51
|
Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae. J Bacteriol 2015; 197:1221-35. [PMID: 25622616 DOI: 10.1128/jb.02439-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability to form biofilms is critical for environmental survival and transmission of Vibrio cholerae, a facultative human pathogen responsible for the disease cholera. Biofilm formation is controlled by several transcriptional regulators and alternative sigma factors. In this study, we report that the two main positive regulators of biofilm formation, VpsR and VpsT, bind to nonoverlapping target sequences in the regulatory region of vpsL in vitro. VpsR binds to a proximal site (the R1 box) as well as a distal site (the R2 box) with respect to the transcriptional start site identified upstream of vpsL. The VpsT binding site (the T box) is located between the R1 and R2 boxes. While mutations in the T and R boxes resulted in a decrease in vpsL expression, deletion of the T and R2 boxes resulted in an increase in vpsL expression. Analysis of the role of H-NS in vpsL expression revealed that deletion of hns resulted in enhanced vpsL expression. The level of vpsL expression was higher in an hns vpsT double mutant than in the parental strain but lower than that in an hns mutant. In silico analysis of the regulatory regions of the VpsR and VpsT targets resulted in the identification of conserved recognition motifs for VpsR and VpsT and revealed that operons involved in biofilm formation and vpsT are coregulated by VpsR and VpsT. Furthermore, a comparative genomics analysis revealed substantial variability in the promoter region of the vpsT and vpsL genes among extant V. cholerae isolates, suggesting that regulation of biofilm formation is under active selection. IMPORTANCE Vibrio cholerae causes cholera and is a natural inhabitant of aquatic environments. One critical factor that is important for environmental survival and transmission of V. cholerae is the microbe's ability to form biofilms, which are surface-associated communities encased in a matrix composed of the exopolysaccharide VPS (Vibrio polysaccharide), proteins, and nucleic acids. Two proteins, VpsR and VpsT, positively regulate VPS production and biofilm formation. We characterized the structural features of the promoter of the vpsL gene, determined the target sequences recognized by VpsT and VpsR, and analyzed their distribution and conservation patterns in multiple V. cholerae isolates. This work fills a fundamental gap in our understanding of the regulatory mechanisms employed by the master regulators VpsR and VpsT in controlling biofilm matrix production.
Collapse
|
52
|
Khemthongcharoen N, Wonglumsom W, Suppat A, Jaruwongrungsee K, Tuantranont A, Promptmas C. Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens Bioelectron 2015; 63:347-353. [DOI: 10.1016/j.bios.2014.07.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/13/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
|
53
|
Brüssow H. Microbiota and the human nature: know thyself. Environ Microbiol 2014; 17:10-5. [DOI: 10.1111/1462-2920.12693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Harald Brüssow
- Nutrition and Health Research; Nestlé Research Center; Lausanne 26 Lausanne CH-1000 Switzerland
| |
Collapse
|
54
|
Price GA, Holmes RK. Immunizing adult female mice with a TcpA-A2-CTB chimera provides a high level of protection for their pups in the infant mouse model of cholera. PLoS Negl Trop Dis 2014; 8:e3356. [PMID: 25474636 PMCID: PMC4256283 DOI: 10.1371/journal.pntd.0003356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/18/2014] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.
Collapse
Affiliation(s)
- Gregory A. Price
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Randall K. Holmes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
55
|
Modeling the Influence of Environment and Intervention onCholera in Haiti. MATHEMATICS 2014. [DOI: 10.3390/math2030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
56
|
Anderson B, Gray G. Emerging and Reemerging Infectious Diseases. REFERENCE MODULE IN BIOMEDICAL SCIENCES 2014. [PMCID: PMC7150262 DOI: 10.1016/b978-0-12-801238-3.00165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
57
|
Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. THE LANCET. INFECTIOUS DISEASES 2013; 13:1057-98. [PMID: 24252483 DOI: 10.1016/s1473-3099(13)70318-9] [Citation(s) in RCA: 2722] [Impact Index Per Article: 226.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.
Collapse
Affiliation(s)
- Ramanan Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA; Princeton University, Princeton NJ, USA; Public Health Foundation of India, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ismail H, Smith AM, Tau NP, Sooka A, Keddy KH. Cholera outbreak in South Africa, 2008–2009: Laboratory analysis of Vibrio cholerae O1 strains. J Infect Dis 2013; 208 Suppl 1:S39-45. [DOI: 10.1093/infdis/jit200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Husna Ismail
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, Johannesburg
- Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, Johannesburg
- Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nomsa P. Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, Johannesburg
- Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Arvinda Sooka
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, Johannesburg
| | - Karen H. Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, Johannesburg
- Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
59
|
Safety and immunogenicity of single-dose live oral cholera vaccine strain CVD 103-HgR, prepared from new master and working cell banks. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:66-73. [PMID: 24173028 DOI: 10.1128/cvi.00601-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently, no cholera vaccine is available for persons traveling from the United States to areas of high cholera transmission and who for reasons of occupation or host factors are at increased risk for development of the disease. A single-dose oral cholera vaccine with a rapid onset of protection would be particularly useful for such travelers and might also be an adjunct control measure for cholera outbreaks. The attenuated Vibrio cholerae O1 vaccine strain CVD 103-HgR harbors a 94% deletion of the cholera toxin A subunit gene (ctxA) and has a mercury resistance gene inserted in the gene encoding hemolysin A. We undertook a phase I randomized placebo-controlled two-site trial to assess the safety and immunogenicity of a preliminary formulation of CVD 103-HgR prepared from new master and working cell banks. Healthy young adults were randomized (5:1 vaccinees to placebo recipients) to receive a single oral dose of ∼4.4 × 10(8) CFU of vaccine or a placebo. Blood serum vibriocidal and cholera toxin-specific IgG antibodies were measured before and 10, 14, and 28 days following vaccination or placebo. Excretion of the vaccine strain in the stool was assessed during the first week postvaccination. A total of 66 subjects were enrolled, comprising 55 vaccinees and 11 placebo recipients. The vaccine was well tolerated. The overall vibriocidal and anti-cholera toxin seroconversion rates were 89% and 57%, respectively. CVD 103-HgR is undergoing renewed manufacture for licensure in the United States under the auspices of PaxVax. Our data mimic those from previous commercial formulations that elicited vibriocidal antibody seroconversion (a correlate of protection) in ∼90% of vaccinees. (This study has been registered at ClinicalTrials.gov under registration no. NCT01585181.).
Collapse
|
60
|
Abstract
Syphilis, cholera and TB have re-emerged and now affect the health of countless humans globally. In this article, we review current information concerning the biology and epidemiology of these bacterial diseases with the goal of developing a better understanding of factors that have led to their resurgence and that threaten to compromise their control. The impact of microbial and environmental change notwithstanding, the main factors common to the re-emergence of syphilis, cholera and TB are human demographics and behavior. This information is critical to developing targeted strategies aimed at preventing and controlling these potentially deadly infectious diseases.
Collapse
Affiliation(s)
- Lola V Stamm
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | |
Collapse
|
61
|
Pastor M, Pedraz JL, Esquisabel A. The state-of-the-art of approved and under-development cholera vaccines. Vaccine 2013; 31:4069-78. [PMID: 23845813 DOI: 10.1016/j.vaccine.2013.06.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022]
Abstract
Cholera remains a huge public health problem. Although in 1894, the first cholera vaccination was reported, an ideal vaccine that meets all the requirements of the WHO has not yet been produced. Among the different approaches used for cholera vaccination, attenuated vaccines represent a major category; these vaccines are beneficial in being able to induce a strong protective response after a single administration. However, they have possible negative effects on immunocompromised patient populations. Both the licensed CVD103-HgR and other vaccine approaches under development are detailed in this article, such as the Vibrio cholerae 638 vaccine candidate, Peru-15 or CholeraGarde(®) and the VA1.3, VA1.4, IEM 108 VCUSM2 and CVD 112 vaccine candidates. In another strategy, killed V. cholerae vaccines have been developed, including Dukoral(®), mORCAX(®) and Sanchol™. The killed vaccines are already sold, and they have successfully demonstrated their potential to protect populations in endemic areas or after natural disasters. However, these vaccines do not fulfill all the requirements of the WHO because they fail to confer long-term protection, are not suitable for children under two years, require more than a single dose and require a distribution chain with cold storage. Lastly, other vaccine strategies under development are summarized in this review. Among these strategies, vaccine candidates based on alternative drug delivery systems that have been reported lately in the literature are discussed, such as microparticles, proteoliposomes, LPS subunits, DNA vaccines and rice seeds containing toxin subunits. Preliminary results reported by many groups working on alternative delivery systems for cholera vaccines demonstrate the importance of new technologies in addressing old problems such as cholera. Although a fully ideal vaccine has not yet been designed, promising steps have been reported in the literature resulting in hope for the fight against cholera.
Collapse
Affiliation(s)
- M Pastor
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
62
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
63
|
Abstract
Advances in vaccine technology over the past two centuries have facilitated far-reaching impact in the control of many infections, and today's emerging vaccines could likewise open new opportunities in the control of several diseases. Here we consider the potential, population-level effects of a particular class of emerging vaccines that use specific viral vectors to establish long-term, intermittent antigen presentation within a vaccinated host: in essence, "self-boosting" vaccines. In particular, we use mathematical models to explore the potential role of such vaccines in situations where current immunization raises only relatively short-lived protection. Vaccination programs in such cases are generally limited in their ability to raise lasting herd immunity. Moreover, in certain cases mass vaccination can have the counterproductive effect of allowing an increase in severe disease, through reducing opportunities for immunity to be boosted through natural exposure to infection. Such dynamics have been proposed, for example, in relation to pertussis and varicella-zoster virus. In this context we show how self-boosting vaccines could open qualitatively new opportunities, for example by broadening the effective duration of herd immunity that can be achieved with currently used immunogens. At intermediate rates of self-boosting, these vaccines also alleviate the potential counterproductive effects of mass vaccination, through compensating for losses in natural boosting. Importantly, however, we also show how sufficiently high boosting rates may introduce a new regime of unintended consequences, wherein the unvaccinated bear an increased disease burden. Finally, we discuss important caveats and data needs arising from this work.
Collapse
|
64
|
|
65
|
The Vibrio cholerae trh gene is coordinately regulated in vitro with type III secretion system genes by VttR(A)/VttR(B) but does not contribute to Caco2-BBE cell cytotoxicity. Infect Immun 2012; 80:4444-55. [PMID: 23045478 DOI: 10.1128/iai.00832-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous virulence factors have been associated with pathogenic non-O1/non-O139 serogroup strains of Vibrio cholerae. Among them are the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH), which share amino acid similarities to the TDH and TRH proteins of Vibrio parahaemolyticus, where they have been shown to contribute to pathogenesis. Although TDH and TRH homologs can be encoded on extrachromosomal elements in V. cholerae, type III secretion system (T3SS)-positive strains, such as AM-19226, carry a copy of trh within the T3SS genomic island. Transcriptional fusion analysis showed that in strain AM-19226, trh expression is regulated in a bile-dependent manner by a family of transmembrane transcriptional regulators that includes VttR(A), VttR(B), and ToxR. Genes encoding T3SS structural components are expressed under similar conditions, suggesting that within the T3SS genomic island, genes encoding proteins unrelated to the T3SS and loci involved in T3SS synthesis are coregulated. Despite similar in vitro expression patterns, however, TRH is not required for AM-19226 to colonize the infant mouse intestine, nor does it contribute to bile-mediated cytotoxicity when strain AM-19226 is cocultured with the mammalian cell line Caco2-BBE. Instead, we found that a functional T3SS is essential for AM-19226 to induce bile-mediated cytotoxicity in vitro. Collectively, the results are consistent with a more minor role for the V. cholerae TRH in T3SS-positive strains compared to the functions attributed to the V. parahaemolyticus TDH and TRH proteins.
Collapse
|
66
|
Insights from natural infection-derived immunity to cholera instruct vaccine efforts. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1707-11. [PMID: 22993412 DOI: 10.1128/cvi.00543-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
67
|
Durand E, Derrez E, Audoly G, Spinelli S, Ortiz-Lombardia M, Raoult D, Cascales E, Cambillau C. Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 2012; 287:38190-9. [PMID: 22898822 DOI: 10.1074/jbc.m112.390153] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vibrio cholerae is the cause of the diarrheal disease cholera. V. cholerae produces RtxA, a large toxin of the MARTX family, which is targeted to the host cell cytosol, where its actin cross-linking domain (ACD) cross-links G-actin, leading to F-actin depolymerization, cytoskeleton rearrangements, and cell rounding. These effects on the cytoskeleton prevent phagocytosis and bacterial engulfment by macrophages, thus preventing V. cholerae clearance from the gut. The V. cholerae Type VI secretion-associated VgrG1 protein also contains a C-terminal ACD, which shares 61% identity with MARTX ACD and has been shown to covalently cross-link G-actin. Here, we purified the VgrG1 C-terminal domain and determined its crystal structure. The VgrG1 ACD exhibits a V-shaped three-dimensional structure, formed of 12 β-strands and nine α-helices. Its active site comprises five residues that are conserved in MARTX ACD toxin, within a conserved area of ∼10 Å radius. We showed that less than 100 ACD molecules are sufficient to depolymerize the actin filaments of a fibroblast cell in vivo. Mutagenesis studies confirmed that Glu-16 is critical for the F-actin depolymerization function. Co-crystals with divalent cations and ATP reveal the molecular mechanism of the MARTX/VgrG toxins and offer perspectives for their possible inhibition.
Collapse
Affiliation(s)
- Eric Durand
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The analysis of the genomes of bacterial pathogens indicates that they have acquired their pathogenic capability by incorporating different genetic elements through horizontal gene transfer. The ancestors of virulent bacteria, as well as the origin of virulence determinants, lay most likely in the environmental microbiota. Studying the role that these determinants may have in non-clinical ecosystems is thus of value for understanding in detail the evolution and the ecology of bacterial pathogens. In this article, I propose that classical virulence determinants might be relevant for basic metabolic processes (for instance iron-uptake systems) or in modulating prey/predator relationships (toxins) in natural, non-infective ecosystems. The different role that horizontal gene transfer and mutation may have in the evolution of bacterial pathogens either for their speciation or in short-sighted evolution processes is also discussed.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Darwin 3, Cantoblanco, 28049-Madrid, Spain.
| |
Collapse
|
69
|
Mishra A, Taneja N, Sharma M. Viability kinetics, induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio cholerae O1 in freshwater microcosm. J Appl Microbiol 2012; 112:945-53. [PMID: 22324483 DOI: 10.1111/j.1365-2672.2012.05255.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To study the induction of a viable but nonculturable (VBNC) state in Vibrio cholerae O1 in freshwater, in response to cold temperatures (4°C) and starvation. METHODS AND RESULTS Vibrio cholerae O1 cells were inoculated in freshwater microcosm and incubated at 4°C. The cells became coccoid, rugose and subsequently nonculturable by day 16 on tryptic soy agar (TSA) and by day 23 on TSA-SP, while 87 and 65% of the cells retained their membrane integrity, respectively. Viable cells were observed until day 30 using direct fluorescent antibody-direct viable count method. In vitro resuscitation was demonstrated by temperature upshift. Utilizing 16S rRNA as an endogenous control, the DNA pol II (27·43-fold), fliG (12·44-fold), ABC transporter (27·11-fold), relA (60·76-fold) and flaC (15·29-fold) were significantly up-regulated in VBNC cells, while the expression of fadL-3 was comparable. The expression of DNA pol II, fliG, ABC transporter, relA and flaC was 3·3, 1·1, 5·9, 5·8 and 1·2-fold, respectively, for resuscitated cells. VBNC cells were found to be virulent, as ctxA and tcpA were expressed. CONCLUSIONS Vibrio cholerae undergoes both phenotypic alteration and genotypic modulation to protect itself from stress in freshwater. SIGNIFICANCE AND IMPACT OF THE STUDY Induction and resuscitation of the VBNC state in freshwater is important for an understanding of the epidemiology of cholera in the freshwater environment.
Collapse
Affiliation(s)
- A Mishra
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
70
|
Electrochemical genosensor for specific detection of the food-borne pathogen, Vibrio cholerae. World J Microbiol Biotechnol 2011; 28:1699-706. [DOI: 10.1007/s11274-011-0978-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/08/2011] [Indexed: 01/21/2023]
|