plasma and CSF samples, were selected. One hundred twenty patients (33.1%) were taking ARVs at diagnosis of neurological disorder. Mean CSF HIV-RNA was significantly higher in naïve than in experienced patients, and in patients not taking ARV than in those on ARV. A linear correlation between CSF HIV-RNA levels and number of neuroactive drugs included in the regimen was also found (r = −0.44, P < 0.001). Low -plasma HIV-RNA and the lack of neurocognitive impairment resulted in independently associated to undetectable HIV-RNA. Taking nevirapine or efavirenz, or regimen including NNRTI, NNRTI plus PI or boosted PI, was independently associated to an increased probability to have undetectable HIV-RNA in CSF. The inclusion of two or three neuroactive drugs in the ARV regimen was independently associated to undetectable viral load in CSF. Our data could be helpful in identifying ARV regimens able to better control HIV replication in the CNS sanctuary, and could be a historical reference for further analyses.
Collapse
|
72
|
Spudich S, González-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2012; 2:a007120. [PMID: 22675662 PMCID: PMC3367536 DOI: 10.1101/cshperspect.a007120] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV-associated central nervous system (CNS) injury continues to be clinically significant in the modern era of HIV infection and therapy. A substantial proportion of patients with suppressed HIV infection on optimal antiretroviral therapy have impaired performance on neuropsychological testing, suggesting persistence of neurological abnormalities despite treatment and projected long-term survival. In the underresourced setting, limited accessibility to antiretroviral medications means that CNS complications of later-stage HIV infection continue to be a major concern. This article reviews key recent advances in our understanding of the neuropathogenesis of HIV, focusing on basic and clinical studies that reveal viral and host features associated with viral neuroinvasion, persistence, and immunopathogenesis in the CNS, as well as issues related to monitoring and treatment of HIV-associated CNS injury in the current era.
Collapse
Affiliation(s)
- Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
73
|
Angel TE, Jacobs JM, Spudich SS, Gritsenko MA, Fuchs D, Liegler T, Zetterberg H, Camp DG, Price RW, Smith RD. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin Proteomics 2012; 9:3. [PMID: 22433316 PMCID: PMC3353874 DOI: 10.1186/1559-0275-9-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/20/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment. RESULTS After establishing an accurate mass and time (AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node. CONCLUSIONS Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Torti C, Focà E, Cesana BM, Lescure FX. Asymptomatic neurocognitive disorders in patients infected by HIV: fact or fiction? BMC Med 2011; 9:138. [PMID: 22204606 PMCID: PMC3273440 DOI: 10.1186/1741-7015-9-138] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 12/21/2022] Open
Abstract
Neurocognitive disorders are emerging as a possible complication in patients infected with HIV. Even if asymptomatic, neurocognitive abnormalities are frequently detected using a battery of tests. This supported the creation of asymptomatic neurocognitive impairment (ANI) as a new entity. In a recent article published in BMC Infectious Diseases, Magnus Gisslén and colleagues applied a statistical approach, concluding that there is an overestimation of the actual problem. In fact, about 20% of patients are classified as neurocognitively impaired without a clear impact on daily activities. In the present commentary, we discuss the clinical implications of their findings. Although a cautious approach would indicate a stricter follow-up of patients affected by this disorder, it is premature to consider it as a proper disease. Based on a review of the data in the current literature we conclude that it is urgent to conduct more studies to estimate the overall risk of progression of the asymptomatic neurocognitive impairment. Moreover, it is important to understand whether new biomarkers or neuroimaging tools can help to identify better the most at risk population. Please see related article: http://www.biomedcentral.com/1471-2334/11/356.
Collapse
Affiliation(s)
- Carlo Torti
- Institute for Infectious and Tropical Diseases, University of Brescia, P.le Spedali Civili, 125123 Brescia, Italy.
| | | | | | | |
Collapse
|
75
|
Dahl V, Lee E, Peterson J, Spudich SS, Leppla I, Sinclair E, Fuchs D, Palmer S, Price RW. Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J Infect Dis 2011; 204:1936-45. [PMID: 22021620 DOI: 10.1093/infdis/jir667] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA by antiretroviral therapy to levels below clinical assay detection, infection and immune activation may persist within the central nervous system and possibly lead to continued brain injury. We hypothesized that intensifying therapy would decrease cerebrospinal fluid (CSF) infection and immune activation. METHODS This was a 12-week, randomized, open-label pilot study comparing addition of the integrase inhibitor raltegravir to no treatment augmentation, with an option for rollover to raltegravir. CSF and plasma were analyzed for HIV-1 RNA using a single-copy assay. CSF and blood immune activation was assessed by neopterin concentrations and CD4(+) and CD8(+) T-cell surface antigen expression. RESULTS Primary analysis compared 14 intensified (including rollovers) to 9 nonintensified subject experiences. Median HIV-1 RNA levels in all samples were lower in CSF (<.3 copies/mL) than in plasma (<.9 copies/mL; P < .0001), and raltegravir did not reduce HIV-1 RNA, CSF neopterin, or CD4(+) and CD8(+) T-cell activation. CONCLUSIONS Raltegravir intensification did not reduce intrathecal immunoactivation or alter CSF HIV-1 RNA levels in subjects with baseline viral suppression. With and without raltegravir intensification, HIV RNA levels in CSF were very low in the enrolled subjects. Clinical Trials Registration. NCT00672932.
Collapse
Affiliation(s)
- Viktor Dahl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Perez-Valero I, Bayon C, Cambron I, Gonzalez A, Arribas JR. Protease inhibitor monotherapy and the CNS: peace of mind? J Antimicrob Chemother 2011; 66:1954-62. [PMID: 21672918 DOI: 10.1093/jac/dkr229] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Boosted protease inhibitor (bPI) monotherapy has demonstrated high efficacy for maintaining viral suppression in the blood. bPI monotherapy has the theoretical advantage of avoiding the long-term toxicity associated with the use of nucleoside reverse transcriptase inhibitors. Concern about the efficacy of bPI monotherapy in preventing HIV replication in the CNS is one reason that has precluded the widespread use of this therapeutic strategy. In several studies, a low CNS penetration-effectiveness (CPE) score has been associated with a higher risk of virological failure in the CNS and with neurocognitive impairment. Since the CPE score is substantially lower for bPI monotherapy than for triple-drug highly active antiretroviral therapy (HAART), it has been postulated that bPI monotherapy might have a higher risk for CNS virological failure and neurocognitive impairment. However, the available evidence, although limited, does no support this notion. Lopinavir and darunavir achieve CSF drug levels that are sufficient to fully suppress HIV replication. In clinical trials, when compared with triple-drug HAART, patients receiving bPI monotherapy with lopinavir and darunavir who maintain full virological suppression in plasma do not appear to be at a higher risk of discordant HIV replication in the CSF or of neuropsychiatric adverse events. It should be noted that several studies have suggested that nucleoside reverse transcriptase inhibitors might have neurotoxic effects and, consequently, bPI monotherapy might be able to avoid the CNS toxicity induced by nucleosides. It is clear that more studies including detailed neurocognitive testing are needed to completely establish the risk/benefit ratio of bPI monotherapy or triple-drug HAART for preserving neurocognitive function in HIV-infected patients.
Collapse
Affiliation(s)
- Ignacio Perez-Valero
- Servicio de Medicina Interna, Unidad VIH, Hospital La Paz, IdiPAZ, Madrid, Spain
| | | | | | | | | |
Collapse
|
77
|
Ho EL, Spudich SS, Lee E, Fuchs D, Sinclair E, Price RW. Minocycline fails to modulate cerebrospinal fluid HIV infection or immune activation in chronic untreated HIV-1 infection: results of a pilot study. AIDS Res Ther 2011; 8:17. [PMID: 21569420 PMCID: PMC3117676 DOI: 10.1186/1742-6405-8-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/12/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Minocycline is a tetracycline antibiotic that has been shown to attenuate central nervous system (CNS) lentivirus infection, immune activation, and brain injury in model systems. To initiate assessment of minocycline as an adjuvant therapy in human CNS HIV infection, we conducted an open-labelled pilot study of its effects on cerebrospinal fluid (CSF) and blood biomarkers of infection and immune responses in 7 viremic subjects not taking antiretroviral therapy. RESULTS There were no discernable effects of minocycline on CSF or blood HIV-1 RNA, or biomarkers of immune activation and inflammation including: CSF and blood neopterin, CSF CCL2, CSF white blood cell count, and expression of cell-surface activation markers on CSF and blood T lymphocytes and monocytes. CONCLUSIONS This pilot study of biological responses to minocycline suggests little potential for its use as adjunctive antiviral or immunomodulating therapy in chronic untreated HIV infection.
Collapse
|
78
|
Lescure FX, Omland LH, Engsig FN, Roed C, Gerstoft J, Pialoux G, Kronborg G, Larsen CS, Obel N. Incidence and impact on mortality of severe neurocognitive disorders in persons with and without HIV infection: a Danish nationwide cohort study. Clin Infect Dis 2011; 52:235-43. [PMID: 21288850 DOI: 10.1093/cid/ciq041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The risk of neurocognitive disorders in human immunodeficiency virus (HIV)-infected patients in the era of highly active antiretroviral therapy (HAART) is controversial. We aimed to compare the incidence and impact on mortality of severe neurocognitive disorders (SNCDs) in HIV-infected patients with that of the background population. METHODS The method used was a nationwide, population-based cohort study using Danish registries. We calculated incidence rates, incidence rate ratios, mortality rate ratios, and Kaplan-Meier tables to estimate the incidence of and survival after SNCD in HIV-infected patients, compared with a general population control cohort matched by age and sex. RESULTS We observed 32 cases of SNCDs among 4452 HIV-infected patients and 120 cases of SNCDs among 62 328 population control subjects. The overall risk of SNCD among HIV-infected patients was 1.0 case per 1000 person-years (PYR), compared with 0.23 cases per 1000 PYR for population control subjects but became 0.35 cases/1000 PYR after 2004, compared with 0.27 cases/1000 PYR in population control subjects. The absence of HAART and a low CD4 lymphocyte count increased the risk of SNCD. The mortality among HIV-infected patients with SNCD was higher than that among population controls with SNCD (median survival, 4.3 years vs 9.7 years [P = .02]). CONCLUSION HIV-infected patients have an increased risk of SNCD, but the risk is low and has, in recent years, become comparable to that seen in the background population. In contrast, the mortality remains high among HIV-infected patients diagnosed with SNCD.
Collapse
Affiliation(s)
- François-Xavier Lescure
- Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej 9, Rigshospitalet.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Spudich SS, Ances BM. Central nervous system complications of HIV infection. TOPICS IN ANTIVIRAL MEDICINE 2011; 19:48-57. [PMID: 21868822 PMCID: PMC6148949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Issues relevant to the nervous system garnered substantial attention at the 18th Conference on Retroviruses and Opportunistic Infections. Several topics emerged as areas of importance both for informing current understanding of HIV-related neurologic disorders and their treatment, and for spurring future investigations. Measurable biomarkers of HIV-associated neurocognitive disorder (HAND) were a major theme, with studies ranging from new investigations of known laboratory and imaging markers to identification of novel molecules that might be investigated as potential means to follow disease activity as well as to better understand etiology of disease. Studies of pathogenesis of HAND and simian immunodeficiency virus-mediated neurologic injury added to prior understanding of lentivirus neuropathogenesis. Another broad area of investigation was the interplay between treatment with antiretroviral or adjunctive therapies and biomarkers of HAND. New data were presented on the potential importance of acute and early infection on the integrity of the central nervous system, complemented by studies of the effects of early treatment interventions.
Collapse
|
80
|
Price RW. Impact of Antiretroviral Therapy on HIV-Related Brain Injury. Clin Infect Dis 2011; 52:244-7. [DOI: 10.1093/cid/ciq052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Richard W. Price
- San Francisco General Hospital (SFGH), San Francisco, California
| |
Collapse
|
81
|
Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, Price RW, Gisslén M. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 2010; 202:1819-25. [PMID: 21050119 PMCID: PMC3052942 DOI: 10.1086/657342] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 07/29/2010] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. METHODS Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. RESULTS Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. CONCLUSIONS Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.
Collapse
Affiliation(s)
- Arvid Edén
- Department of Infectious Diseases, The Sahlgrenska Academy at University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Anand P, Springer SA, Copenhaver MM, Altice FL. Neurocognitive impairment and HIV risk factors: a reciprocal relationship. AIDS Behav 2010; 14:1213-26. [PMID: 20232242 PMCID: PMC2906682 DOI: 10.1007/s10461-010-9684-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive impairment among populations at risk for HIV poses a significant barrier to managing risk behaviors. The impact of HIV and several cofactors, including substance abuse and mental illness, on cognitive function is discussed in the context of HIV risk behaviors, medication adherence, and risk-reduction interventions. Literature suggests that cognitive impairment is intertwined in a close, reciprocal relationship with both risk behaviors and medication adherence. Not only do increased risk behaviors and suboptimal adherence exacerbate cognitive impairment, but cognitive impairment also reduces the effectiveness of interventions aimed at optimizing medication adherence and reducing risk. In order to be effective, risk-reduction interventions must therefore take into account the impact of cognitive impairment on learning and behavior.
Collapse
Affiliation(s)
- Pria Anand
- Department of Medicine, Section of Infectious Diseases, AIDS Program, Yale University School of Medicine, 135 College Street, Suite 323, New Haven, CT 06510-2283, USA
| | - Sandra A. Springer
- Department of Medicine, Section of Infectious Diseases, AIDS Program, Yale University School of Medicine, 135 College Street, Suite 323, New Haven, CT 06510-2283, USA
| | - Michael M. Copenhaver
- Departments of Allied Health Sciences and Psychology, University of Connecticut, 358 Mansfield Road, Unit 2101, Storrs, CT 06269, USA
| | - Frederick L. Altice
- Department of Medicine, Section of Infectious Diseases, AIDS Program, Yale University School of Medicine, 135 College Street, Suite 323, New Haven, CT 06510-2283, USA
| |
Collapse
|
83
|
Abstract
Antiretroviral therapy of HIV infection has changed a uniformly fatal into a potentially chronic disease. There are now 17 drugs in common use for HIV treatment. Patients who can access and adhere to combination therapy should be able to achieve durable, potentially lifelong suppression of HIV replication. Despite the unquestioned success of antiretroviral therapy, limitations persist. Treatment success needs strict lifelong drug adherence. Although the widely used drugs are generally well tolerated, most have some short-term toxic effects and all have the potential for both known and unknown long-term toxic effects. Drug and administration costs limit treatment in resource-poor regions, and are a growing concern even in resource rich settings. Finally, complete or near complete control of viral replication does not fully restore health. Long-term treated patients who are on an otherwise effective regimen often show persistent immune dysfunction and have higher than expected risk for various non-AIDS-related complications, including heart, bone, liver, kidney, and neurocognitive diseases.
Collapse
Affiliation(s)
- Paul A Volberding
- Department of Medicine, University of California San Francisco, San Francisco, CA 94121, USA.
| | | |
Collapse
|
84
|
Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, Price RW, Fuchs D. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 2010; 7:15. [PMID: 20525234 PMCID: PMC2890504 DOI: 10.1186/1742-6405-7-15] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/03/2010] [Indexed: 11/24/2022] Open
Abstract
HIV-1 invades the central nervous system (CNS) in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF). In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients. In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays (<50 copies HIV RNA/mL), CSF neopterin often remains mildly elevated, indicating persistent low-level intrathecal immune activation and raising the important questions of whether this elevation is driven by continued CNS infection and whether it causes continued indolent CNS injury. Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.
Collapse
|
85
|
Cerebrospinal fluid in HIV-1 systemic viral controllers: absence of HIV-1 RNA and intrathecal inflammation. AIDS 2010; 24:1001-5. [PMID: 20299968 DOI: 10.1097/qad.0b013e328331e15b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND A subset of HIV-infected patients, termed 'elite' viral controllers, maintain undetectable plasma HIV RNA levels in the absence of therapy. In this group, host-mediated viral control may be accompanied by chronic systemic inflammation. It is unknown whether either infection or chronic inflammation is present within the central nervous system of these individuals. METHODS Cross-sectional analysis compared cerebrospinal fluid (CSF) HIV RNA and biomarkers of intrathecal inflammation in eight controllers (plasma HIV RNA levels <50 copies/ml) with 26 HIV-uninfected individuals, 25 untreated individuals HIV-infected, viremic individuals, and 23 HIV-infected individuals with treatment-mediated viral suppression (plasma HIV RNA levels <50 copies/ml). RESULTS All controllers had CSF HIV RNA levels below 2.5 copies/ml. CSF white blood cell (WBC) counts and CSF: plasma albumin ratios in the controllers were similar to those in both HIV-uninfected individuals and antiretroviral therapy-suppressed HIV-infected individuals. CSF neopterin, MCP-1, and IP-10 concentrations were also not different in the controllers from either HIV-uninfected or treated HIV-infected individuals. CONCLUSION The character of CSF HIV infection and degree of immunoactivation in controllers is comparable to that of HIV-uninfected and antiretroviral therapy-suppressed HIV-infected individuals, but distinct from that of untreated, viremic HIV-infected individuals.
Collapse
|
86
|
Karlsson U, Antonsson L, Repits J, Medstrand P, Owman C, Kidd-Ljunggren K, Hagberg L, Svennerholm B, Jansson M, Gisslén M, Ljungberg B. Mode of coreceptor use by R5 HIV type 1 correlates with disease stage: a study of paired plasma and cerebrospinal fluid isolates. AIDS Res Hum Retroviruses 2009; 25:1297-1305. [PMID: 20001314 DOI: 10.1089/aid.2009.0069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Through the use of chimeric CXCR4/CCR5 receptors we have previously shown that CCR5-tropic (R5) HIV-1 isolates acquire a more flexible receptor use over time, and that this links to a reduced viral susceptibility to inhibition by the CCR5 ligand RANTES. These findings may have relevance with regards to the efficacy of antiretroviral compounds that target CCR5/virus interactions. Compartmentalized discrepancies in coreceptor use may occur, which could also affect the efficacy of these compounds at specific anatomical sites, such as within the CNS. In this cross-sectional study we have used wild-type CCR5 and CXCR4 as well as chimeric CXCR4/CCR5 receptors to characterize coreceptor use by paired plasma and cerebrospinal fluid (CSF) isolates from 28 HIV-1-infected individuals. Furthermore, selected R5 isolates, with varying chimeric receptor use, were tested for sensitivity to inhibition by the CCR5 antagonist TAK-779. Discordant CSF/plasma virus coreceptor use was found in 10/28 patients. Low CD4+ T cell counts correlated strongly with a more flexible mode of R5 virus CCR5 usage, as disclosed by an increased ability to utilize chimeric CXCR4/CCR5 receptors, specifically receptor FC-2. Importantly, an elevated ability to utilize chimeric receptors correlated with a reduced susceptibility to inhibition by TAK-779. Our findings show that a discordant CSF and plasma virus coreceptor use is not uncommon. Furthermore, we provide support for an emerging paradigm, where the acquisition of a more flexible mode of CCR5 usage is a key event in R5 virus pathogenesis. This may, in turn, negatively impact the efficacy of CCR5 antagonist treatment in late stage HIV-1 disease.
Collapse
Affiliation(s)
- Ulf Karlsson
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Liselotte Antonsson
- Department of Experimental Medical Science, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Johanna Repits
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Patrik Medstrand
- Department of Experimental Medical Science, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Christer Owman
- Department of Experimental Medical Science, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Karin Kidd-Ljunggren
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Svennerholm
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, Sweden
- Department of Virology, Immunology and Vaccinology, Institute of Infectious Disease Control, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Ljungberg
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
87
|
Lindkvist A, Edén A, Norström MM, Gonzalez VD, Nilsson S, Svennerholm B, Karlsson AC, Sandberg JK, Sönnerborg A, Gisslén M. Reduction of the HIV-1 reservoir in resting CD4+ T-lymphocytes by high dosage intravenous immunoglobulin treatment: a proof-of-concept study. AIDS Res Ther 2009; 6:15. [PMID: 19570221 PMCID: PMC2713257 DOI: 10.1186/1742-6405-6-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/01/2009] [Indexed: 11/12/2022] Open
Abstract
Background The latency of HIV-1 in resting CD4+ T-lymphocytes constitutes a major obstacle for the eradication of virus in patients on antiretroviral therapy (ART). As yet, no approach to reduce this viral reservoir has proven effective. Methods Nine subjects on effective ART were included in the study and treated with high dosage intravenous immunoglobulin (IVIG) for five consecutive days. Seven of those had detectable levels of replication-competent virus in the latent reservoir and were thus possible to evaluate. Highly purified resting memory CD4+ T-cells were activated and cells containing replication-competent HIV-1 were quantified. HIV-1 from plasma and activated memory CD4+ T-cells were compared with single genome sequencing (SGS) of the gag region. T-lymphocyte activation markers and serum interleukins were measured. Results The latent HIV-1 pool decreased with in median 68% after IVIG was added to effective ART. The reservoir decreased in five, whereas no decrease was found in two subjects with detectable virus. Plasma HIV-1 RNA ≥ 2 copies/mL was detected in five of seven subjects at baseline, but in only one at follow-up after 8–12 weeks. The decrease of the latent HIV-1 pool and the residual plasma viremia was preceded by a transitory low-level increase in plasma HIV-1 RNA and serum interleukin 7 (IL-7) levels, and followed by an expansion of T regulatory cells. The magnitude of the viral increase in plasma correlated to the size of the latent HIV-1 pool and SGS of the gag region showed that viral clones from plasma clustered together with virus from activated memory T-cells, pointing to the latent reservoir as the source of HIV-1 RNA in plasma. Conclusion The findings from this uncontrolled proof-of-concept study suggest that the reservoir became accessible by IVIG treatment through activation of HIV-1 gene expression in latently-infected resting CD4+ T-cells. We propose that IVIG should be further evaluated as an adjuvant to effective ART.
Collapse
|
88
|
Yilmaz A, Izadkhashti A, Price RW, Mallon PW, De Meulder M, Timmerman P, Gisslén M. Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals. AIDS Res Hum Retroviruses 2009; 25:457-61. [PMID: 19320601 PMCID: PMC2853865 DOI: 10.1089/aid.2008.0216] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Darunavir is the most recently licensed protease inhibitor currently used in treatment-experienced HIV-infected individuals. Our objective was to determine darunavir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing ritonavir-boosted darunavir. Darunavir concentrations were determined by liquid chromatography tandem mass spectrometry in 14 paired CSF and plasma samples from eight HIV-1-infected individuals. The lower limit of quantification was 5.0 ng/ml. All of the 14 CSF samples had detectable darunavir concentrations with a median darunavir concentration of 34.2 ng/ml (range 15.9-212.0 ng/ml). The median (range) plasma darunavir concentration was 3930 (1800-12900) ng/ml. All CSF samples had detectable darunavir concentrations. Most of them exceeded or were in the same range as levels needed to inhibit replication of wild type virus, making it probable that darunavir, at least to some extent, contributes to the suppression of HIV replication in the central nervous system.
Collapse
Affiliation(s)
- Aylin Yilmaz
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
89
|
Liu J, Gong N, Huang X, Reynolds AD, Mosley RL, Gendelman HE. Neuromodulatory activities of CD4+CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3855-65. [PMID: 19265165 PMCID: PMC2661207 DOI: 10.4049/jimmunol.0803330] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HIV-1-associated neurocognitive impairments are intrinsically linked to microglial immune activation, persistent viral infection, and inflammation. In the era of antiretroviral therapy, more subtle cognitive impairments occur without adaptive immune compromise. We posit that adaptive immunity is neuroprotective, serving in both the elimination of infected cells through CD8(+) cytotoxic T cell activities and the regulation of neuroinflammatory responses of activated microglia. For the latter, little is known. Thus, we studied the neuromodulatory effects of CD4(+) regulatory T cells (Treg; CD4(+)CD25(+)) or effector T cells in HIV-1-associated neurodegeneration. A newly developed HIV-1 encephalitis mouse model was used wherein murine bone marrow-derived macrophages are infected with a full-length HIV-1(YU2)/vesicular stomatitis viral pseudotype and injected into basal ganglia of syngeneic immunocompetent mice. Adoptive transfer of CD3-activated Treg attenuated astrogliosis and microglia inflammation with concomitant neuroprotection. Moreover, Treg-mediated anti-inflammatory activities and neuroprotection were associated with up-regulation of brain-derived neurotrophic factor and glial cell-derived neurotrophic factor expression and down-regulation of proinflammatory cytokines, oxidative stress, and viral replication. Effector T cells showed contrary effects. These results, taken together, demonstrate the importance of Treg in disease control and raise the possibility of their utility for therapeutic strategies.
Collapse
Affiliation(s)
- Jianuo Liu
- Center for Neurovirology and Neurodegenerative Disorders, and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Nan Gong
- Center for Neurovirology and Neurodegenerative Disorders, and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Xiuyan Huang
- Center for Neurovirology and Neurodegenerative Disorders, and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Ashley D. Reynolds
- Center for Neurovirology and Neurodegenerative Disorders, and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
90
|
Antiretroviral treatment effect on immune activation reduces cerebrospinal fluid HIV-1 infection. J Acquir Immune Defic Syndr 2008; 47:544-52. [PMID: 18362693 DOI: 10.1097/qai.0b013e318162754f] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To define the effect of antiretroviral therapy (ART) on activation of T cells in cerebrospinal fluid (CSF) and blood, and interactions of this activation with CSF HIV-1 RNA concentrations. DESIGN Cross-sectional analysis of 14 HIV-negative subjects and 123 neuroasymptomatic HIV-1-infected subjects divided into 3 groups: not on ART (termed "offs"), on ART with plasma HIV-1 RNA >500 copies/mL ("failures"), and on ART with plasma HIV-1 RNA <or=500 copies/mL ("successes"). T-cell activation was measured by coexpression of CD38 and human leukocyte antigen DR (HLA-DR). Other measurements included CSF neopterin and white blood cell (WBC) counts. RESULTS CD8 T-cell activation in CSF and blood was highly correlated across all subjects and was highest in the offs, lower in the failures, and lower still in the successes. While CD8 activation was reduced in failures compared to offs across the range of plasma HIV-1, it maintained a coincident relation to CSF HIV-1 in both viremic groups. In addition to correlation with CSF HIV-1 concentrations, CD8 activation in blood and CSF correlated with CSF WBCs and CSF neopterin. Multivariate analysis confirmed the association of blood CD8 T-cell activation, along with plasma HIV-1 RNA and CSF neopterin, with CSF HIV-1 RNA levels. CONCLUSIONS The similarity of CD8 T-cell activation in blood and CSF suggests these cells move from blood to CSF with only minor changes in CD38/HLA-DR expression. Differences in the relation of CD8 activation to HIV-1 concentrations in the blood and CSF in the 2 viremic groups suggest that changes in immune activation not only modulate CSF HIV-1 replication but also contribute to CSF treatment effects. The magnitude of systemic HIV-1 infection and intrathecal macrophage activation are also important determinants of CSF HIV-1 RNA levels.
Collapse
|
91
|
Price RW, Spudich S. Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis 2008; 197 Suppl 3:S294-306. [PMID: 18447615 PMCID: PMC2628635 DOI: 10.1086/533419] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Central nervous system (CNS) human immunodeficiency virus type 1 (HIV-1) infection begins during primary viremia and continues throughout the course of untreated systemic infection. Although frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection usually is not clinically apparent. In a minority of patients, CNS HIV-1 infection evolves into encephalitis during the late stages of systemic infection, which compromises brain function and presents clinically as acquired immunodeficiency syndrome dementia complex (ADC). Combination antiretroviral therapy (ART) has had a major impact on all aspects of CNS HIV-1 infection and disease. In those with asymptomatic infection, ART usually effectively suppresses HIV-1 in CSF and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, ART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Similarly, treatment has reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California-San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94117, USA.
| | | |
Collapse
|