51
|
Peters AJ, Schnell E, Saugstad JA, Treggiari MM. Longitudinal Course of Traumatic Brain Injury Biomarkers for the Prediction of Clinical Outcomes: A Review. J Neurotrauma 2021; 38:2490-2501. [PMID: 33899510 DOI: 10.1089/neu.2020.7448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein biomarkers are often measured at hospital presentation to diagnose traumatic brain injury (TBI) and predict patient outcomes. However, a biomarker measurement at this single time point is no more accurate at predicting patient outcomes than less invasive and more cost-effective methods. Here, we review evidence that TBI biomarkers provide greater prognostic value when measured repeatedly over time, such that a trajectory of biomarker concentrations can be evaluated. PubMed, Google Scholar, and Cochrane Central Register were searched to identify studies from the last decade in which established TBI biomarkers had been measured at more than one time point following acute TBI, and which related their findings to patient outcomes. Twenty-two studies were identified, 18 of which focused on adults and 4 of which focused on children. Three general biomarker trajectories were identified: persistently high, persistently low, and reversal of decreasing concentrations. Downtrend reversal was highly specific to predicting poor patient outcomes. Four studies demonstrated that biomarker trajectories can be affected by therapeutic interventions. Additional studies demonstrated that biomarkers measured at a later time point offered superior prognostic value than a single measurement obtained at initial hospital presentation. Among other details, longitudinal biomarker trajectory assessments may identify ongoing injury and predict patient deterioration before clinical symptoms develop and thus help guide therapeutic interventions.
Collapse
Affiliation(s)
- Austin J Peters
- Department of Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Schnell
- Portland Health Care System, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Julie A Saugstad
- Portland Health Care System, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Miriam M Treggiari
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
52
|
Hergenroeder GW, Yokobori S, Choi HA, Schmitt K, Detry MA, Schmitt LH, McGlothlin A, Puccio AM, Jagid J, Kuroda Y, Nakamura Y, Suehiro E, Ahmad F, Viele K, Wilde EA, McCauley SR, Kitagawa RS, Temkin NR, Timmons SD, Diringer MN, Dash PK, Bullock R, Okonkwo DO, Berry DA, Kim DH. Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: A Multicenter Randomized Clinical Trial. Neurocrit Care 2021; 36:560-572. [PMID: 34518968 PMCID: PMC8964656 DOI: 10.1007/s12028-021-01334-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Background Hypothermia is neuroprotective in some ischemia–reperfusion injuries. Ischemia–reperfusion injury may occur with traumatic subdural hematoma (SDH). This study aimed to determine whether early induction and maintenance of hypothermia in patients with acute SDH would lead to decreased ischemia–reperfusion injury and improve global neurologic outcome. Methods This international, multicenter randomized controlled trial enrolled adult patients with SDH requiring evacuation of hematoma within 6 h of injury. The intervention was controlled temperature management of hypothermia to 35 °C prior to dura opening followed by 33 °C for 48 h compared with normothermia (37 °C). Investigators randomly assigned patients at a 1:1 ratio between hypothermia and normothermia. Blinded evaluators assessed outcome using a 6-month Glasgow Outcome Scale Extended score. Investigators measured circulating glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 levels. Results Independent statisticians performed an interim analysis of 31 patients to assess the predictive probability of success and the Data and Safety Monitoring Board recommended the early termination of the study because of futility. Thirty-two patients, 16 per arm, were analyzed. Favorable 6-month Glasgow Outcome Scale Extended outcomes were not statistically significantly different between hypothermia vs. normothermia groups (6 of 16, 38% vs. 4 of 16, 25%; odds ratio 1.8 [95% confidence interval 0.39 to ∞], p = .35). Plasma levels of glial fibrillary acidic protein (p = .036), but not ubiquitin C-terminal hydrolase L1 (p = .26), were lower in the patients with favorable outcome compared with those with unfavorable outcome, but differences were not identified by temperature group. Adverse events were similar between groups. Conclusions This trial of hypothermia after acute SDH evacuation was terminated because of a low predictive probability of meeting the study objectives. There was no statistically significant difference in functional outcome identified between temperature groups. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01334-w.
Collapse
Affiliation(s)
- Georgene W Hergenroeder
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA. .,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA.
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Huimahn Alex Choi
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Karl Schmitt
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Michelle A Detry
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Lisa H Schmitt
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Anna McGlothlin
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jonathan Jagid
- Department of Neurological Surgery, Jackson Memorial Hospital, University of Miami, Miami, FL, USA
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Kagawa University Hospital, Kagawa Prefecture, Japan
| | - Yukihiko Nakamura
- Emergency and Critical Care Medicine, Kurume University Hospital, Fukuoka, Japan
| | - Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Faiz Ahmad
- Department of Neurological Surgery, Grady Memorial Hospital, Emory University School of Medicine, Atlanta, GA, USA
| | - Kert Viele
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stephen R McCauley
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ryan S Kitagawa
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Shelly D Timmons
- Department of Neurological Surgery, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael N Diringer
- Departments of Neurology, Neurological Surgery, Anesthesiology, and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ross Bullock
- Department of Neurological Surgery, Jackson Memorial Hospital, University of Miami, Miami, FL, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Donald A Berry
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Dong H Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
53
|
Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, Backman S, Blennow K, Dankiewicz J, Friberg H, Hassager C, Horn J, Kjaergaard J, Lilja G, Rylander C, Ullén S, Undén J, Westhall E, Wise MP, Zetterberg H, Nielsen N, Cronberg T. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med 2021; 47:984-994. [PMID: 34417831 PMCID: PMC8421280 DOI: 10.1007/s00134-021-06481-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE The majority of unconscious patients after cardiac arrest (CA) do not fulfill guideline criteria for a likely poor outcome, their prognosis is considered "indeterminate". We compared brain injury markers in blood for prediction of good outcome and for identifying false positive predictions of poor outcome as recommended by guidelines. METHODS Retrospective analysis of prospectively collected serum samples at 24, 48 and 72 h post arrest within the Target Temperature Management after out-of-hospital cardiac arrest (TTM)-trial. Clinically available markers neuron-specific enolase (NSE) and S100B, and novel markers neurofilament light chain (NFL), total tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) were analysed. Normal levels with a priori cutoffs specified by reference laboratories or defined from literature were used to predict good outcome (no to moderate disability, Cerebral Performance Category scale 1-2) at 6 months. RESULTS Seven hundred and seventeen patients were included. Normal NFL, tau and GFAP had the highest sensitivities (97.2-98% of poor outcome patients had abnormal serum levels) and NPV (normal levels predicted good outcome in 87-95% of patients). Normal S100B and NSE predicted good outcome with NPV 76-82.2%. Normal NSE correctly identified 67/190 (35.3%) patients with good outcome among those classified as "indeterminate outcome" by guidelines. Five patients with single pathological prognostic findings despite normal biomarkers had good outcome. CONCLUSION Low levels of brain injury markers in blood are associated with good neurological outcome after CA. Incorporating biomarkers into neuroprognostication may help prevent premature withdrawal of life-sustaining therapy.
Collapse
Affiliation(s)
- Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden.
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Pascal Stammet
- Medical and Health Department, National Fire and Rescue Corps, Luxembourg, Luxembourg
| | - Sofia Backman
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Janneke Horn
- Department of Intensive Care, Amsterdam Neuroscience, Amsterdam UMC, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
| | - Christian Rylander
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Susann Ullén
- Clinical Studies Sweden-Forum South, Skane University Hospital, Lund, Sweden
| | - Johan Undén
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Operation and Intensive Care, Lund University, Hallands Hospital Halmstad, Halland, Sweden
| | - Erik Westhall
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Helsingborg Hospital, Lund University, Lund, Sweden
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
| |
Collapse
|
54
|
Persad A, Pham N, Moien-Afshari F, Gormley W, Yan S, Mannix R, Taghibiglou C. Plasma PrPC and ADAM-10 as novel biomarkers for traumatic brain injury and concussion: a pilot study. Brain Inj 2021; 35:734-741. [PMID: 33760683 DOI: 10.1080/02699052.2021.1900602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cellular prion protein (PrPC) is a lipid raft protein abundant within CNS. It is regulated by a disintegrin and metalloproteinase domain containing protein 10 (ADAM10). PrPC has previously been implicated as a biomarker for TBI. ADAM10 has not been investigated as a TBI biomarker. OBJECTIVE We evaluated PrPC and ADAM10 as candidate biomarkers for TBI. METHODS We performed ELISA for ADAM10 and PrPC on plasma samples of patients with TBI admitted to Brigham and Women's Hospital. Plasma samples from 20 patients admitted for isolated TBI were acquired from a biobank with clinical information. Control plasma (37 samples) was acquired from a commercial source. GraphPad was used to conduct statistical analysis. RESULTS 37 controls and 20 TBI samples were collected. Of the patients with TBI, eight were mild, three were moderate, and nine were severe. Both PrPC and ADAM10 were elevated in patients with TBI compared with control (p < .001). ADAM10 exhibited greater expression in patients with worse clinical grade. There was no significant association of either PrPC or ADAM10 with time after injury. CONCLUSIONS Our results indicate that PrPC and ADAM10 appear to be useful potential tools for screening of TBI. ADAM10 is closely associated with clinical grade.
Collapse
Affiliation(s)
- Amit Persad
- Division of Neurosurgery, University of Saskatchewan, Saskatoon, Canada
| | - Nam Pham
- Dept. Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Farzad Moien-Afshari
- Division of Neurology, Department of Medicine, Clinical Associate Professor, University of British Columbia, Vancouver, Canada
| | - William Gormley
- Department of Neurosurgery, Director, Neurosurgical Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Sandra Yan
- Department of Neurosurgery, Warren Alpert Medical School Of Brown University, Brown Medical School, Providence, RI, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Director, Boston Children's Hospital Brain Injury Center, Harvard Medical School, Boston, USA
| | - Changiz Taghibiglou
- Dept. Of Anatomy, Physiology, Pharmacology, Associate Professor, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
55
|
Development of a novel, sensitive translational immunoassay to detect plasma glial fibrillary acidic protein (GFAP) after murine traumatic brain injury. ALZHEIMERS RESEARCH & THERAPY 2021; 13:58. [PMID: 33678186 PMCID: PMC7938597 DOI: 10.1186/s13195-021-00793-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Background Glial fibrillary acidic protein (GFAP) has emerged as a promising fluid biomarker for several neurological indications including traumatic brain injury (TBI), a leading cause of death and disability worldwide. In humans, serum or plasma GFAP levels can predict brain abnormalities including hemorrhage on computed tomography (CT) scans and magnetic resonance imaging (MRI). However, assays to quantify plasma or serum GFAP in preclinical models are not yet available. Methods We developed and validated a novel sensitive GFAP immunoassay assay for mouse plasma on the Meso Scale Discovery immunoassay platform and validated assay performance for robustness, precision, limits of quantification, dilutional linearity, parallelism, recovery, stability, selectivity, and pre-analytical factors. To provide proof-of-concept data for this assay as a translational research tool for TBI and Alzheimer’s disease (AD), plasma GFAP was measured in mice exposed to TBI using the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model and in APP/PS1 mice with normal or reduced levels of plasma high-density lipoprotein (HDL). Results We performed a partial validation of our novel assay and found its performance by the parameters studied was similar to assays used to quantify human GFAP in clinical neurotrauma blood specimens and to assays used to measure murine GFAP in tissues. Specifically, we demonstrated an intra-assay CV of 5.0%, an inter-assay CV of 7.2%, a lower limit of detection (LLOD) of 9.0 pg/mL, a lower limit of quantification (LLOQ) of 24.8 pg/mL, an upper limit of quantification (ULOQ) of at least 16,533.9 pg/mL, dilution linearity of calibrators from 20 to 200,000 pg/mL with 90–123% recovery, dilution linearity of plasma specimens up to 32-fold with 96–112% recovery, spike recovery of 67–100%, and excellent analyte stability in specimens exposed to up to 7 freeze-thaw cycles, 168 h at 4 °C, 24 h at room temperature (RT), or 30 days at − 20 °C. We also observed elevated plasma GFAP in mice 6 h after TBI and in aged APP/PS1 mice with plasma HDL deficiency. This assay also detects GFAP in serum. Conclusions This novel assay is a valuable translational tool that may help to provide insights into the mechanistic pathophysiology of TBI and AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00793-9.
Collapse
|
56
|
DeKosky ST, Kochanek PM, Valadka AB, Clark RS, Chou SHY, Au AK, Horvat C, Jha RM, Mannix R, Wisniewski SR, Wintermark M, Rowell SE, Welch RD, Lewis L, House S, Tanzi RE, Smith DR, Vittor AY, Denslow ND, Davis MD, Glushakova OY, Hayes RL. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J Neurotrauma 2021; 38:1-43. [PMID: 33115334 PMCID: PMC7757533 DOI: 10.1089/neu.2020.7332] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry H.-Y. Chou
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Division of Pediatric Critical Care, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Mannix
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Susan E. Rowell
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit Receiving Hospital/University Health Center, Detroit, Michigan, USA
| | - Lawrence Lewis
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, McCance Center for Brain Health, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Department of Neurology (Research), Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Darci R. Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, Maryland, USA
| | - Amy Y. Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Nancy D. Denslow
- Departments of Physiological Sciences and Biochemistry and Molecular Biology, University of Florida, Center for Environmental and Human Toxicology, Gainesville, Florida
| | - Michael D. Davis
- Department of Pediatrics, Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
57
|
Gutierre MU, Telles JPM, Welling LC, Rabelo NN, Teixeira MJ, Figueiredo EG. Biomarkers for traumatic brain injury: a short review. Neurosurg Rev 2020; 44:2091-2097. [PMID: 33078327 DOI: 10.1007/s10143-020-01421-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
Cellular response to TBI is a mixture of excitotoxicity, neuroinflammation, and cell death. Biomarkers that can track these lesions and inflammatory processes are being explored for their potential to provide objective measures in the evaluation of TBI, from prehospital care to rehabilitation. By understanding the pathways involved, we could be able to improve diagnostic accuracy, guide management, and prevent long-term disability. We listed some of the recent advances in this translational, intriguing, fast-growing field. Although the knowledge gaps are still significant, some markers are showing promising results and could be helping patients in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | - Eberval Gadelha Figueiredo
- Division of Neurosurgery, University of São Paulo, São Paulo, Brazil. .,, Rua Eneas Aguiar, 255, 05403-010, São Paulo, Brazil.
| |
Collapse
|
58
|
Anderson TN, Hinson HE. Damaged: Elevated GFAP and UCH-L1 as the Black Flag of Brain Injury. Resuscitation 2020; 154:110-111. [PMID: 32652118 DOI: 10.1016/j.resuscitation.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | - Holly E Hinson
- Oregon Health & Science University Portland, OR, United States.
| |
Collapse
|