51
|
Levetin E, Horner WE, Scott JA. Taxonomy of Allergenic Fungi. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 4:375-385.e1. [PMID: 26725152 DOI: 10.1016/j.jaip.2015.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
The Kingdom Fungi contains diverse eukaryotic organisms including yeasts, molds, mushrooms, bracket fungi, plant rusts, smuts, and puffballs. Fungi have a complex metabolism that differs from animals and plants. They secrete enzymes into their surroundings and absorb the breakdown products of enzyme action. Some of these enzymes are well-known allergens. The phylogenetic relationships among fungi were unclear until recently because classification was based on the sexual state morphology. Fungi lacking an obvious sexual stage were assigned to the artificial, now-obsolete category, "Deuteromycetes" or "Fungi Imperfecti." During the last 20 years, DNA sequencing has resolved 8 fungal phyla, 3 of which contain most genera associated with important aeroallergens: Zygomycota, Ascomycota, and Basidiomycota. Advances in fungal classification have required name changes for some familiar taxa. Because of regulatory constraints, many fungal allergen extracts retain obsolete names. A major benefit from this reorganization is that specific immunoglobulin E (IgE) levels in individuals sensitized to fungi appear to closely match fungal phylogenetic relationships. This close relationship between molecular fungal systematics and IgE sensitization provides an opportunity to systematically look at cross-reactivity and permits representatives from each taxon to serve as a proxy for IgE to the group.
Collapse
Affiliation(s)
- Estelle Levetin
- Faculty of Biological Science, University of Tulsa, Tulsa, Okla.
| | | | - James A Scott
- Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
52
|
Brewczyńska A, Depczyńska D, Borecka A, Winnicka I, Kubiak L, Skopińska-Różewska E, Niemcewicz M, Kocik J. The influence of the workplace-related biological agents on the immune systems of emergency medical personnel. Cent Eur J Immunol 2015; 40:243-8. [PMID: 26557040 PMCID: PMC4637399 DOI: 10.5114/ceji.2015.52838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 02/04/2023] Open
Abstract
Emergency medical services workers' (EMSWs) acute exposures to many biological agents are frequent and well recognised in their workplaces, as well as occupational diseases resulting from some of these exposures. At the same time, there is only scant information on the adverse effects of chronic exposure to biological hazard factors on the immune systems of EMSWs. In the Polish legislation system, the Ordinance of the Minister of Health about harmful biological agents in the workplace and ways of protecting workers from exposure to those agents is an implement of Directive 2000/54/EC, which deals thoroughly with those issues in European Union Countries. Emergency medical services workers play an essential role as primary providers of pre-hospital emergency medical care, and they are part of the integral components of disaster response. Traumatic experiences can affect emergency medical staff immune systems negatively, by functioning as a chronic stressor. Conscious use of biological agents in workplaces such as microbial laboratories can be easily controlled and monitored. However, risk assessment is more difficult for workers when they are exposed unintentionally to biological agents. Exposure to bio-aerosols is considered especially harmful. This review summarises available information about biological risk factors for emergency medical services workers, and some information about the influence of these factors on their immune systems.
Collapse
Affiliation(s)
- Aleksandra Brewczyńska
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Daria Depczyńska
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Anna Borecka
- Laboratory of Genetic Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Izabela Winnicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Leszek Kubiak
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Ewa Skopińska-Różewska
- Pathology Department, Biostructure Centrum, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Niemcewicz
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Puławy, Poland
| | - Janusz Kocik
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
53
|
Swamydas M, Break TJ, Lionakis MS. Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands. Cell Mol Life Sci 2015; 72:2157-75. [PMID: 25715741 PMCID: PMC4430359 DOI: 10.1007/s00018-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4(+) T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Timothy J. Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| |
Collapse
|
54
|
Thakur R, Anand R, Tiwari S, Singh AP, Tiwary BN, Shankar J. Cytokines induce effector T-helper cells during invasive aspergillosis; what we have learned about T-helper cells? Front Microbiol 2015; 6:429. [PMID: 26029179 PMCID: PMC4426709 DOI: 10.3389/fmicb.2015.00429] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/22/2015] [Indexed: 11/27/2022] Open
Abstract
Invasive aspergillosis caused by Aspergillus species (Aspergillus fumigatus, A. flavus, and A. terreus) is life-threatening infections in immunocompromised patients. Understanding the innate and adaptive immune response particularly T-helper cells (TH-cells) against these Aspergillus species and how the different sub-set of TH-cells are regulated by differentiating cytokines at primary target organ site like lung, kidney and brain is of great significance to human health. This review focuses on presentation of Aspergillus through Antigen presenting cells (APCs) to the naive CD4+ T-cells in the host. The production of differentiating/effector cytokines that activate following TH-cells, e.g., TH1, TH2, TH9, and TH17 has been reported in association or alone in allergic or invasive aspergillosis. Chemokines (CXCL1, CXCL2, CCL1, and CCL20) and their receptors associated to these TH-cells have also been observed in invasive aspergillosis. Thus, further study of these TH-cells in invasive aspergillosis and other elements of adaptive immune response with Aspergillus species are required in order to have a better understanding of host response for safer and effective therapeutic outcome.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan, India
| | - Rajesh Anand
- Infectious Diseases Laboratory, National Institute of Immunology , New Delhi, India
| | - Shraddha Tiwari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan, India
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology , New Delhi, India
| | - Bhupendra N Tiwary
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya , Bilaspur, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan, India
| |
Collapse
|
55
|
Caffrey AK, Lehmann MM, Zickovich JM, Espinosa V, Shepardson KM, Watschke CP, Hilmer KM, Thammahong A, Barker BM, Rivera A, Cramer RA, Obar JJ. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog 2015; 11:e1004625. [PMID: 25629406 PMCID: PMC4309569 DOI: 10.1371/journal.ppat.1004625] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1β and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1β was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1β were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1β in controlling A. fumigatus infection in the murine lung. Aspergillus spp. are ubiquitous in the environment, and even though individuals are regularly exposed to fungal spores clinical invasive disease is a rare manifestation. In contrast, individuals with weakened immune systems develop severe disease, such as invasive pulmonary aspergillosis (IPA). IPA is associated with extremely poor prognoses and unacceptably high mortality rates. Knowledge gained from understanding how immunocompetent mammals control Aspergillus challenge will help develop new immunomodulatory strategies aimed at improving patient outcomes. It is well known that neutrophils and monocytes are crucial immune cells that act to limit fungal growth. Our work demonstrates a central role for the cytokine IL-1α in orchestrating the optimal recruitment of neutrophils and monocytes, whereas IL-1β and the inflammasome are more important in activation of anti-fungal activity of the monocytes. Moreover, our studies indicate that CCR2+ monocytes are required for optimal production of IL-1α in the lungs of A. fumigatus challenged mice. Thus, our data highlight a crucial role of the IL-1 cytokine in mediating anti-fungal immunity which might be harnessed to treat clinical cases of IPA.
Collapse
Affiliation(s)
- Alayna K. Caffrey
- Montana State University, Department of Immunology & Infectious Diseases, Bozeman, Montana, United States of America
| | - Margaret M. Lehmann
- Montana State University, Department of Immunology & Infectious Diseases, Bozeman, Montana, United States of America
| | - Julianne M. Zickovich
- Montana State University, Department of Immunology & Infectious Diseases, Bozeman, Montana, United States of America
| | - Vanessa Espinosa
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
| | - Kelly M. Shepardson
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Hanover, New Hampshire, United States of America
| | - Christopher P. Watschke
- Montana State University, Department of Immunology & Infectious Diseases, Bozeman, Montana, United States of America
| | - Kimberly M. Hilmer
- Montana State University, Department of Immunology & Infectious Diseases, Bozeman, Montana, United States of America
| | - Arsa Thammahong
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Hanover, New Hampshire, United States of America
| | - Bridget M. Barker
- TGen North, Pathogen Genomics Research Division, Flagstaff, Arizona, United States of America
| | - Amariliz Rivera
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
| | - Robert A. Cramer
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Hanover, New Hampshire, United States of America
| | - Joshua J. Obar
- Montana State University, Department of Immunology & Infectious Diseases, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
56
|
Heinekamp T, Schmidt H, Lapp K, Pähtz V, Shopova I, Köster-Eiserfunke N, Krüger T, Kniemeyer O, Brakhage AA. Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol 2014; 37:141-52. [PMID: 25404120 PMCID: PMC4326658 DOI: 10.1007/s00281-014-0465-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Aspergillus fumigatus is a saprotrophic filamentous fungus and also the most prevalent airborne fungal pathogen of humans. Depending on the host’s immune status, the variety of diseases caused by A. fumigatus ranges from allergies in immunocompetent hosts to life-threatening invasive infections in patients with impaired immunity. In contrast to the majority of other Aspergillus species, which are in most cases nonpathogenic, A. fumigatus features an armory of virulence determinants to establish an infection. For example, A. fumigatus is able to evade the human complement system by binding or degrading complement regulators. Furthermore, the fungus interferes with lung epithelial cells, alveolar macrophages, and neutrophil granulocytes to prevent killing by these immune cells. This chapter summarizes the different strategies of A. fumigatus to manipulate the immune response. We also discuss the potential impact of recent advances in immunoproteomics to improve diagnosis and therapy of an A. fumigatus infection.
Collapse
Affiliation(s)
- Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
58
|
Large-scale transcriptional response to hypoxia in Aspergillus fumigatus observed using RNAseq identifies a novel hypoxia regulated ncRNA. Mycopathologia 2014; 178:331-9. [PMID: 24996522 DOI: 10.1007/s11046-014-9779-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
We utilized RNAseq analysis of the Aspergillus fumigatus response to early hypoxic condition exposure. The results show that more than 89% of the A. fumigatus genome is expressed under normoxic and hypoxic conditions. Replicate samples were highly reproducible; however, comparisons between normoxia and hypoxia revealed that >23 and 35% of genes were differentially expressed after 30 and 120 min of hypoxia exposure, respectively. Consistent with our previous report detailing transcriptomic and proteomic responses at later time points, the results here show major repression of ribosomal function and induction of ergosterol biosynthesis, as well as activation of alternate respiratory mechanisms at the later time point. RNAseq data were used to define 32 hypoxia-specific genes, which were not expressed under normoxic conditions. Transcripts of a C6 transcription factor and a histidine kinase-response regulator were found only in hypoxia. In addition, several genes involved in the phosphoenylpyruvate and D-glyceraldehyde-3-phosphate metabolism were only expressed in hypoxia. Interestingly, a 216-bp ncRNA Afu-182 in the 3' region of insA (AFUB_064770) was significantly repressed under hypoxia with a 40-fold reduction in expression. A detailed analysis of Afu-182 showed similarity with several genes in the genome, many of which were also repressed in hypoxia. The results from this study show that hypoxia induces very early and widely drastic genome-wide responses in A. fumigatus that include expression of protein-coding and ncRNA genes. The role of these ncRNA genes in regulating the fungal hypoxia response is an exciting future research direction.
Collapse
|
59
|
Immunoevasive Aspergillus virulence factors. Mycopathologia 2014; 178:363-70. [PMID: 24972669 DOI: 10.1007/s11046-014-9768-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/02/2014] [Indexed: 01/20/2023]
Abstract
Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.
Collapse
|
60
|
Espinosa V, Jhingran A, Dutta O, Kasahara S, Donnelly R, Du P, Rosenfeld J, Leiner I, Chen CC, Ron Y, Hohl TM, Rivera A. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog 2014; 10:e1003940. [PMID: 24586155 PMCID: PMC3930594 DOI: 10.1371/journal.ppat.1003940] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. Despite the significant impact of fungal infections to human health our understanding of immunity to these pathogens remains incomplete. Human mycoses are associated with high morbidity and mortality, even with modern antifungal therapies. Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis (IA), a serious infection that develops in immunodeficient patients. In this study we employ a combination of cell ablation strategies to examine the role of CCR2+Ly6C+ inflammatory monocytes (CCR2+Mo) in innate responses against a pulmonary infection with A.fumigatus conidia. We find that CCR2+Mo and their derivative dendritic cells (Mo-DCs) are required for defense against IA and that mice lacking these cells succumb to infection with A.fumigatus. Our studies indicate that CCR2+Mo and Mo-DCs exert crucial innate antifungal defense by two main mechanisms: 1) CCR2+Mo and Mo-DCs are a significant source of inflammatory mediators that augment the killing capacity of neutrophils and 2) conidial uptake by CCR2+Mo is coincident with their differentiation into Mo-DCs that directly kill fungal conidia via partially NADPH oxidase-dependent mechanisms. In aggregate, our studies find a novel essential function for CCR2+Mo in innate defense against a pulmonary fungal pathogen by mediating indirect and direct containment of fungal cells at the portal of infection.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
- Rutgers, Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
| | - Anupam Jhingran
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Orchi Dutta
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
- Rutgers, Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
| | - Shinji Kasahara
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Robert Donnelly
- Rutgers, New Jersey Medical School, Molecular Resource Facility and High Performance and Research Computing Group, Office of Information Technology, Rutgers University, Newark, New Jersey, United States of America
| | - Peicheng Du
- Rutgers, New Jersey Medical School, Molecular Resource Facility and High Performance and Research Computing Group, Office of Information Technology, Rutgers University, Newark, New Jersey, United States of America
| | - Jeffrey Rosenfeld
- Rutgers, New Jersey Medical School, Molecular Resource Facility and High Performance and Research Computing Group, Office of Information Technology, Rutgers University, Newark, New Jersey, United States of America
| | - Ingrid Leiner
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, New York, United States of America
| | - Chiann-Chyi Chen
- Rutgers, Robert Wood Johnson Medical School, Department of Pharmacology, Piscataway, New Jersey, United States of America
| | - Yacov Ron
- Rutgers, Robert Wood Johnson Medical School, Department of Pharmacology, Piscataway, New Jersey, United States of America
| | - Tobias M. Hohl
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
- * E-mail: (TMH); (AR)
| | - Amariliz Rivera
- Rutgers, New Jersey Medical School, Department of Pediatrics, Center for Immunity and Inflammation, Newark, New Jersey, United States of America
- * E-mail: (TMH); (AR)
| |
Collapse
|
61
|
Pandey S, Hoselton SA, Schuh JM. The impact of Aspergillus fumigatus viability and sensitization to its allergens on the murine allergic asthma phenotype. BIOMED RESEARCH INTERNATIONAL 2013; 2013:619614. [PMID: 24063011 PMCID: PMC3770015 DOI: 10.1155/2013/619614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/01/2013] [Indexed: 11/17/2022]
Abstract
Aspergillus fumigatus is a ubiquitously present respiratory pathogen. The outcome of a pulmonary disease may vary significantly with fungal viability and host immune status. Our objective in this study was (1) to assess the ability of inhaled irradiation-killed or live A. fumigatus spores to induce allergic pulmonary disease and (2) to assess the extent to which inhaled dead or live A. fumigatus spores influence pulmonary symptoms in a previously established allergic state. Our newly developed fungal delivery apparatus allowed us to recapitulate human exposure through repeated inhalation of dry fungal spores in an animal model. We found that live A. fumigatus spore inhalation led to a significantly increased humoral response, pulmonary inflammation, and airway remodeling in naïve mice and is more likely to induce allergic asthma symptoms than the dead spores. In contrast, in allergic mice, inhalation of dead and live conidia recruited neutrophils and induced goblet cell metaplasia. This data suggests that asthma symptoms might be exacerbated by the inhalation of live or dead spores in individuals with established allergy to fungal antigens, although the extent of symptoms was less with dead spores. These results are likely to be important while considering fungal exposure assessment methods and for making informed therapeutic decisions for mold-associated diseases.
Collapse
Affiliation(s)
- Sumali Pandey
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Scott A. Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M. Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
62
|
Chotirmall SH, Al-Alawi M, Mirkovic B, Lavelle G, Logan PM, Greene CM, McElvaney NG. Aspergillus-associated airway disease, inflammation, and the innate immune response. BIOMED RESEARCH INTERNATIONAL 2013; 2013:723129. [PMID: 23971044 PMCID: PMC3736487 DOI: 10.1155/2013/723129] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit.
Collapse
|
63
|
Shin KS, Park HS, Kim YH, Yu JH. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus. J Proteomics 2013; 87:40-52. [DOI: 10.1016/j.jprot.2013.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/05/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
|
64
|
Rizzetto L, Giovannini G, Bromley M, Bowyer P, Romani L, Cavalieri D. Strain dependent variation of immune responses to A. fumigatus: definition of pathogenic species. PLoS One 2013; 8:e56651. [PMID: 23441211 PMCID: PMC3575482 DOI: 10.1371/journal.pone.0056651] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Neuroscience, Pharmacology and Child’s Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gloria Giovannini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Michael Bromley
- National Aspergillosis Centre and Mycology Reference Centre, University Hospital of South Manchester, University of Manchester, Manchester, United Kingdom
- School of Translational Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Paul Bowyer
- National Aspergillosis Centre and Mycology Reference Centre, University Hospital of South Manchester, University of Manchester, Manchester, United Kingdom
- School of Translational Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Duccio Cavalieri
- Department of Neuroscience, Pharmacology and Child’s Health (NEUROFARBA), University of Florence, Florence, Italy
- Innovation and Research Center, Edmund Mach Fondation, San Michele all’Adige (TN), Italy
- * E-mail:
| |
Collapse
|
65
|
Abstract
This review details some of the advances that have been made in the recent decade in the diagnosis, treatment and epidemiology of pulmonary fungal infections. These advances have occurred because of increasing knowledge regarding the fungal genome, better understanding of the structures of the fungal cell wall and cell membrane and the use of molecular epidemiological techniques. The clinical implications of these advances are more rapid diagnosis and more effective and less toxic antifungal agents. For example, the diagnosis of invasive pulmonary aspergillosis, as well as histoplasmosis and blastomycosis, has improved with the use of easily performed antigen detection systems in serum and bronchoalveolar lavage fluid. Treatment of angioinvasive moulds has improved with the introduction of the new azoles, voriconazole and posaconazole that have broad antifungal activity. Amphotericin B is less frequently used, and when used is often given as lipid formulation to decrease toxicity. The newest agents, the echinocandins, are especially safe as they interfere with the metabolism of the fungal cell wall, a structure not shared with humans cells. Epidemiological advances include the description of the emergence of Cryptococcus gattii in North America and the increase in pulmonary mucormycosis and pneumonia due to Fusarium and Scedosporium species in transplant recipients and patients with haematological malignancies. The emergence of azole resistance among Aspergillus species is especially worrisome and is likely related to increased azole use for treatment of patients, but also to agricultural use of azoles as fungicides in certain countries.
Collapse
Affiliation(s)
- Jeannina A Smith
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, USA
| | | |
Collapse
|
66
|
Gresnigt MS, Rösler B, Jacobs CWM, Becker KL, Joosten LAB, van der Meer JWM, Netea MG, Dinarello CA, van de Veerdonk FL. The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses. Eur J Immunol 2012; 43:416-26. [PMID: 23147407 DOI: 10.1002/eji.201242711] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/28/2012] [Accepted: 11/05/2012] [Indexed: 11/09/2022]
Abstract
IL-1 drives Th responses, particularly Th17, in host defense. Sharing the same co-receptor, the IL-1 family member IL-36 exhibits properties similar to those of IL-1. In the present study, we investigated the role of IL-36 in Aspergillus fumigatus-induced human Th responses. We observed that different morphological forms of A. fumigatus variably increase steady-state mRNA of IL-36 subfamily members. IL-36α is not significantly induced by any morphological form of Aspergillus. Most strikingly, IL-36γ is significantly induced by live A. fumigatus conidia and heat-killed hyphae, whereas IL-36Ra (IL-36 receptor antagonist) is significantly induced by heat-killed conidia, hyphae, and live conidia. We also observed that IL-36γ expression is dependent on the dectin-1/Syk and TLR4 signaling pathway. In contrast, TLR2 and CR3 inhibit IL-36γ expression. The biological relevance of IL-36 induction by Aspergillus is demonstrated by experiments showing that inhibition of the IL-36 receptor by IL-36Ra reduces Aspergillus-induced IL-17 and IFN-γ. These data describe that IL-36-dependent signals are a novel cytokine pathway that regulates Th responses induced by A. fumigatus, and demonstrate a role for TLR4 and dectin-1 in the induction of IL-36γ.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Department of Medicine, Radboud University Nijmegen Medical Centre and Nijmegen Institute for Infection, Inflammation, and Immunity, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Morton CO, Bouzani M, Loeffler J, Rogers TR. Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity? Front Microbiol 2012; 3:413. [PMID: 23264771 PMCID: PMC3525292 DOI: 10.3389/fmicb.2012.00413] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/15/2012] [Indexed: 12/24/2022] Open
Abstract
Invasive aspergillosis is a significant threat to health and is a major cause of mortality in immunocompromised individuals. Understanding the interaction between the fungus and the immune system is important in determining how the immunocompetent host remains disease free. Several studies examining the direct interaction between Aspergillus fumigatus and purified innate immune cells have been conducted to measure the responses of both the host cells and the pathogen. It has been revealed that innate immune cells have different modes of action ranging from effective fungal killing by neutrophils to the less aggressive response of dendritic cells. Natural killer cells do not phagocytose the fungus unlike the other innate immune cells mentioned but appear to mediate their antifungal effect through the release of gamma interferon. Transcriptional analysis of A. fumigatus interacting with these cells has indicated that it can adapt to the harsh microenvironment of the phagosome and produces toxins, ribotoxin and gliotoxin, that can induce cell death in the majority of innate immune cells. These data point toward potential novel antifungal treatments including the use of innate immune cells as antifungal vaccines.
Collapse
Affiliation(s)
- Charles O Morton
- School of Science and Health, University of Western Sydney Campbelltown, NSW, Australia
| | | | | | | |
Collapse
|
68
|
Ramirez-Ortiz ZG, Means TK. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 2012; 3:635-46. [PMID: 23076328 PMCID: PMC3545945 DOI: 10.4161/viru.22295] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) are the bridge between the innate and adaptive immune system. DCs are responsible for sensing and patrolling the environment, initiating a host response and instructing the proper adaptive immune response against pathogens. Recent advances in medical treatments have led to increased use of immunosuppressive drugs, leading to the emergence of fungal species that cause life-threatening infections in humans. Three of these opportunistic fungal pathogens: Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans pose the biggest concern for the immune-compromised host. Here we will review the interactions between DCs and these fungal pathogens, the receptors expressed on DCs that mediate these responses and the signaling mechanisms that shape the adaptive host response.
Collapse
Affiliation(s)
- Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|
69
|
Park HS, Bayram O, Braus GH, Kim SC, Yu JH. Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol 2012; 86:937-53. [PMID: 22970834 DOI: 10.1111/mmi.12032] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 01/19/2023]
Abstract
Fungal development and secondary metabolism is intimately associated via activities of the fungi-specific velvet family proteins. Here we characterize the four velvet regulators in the opportunistic human pathogen Aspergillus fumigatus. The deletion of AfuvosA, AfuveA and AfuvelB causes hyperactive asexual development (conidiation) and precocious and elevated accumulation of AfubrlA during developmental progression. Moreover, the absence of AfuvosA, AfuveA or AfuvelB results in the abundant formation of conidiophores and highly increased AfubrlA mRNA accumulation in liquid submerged culture, suggesting that they act as repressors of conidiation. The deletion of AfuvosA or AfuvelB causes a reduction in conidial trehalose amount, long-term spore viability, conidial tolerance to oxidative and UV stresses, and accelerated and elevated conidial germination regardless of the presence or absence of an external carbon source, suggesting an interdependent role of them in many aspects of fungal biology. Genetic studies suggest that AfuAbaA activates AfuvosA and AfuvelB expression during the mid to late phase of conidiation. Finally, the AfuveA null mutation can be fully complemented by Aspergillus nidulans VeA, which can physically interact with AfuVelB and AfuLaeA in vivo. A model depicting the similar yet different roles of the velvet regulators governing conidiation and sporogenesis in A. fumigatus is presented.
Collapse
Affiliation(s)
- Hee-Soo Park
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
70
|
Mirkov I, Belij S, Kataranovski M, Zolotarevski L, Glamoclija J, Stojanovic I, Stosic-Grujicic S. The relevance of the migration inhibitory factor (MIF) for peripheral tissue response in murine sublethal systemicAspergillus fumigatusinfection. Med Mycol 2012; 50:476-87. [DOI: 10.3109/13693786.2011.645893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
71
|
Ghosh S, Hoselton SA, Schuh JM. μ-chain-deficient mice possess B-1 cells and produce IgG and IgE, but not IgA, following systemic sensitization and inhalational challenge in a fungal asthma model. THE JOURNAL OF IMMUNOLOGY 2012; 189:1322-9. [PMID: 22732592 DOI: 10.4049/jimmunol.1200138] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Allergic bronchopulmonary aspergillosis is often difficult to treat and results in morbidity associated with chronic airway changes. This study assessed the requirement for B cells and their products in the allergic pulmonary phenotype in a murine model of fungal allergic asthma that mimics allergic bronchopulmonary aspergillosis. C57BL/6 and μMT mice (assumed to lack peripheral B cells) were sensitized with Aspergillus fumigatus extract and challenged with two inhalation exposures of live conidia to induce airway disease. Airway hyperresponsiveness after methacholine challenge, peribronchovascular inflammation, goblet cell metaplasia, and fibrotic remodeling of the airways was similar between μMT mice and their wild-type counterparts (C57BL/6). Surprisingly, even in the absence of the μ-chain, these μMT mice produced IgE and IgG Abs, although the Abs induced did not have specificity for A. fumigatus Ags. In contrast, IgA was not detected in either the lavage fluid or serum of μMT mice that had been exposed to A. fumigatus. Our findings also reveal the existence of CD19(+)CD9(+)IgD(+) B-1 cells in the lungs of the μMT animals. These data show the μMT mice to have a developmental pathway independent of the canonical μ-chain route that allows for their survival upon antigenic challenge with A. fumigatus conidia, although this pathway does not seem to allow for the normal development of Ag-specific repertoires. Additionally, this study shows that IgA is not required for either clearance or containment of A. fumigatus in the murine lung, as fungal outgrowth was not observed in the μMT animals after multiple inhalation exposures to live conidia.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | | | | |
Collapse
|
72
|
Deepe GS. NADPH oxidase regulates efficacy of vaccination in aspergillosis. J Clin Invest 2012; 122:1608-11. [PMID: 22523062 DOI: 10.1172/jci63417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Invasive aspergillosis is often a consequence of immune suppression, and accumulating evidence points to a role for adaptive immunity. Hence, it may be possible to manipulate the adaptive immune system to enhance protective immunity in at-risk individuals. In this issue of the JCI, De Luca and colleagues describe the ontogeny of adaptive immune responses to murine aspergillosis infection in relation to vaccination. Their thought-provoking findings reveal the complexities of vaccine-induced immunity and could be used to improve vaccine efficacy.
Collapse
Affiliation(s)
- George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, and the Veterans Affairs Hospital, Cincinnati, Ohio 45267-0560, USA.
| |
Collapse
|
73
|
Stopiglia CDO, Arechavala A, Carissimi M, Sorrentino JM, Aquino VR, Daboit TC, Kammler L, Negroni R, Scroferneker ML. Standardization and characterization of antigens for the diagnosis of aspergillosis. Can J Microbiol 2012; 58:455-62. [DOI: 10.1139/w2012-013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to develop and characterize antigens for the diagnosis of aspergillosis. Nine strains of Aspergillus species Aspergillus fumigatus , Aspergillus flavus , and Aspergillus niger were grown in Sabouraud and Smith broth to produce exoantigens. The antigens were tested by immunodiffusion against sera from patients with aspergillosis and other systemic mycoses. The protein fraction of the antigens was detected by SDS–PAGE; Western blot and representative bands were assessed by mass spectrometry coupled to a nano Acquity UltraPerformance LC and analyzed by the Mascot search engine. Concurrently, all sera were tested with Platelia Aspergillus EIA. The most reactive antigens to sera from patients infected by A. fumigatus were produced by A. fumigatus MG2 Sabouraud and pooled A. fumigatus Sabouraud samples, both with a sensitivity of 93% and specificity of 100% and 97%, respectively. Aspergillus niger and A. flavus antigens were reactive against A. niger and A. flavus sera, each one with a sensitivity and specificity of 100%. Two proteins, probably responsible for antigenic activity, β-glucosidase in A. fumigatus and α-amylase in A. niger were attained. The commercial kit had a specificity of 22%, sensitivity of 100%, positive predictive value of 48%, and negative predictive value of 100%. The antigens produced showed high sensitivity and specificity and can be exploited for diagnostics of aspergilloma.
Collapse
Affiliation(s)
- Cheila Denise Ottonelli Stopiglia
- Graduate Program in Medicine, Medical Sciences, Laboratory of Pathogenic Fungi, Department of Microbiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/Sl 210, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Alicia Arechavala
- Unidad de Micología, Hospital de Doenças Infecciosas Francisco Javier Muñiz, Uspallata 2272 (1282), Buenos Aires City, Argentina
| | - Mariana Carissimi
- Local Department of Environmental Protection, City Hall of Caxias do Sul, Av. Rubem Bento Alves, 8308, CEP 95012-500, Caxias do Sul, RS, Brazil
| | - Julia Medeiros Sorrentino
- Laboratory of Pathogenic Fungi, Department of Microbiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/Sl 210, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Valério Rodrigues Aquino
- Microbiology Unit Section, Clinical Pathology Services, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2.350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Tatiane Caroline Daboit
- Graduate Program in Medicine, Medical Sciences, Laboratory of Pathogenic Fungi, Department of Microbiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/Sl 210, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Luana Kammler
- School of Pharmacy, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, CEP 90610-000, Porto Alegre, RS, Brazil
| | - Ricardo Negroni
- Unidad de Micología, Hospital de Doenças Infecciosas Francisco Javier Muñiz, Uspallata 2272 (1282), Buenos Aires City, Argentina
| | - Maria Lúcia Scroferneker
- Laboratory of Pathogenic Fungi, Department of Microbiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/Sl 210, CEP 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
74
|
Neutrophils mediate maturation and efflux of lung dendritic cells in response to Aspergillus fumigatus germ tubes. Infect Immun 2012; 80:1759-65. [PMID: 22392929 DOI: 10.1128/iai.00097-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis is a life-threatening complication of neutrophil deficiency or dysfunction. Neutropenia has previously been associated with enhanced influx of CD11b-expressing conventional dendritic cells to the lungs in response to Aspergillus species, but whether neutrophils directly modulate the function of dendritic cells in this infection is not known. We hypothesized that, in the setting of intrapulmonary challenge with Aspergillus, neutrophils promote the maturation and traffic of lung conventional dendritic cells to draining mediastinal lymph nodes. We report that neutropenia results in a marked accumulation of dendritic cells in the lungs of mice challenged with Aspergillus but greatly diminishes their egress to mediastinal lymph nodes independent of neutrophil microbicidal functions. Furthermore, the phenotype of lung dendritic cells was more immature in neutropenic animals than in nonneutropenic mice exposed to the microorganism. Consistent with this, coincubation with neutrophils greatly enhanced the upregulation of costimulatory molecules on dendritic cells exposed to Aspergillus in vitro, a process that was dependent on cell contact and the dendritic cell receptor DC-SIGN. Taken together, our data support an immunomodulatory cross talk between neutrophils and dendritic cells in the context of host response to Aspergillus that promotes the maturation and efflux of lung dendritic cells.
Collapse
|
75
|
Barker BM, Kroll K, Vödisch M, Mazurie A, Kniemeyer O, Cramer RA. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics 2012; 13:62. [PMID: 22309491 PMCID: PMC3293747 DOI: 10.1186/1471-2164-13-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/06/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. RESULTS Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R(2) = 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in A. fumigatus. CONCLUSIONS Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold A. fumigatus. As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major components of the hypoxia response in this pathogenic mold. In addition, a significant induction of the transcripts involved in ergosterol biosynthesis is consistent with previous observations in the pathogenic yeasts Candida albicans and Cryptococcus neoformans indicating conservation of this response to hypoxia in pathogenic fungi. Because ergosterol biosynthesis enzymes also require iron as a co-factor, the increase in iron uptake transcripts is consistent with an increased need for iron under hypoxia. However, unlike C. albicans and C. neoformans, the GABA shunt appears to play an important role in reducing NADH levels in response to hypoxia in A. fumigatus and it will be intriguing to determine whether this is critical for fungal virulence. Overall, regulatory mechanisms of the A. fumigatus hypoxia response appear to involve both transcriptional and post-transcriptional control of transcript and protein levels and thus provide candidate genes for future analysis of their role in hypoxia adaptation and fungal virulence.
Collapse
Affiliation(s)
- Bridget M Barker
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | |
Collapse
|