51
|
Meneses AL, Nam MCY, Bailey TG, Anstey C, Golledge J, Keske MA, Greaves K, Askew CD. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age. Physiol Rep 2021; 8:e14580. [PMID: 33038050 PMCID: PMC7547535 DOI: 10.14814/phy2.14580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Impairments in skeletal muscle microvascular function are frequently reported in patients with various cardiometabolic conditions for which older age is a risk factor. Whether aging per se predisposes the skeletal muscle to microvascular dysfunction is unclear. We used contrast‐enhanced ultrasound (CEU) to compare skeletal muscle microvascular perfusion responses to cuff occlusion and leg exercise between healthy young (n = 12, 26 ± 3 years) and older (n = 12, 68 ± 7 years) adults. Test–retest reliability of CEU perfusion parameters was also assessed. Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after: (a) 5‐min of thigh‐cuff occlusion, and (b) 5‐min of submaximal intermittent isometric plantar‐flexion exercise (400 N) using CEU. Whole‐leg blood flow was measured using strain‐gauge plethysmography. Repeated measures were obtained with a 15‐min interval, and averaged responses were used for comparisons between age groups. There were no differences in post‐occlusion whole‐leg blood flow and muscle microvascular perfusion between young and older participants (p > .05). Similarly, total whole‐leg blood flow during exercise and post‐exercise peak muscle microvascular perfusion did not differ between groups (p > .05). The overall level of agreement between the test–retest measures of calf muscle perfusion was excellent for measurements taken at rest (intraclass correlation coefficient [ICC] 0.85), and in response to cuff occlusion (ICC 0.89) and exercise (ICC 0.95). Our findings suggest that healthy aging does not affect muscle perfusion responses to cuff‐occlusion and submaximal leg exercise. CEU muscle perfusion parameters measured in response to these provocation tests are highly reproducible in both young and older adults.
Collapse
Affiliation(s)
- Annelise L Meneses
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Michael C Y Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Anstey
- Department of Intensive Care, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Michelle A Keske
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
52
|
Morabito S, Di Pietro S, Cicero L, Falcone A, Liotta L, Crupi R, Cassata G, Macrì F. Impact of region-of-interest size and location on quantitative contrast-enhanced ultrasound of canine splenic perfusion. BMC Vet Res 2021; 17:271. [PMID: 34380481 PMCID: PMC8356454 DOI: 10.1186/s12917-021-02973-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Background During contrast enhanced ultrasound (CEUS), the features of the regions of interest (ROI) can affect the value of the perfusion-related parameters obtained from a time intensity curve (TIC). In veterinary medicine, conflicting have been reported on the influence of ROI size and location on renal CEUS. There are some disagreeing evidences regarding the optimal method for selecting ROI in quantitative analysis of renal perfusion using CEUS. The aim of this study was to evaluate the effect of the size and location of ROIs in the spleen of conscious dogs on perfusion variables determined using sulphur hexafluoride contrast-enhanced ultrasounds. Results A prospective observational study on 15 client-owned mixed-breed adult dogs was performed using a system equipped with contrast-tuned imaging technology. Qualitative and quantitative assessments of the spleen enhancement pattern were carried out. Three square ROIs (0.05 cm2) were manually drawn in a row and spaced 1 mm apart, placing adjacent ROIs at three different depths. Three medium rectangular ROIs (0.3 cm2) include the 3 smallest ROIs in each row, indicated by the letters A, B and C, and a single large square ROI (1 cm2) was drawn containing all previous ROIs. Software analysis of time-intensity curves generated within each ROI allowed us to calculate the perfusion-related parameters: peak enhancement, time to peak, regional blood flow, mean transit time and regional blood volume. The coefficient of variation for all blood-related parameters was always lower in the larger ROI than in the other smaller ROIs. ROI A and B, positioned proximally and medially, levels respectively, showed similar coefficients of variation to the largest ROI. The analysis of variance model exhibited a significant effect of location and size of the ROIs in the quantitative analysis of canine spleen perfusion, with a reduction of perfusion-related parameters in the distal ROI. Conclusions The recommendation for a quantitative CEUS examination of a dog’s spleen is to analyze splenic perfusion by drawing a sufficiently large ROI proximal to the ultrasound beam on the splenic parenchyma. This may be of clinical relevance in the diagnosis of splenic diseases.
Collapse
Affiliation(s)
- Simona Morabito
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Luca Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90100, Palermo, Italy.
| | - Annastella Falcone
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90100, Palermo, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| |
Collapse
|
53
|
Collado-Lara G, Heymans SV, Godart J, D'Agostino E, D'hooge J, Van Den Abeele K, Vos HJ, de Jong N. Effect of a Radiotherapeutic Megavoltage Beam on Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1857-1867. [PMID: 33810887 DOI: 10.1016/j.ultrasmedbio.2021.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Collateral damage to healthy surrounding tissue during conventional radiotherapy increases when deviations from the treatment plan occur. Ultrasound contrast agents (UCAs) are a possible candidate for radiation dose monitoring. This study investigated the size distribution and acoustic response of two commercial formulations, SonoVue/Lumason and Definity/Luminity, as a function of dose on clinical megavoltage photon beam exposure (24 Gy). SonoVue samples exhibited a decrease in concentration of bubbles smaller than 7 µm, together with an increase in acoustic attenuation and a decrease in acoustic scattering. Definity samples did not exhibit a significant response to radiation, suggesting that the effect of megavoltage photons depends on the UCA formulation. For SonoVue, the influence of the megavoltage photon beam was especially apparent at the second harmonic frequency, and can be captured using pulse inversion and amplitude modulation (3.5-dB decrease for the maximum dose), which could eventually be used for dosimetry in a well-controlled environment.
Collapse
Affiliation(s)
- Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Jeremy Godart
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
54
|
Wang Y, Li N, Tian X, Lin L, Liang S, Zhao P, Dong Z, Wang Q, Li Q, Tang J, Luo Y. Evaluation of Renal Microperfusion in Diabetic Patients With Kidney Injury by Contrast-Enhanced Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1361-1368. [PMID: 33035374 DOI: 10.1002/jum.15516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES To conduct a quantitative analysis of renal microvascular perfusion in diabetic patients with kidney injury using contrast-enhanced ultrasound (CEUS). METHODS A total of 172 patients with type 2 diabetes mellitus and kidney injury were recruited from May 2017 to November 2019. After collection of clinical characteristics, a CEUS examination was performed after injection of the contrast agent SonoVue (Bracco SpA, Milan, Italy). Time-intensity curves and renal perfusion parameters were analyzed. Ultrasound-guided renal biopsy was performed. The patients were divided into a diabetic nephropathy (DN) group and a nondiabetic renal disease (NDRD) group according to renal pathologic results. The discrimination of perfusion parameters between the groups was analyzed statistically with SPSS version 19.0 software (IBM Corporation, Armonk, NY). Receiver operating characteristic curves were used to illustrate the diagnostic performance of indicators. RESULTS Ninety-eight patients, including 45 with DN (29 male; mean age ± SD, 57.76 ± 10.47 years) and 53 with NDRD (40 male; mean age, 48.7 ± 13.88 years) were included in this study. The peak enhancement (PE), wash-in the area under the curve (AUC), wash-in rate, wash-in perfusion index, wash-out AUC, wash-in and wash-out AUC, and wash-out rate were significantly different between the groups (P < .05). There were no differences in time-related parameters between the DN and NDRD groups (P > .05). The receiver operating characteristic curve analysis showed that the AUC for PE was 0.727, and PE lower than 7712.426 had diagnostic potential, with sensitivity of 81% and specificity of 40% in discriminating between NDRD and DN. CONCLUSIONS The quantification of CEUS parameters can discriminate DN in diabetic patients with kidney injury. The PE and AUC may be feasible parameters.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nan Li
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Tian
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Lin
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuyuan Liang
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ping Zhao
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Qian Wang
- Department of Nephrology, First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Qiuyang Li
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yukun Luo
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| |
Collapse
|
55
|
Voorneveld J, Keijzer LBH, Strachinaru M, Bowen DJ, Mutluer FO, van der Steen AFW, Cate FJT, de Jong N, Vos HJ, van den Bosch AE, Bosch JG. Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2432-2443. [PMID: 33720832 DOI: 10.1109/tuffc.2021.3066082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V-corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results.
Collapse
|
56
|
Hunt TM, Waletzko MR, Knudsen JM, Atwell TD, Chupka NM. The Effectiveness of Identifying Primary Gallbladder Adenocarcinoma Utilizing Contrast-Enhanced Ultrasound: A Case Report. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2021. [DOI: 10.1177/87564793211018959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gallbladder carcinoma is rare and difficult to detect in the early stages of the disease process, due to lack of symptoms. Sonography is typically the first modality of choice for assessing gallbladder pathology due to its high sensitivity, portability, real-time imaging capability, and non-ionizing technique. Conventional gray-scale and color Doppler sonographic imaging may be ambiguous for diagnosing solid tumors, such as gallbladder carcinoma. In this case, gallbladder carcinoma was definitively diagnosed utilizing contrast-enhanced ultrasound, allowing for quick patient treatment options and an optimal surgical outcome.
Collapse
|
57
|
Li M, Zeng D, Xie Q, Xu R, Wang Y, Ma D, Shi Y, Xu X, Huang M, Fei H. A deep learning approach with temporal consistency for automatic myocardial segmentation of quantitative myocardial contrast echocardiography. Int J Cardiovasc Imaging 2021; 37:1967-1978. [PMID: 33595760 DOI: 10.1007/s10554-021-02181-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Quantitative myocardial contrast echocardiography (MCE) has been proved to be valuable in detecting myocardial ischemia. During quantitative MCE analysis, myocardial segmentation is a critical step in determining accurate region of interests (ROIs). However, traditional myocardial segmentation mainly relies on manual tracing of myocardial contours, which is time-consuming and laborious. To solve this problem, we propose a fully automatic myocardial segmentation framework that can segment myocardial regions in MCE accurately without human intervention. A total of 100 patients' MCE sequences were divided into a training set and a test set according to a 7: 3 proportion for analysis. We proposed a bi-directional training schema, which incorporated temporal information of forward and backward direction among frames in MCE sequences to ensure temporal consistency by combining convolutional neural network with recurrent neural network. Experiment results demonstrated that compared with a traditional segmentation model (U-net) and the model considering only forward temporal information (U-net + forward), our framework achieved the highest segmentation precision in Dice coefficient (U-net vs U-net + forward vs our framework: 0.78 ± 0.07 vs 0.79 ± 0.07 vs 0.81 ± 0.07, p < 0.01), Intersection over Union (0.65 ± 0.09 vs 0.66 ± 0.09 vs 0.68 ± 0.09, p < 0.01), and lowest Hausdorff Distance (32.68 ± 14.6 vs 28.69 ± 13.18 vs 27.59 ± 12.82 pixel point, p < 0.01). In the visual grading study, the performance of our framework was the best among these three models (52.47 ± 4.29 vs 54.53 ± 5.10 vs 57.30 ± 4.73, p < 0.01). A case report on a randomly selected subject for perfusion analysis showed that the perfusion parameters generated by using myocardial segmentation of our proposed framework were similar to that of the expert annotation. The proposed framework could generate more precise myocardial segmentation when compared with traditional methods. The perfusion parameters generated by these myocardial segmentations have a good similarity to that of manual annotation, suggesting that it has the potential to be utilized in routine clinical practice.
Collapse
Affiliation(s)
- Mingqi Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Dewen Zeng
- Department of Computer Science and Engineering, University of Notre Dame, South Bend, IN, USA
| | - Qiu Xie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruixue Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Dunliang Ma
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yiyu Shi
- Department of Computer Science and Engineering, University of Notre Dame, South Bend, IN, USA
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Meiping Huang
- Department of Catheterization Lab, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Hongwen Fei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
58
|
Wan P, Chen F, Liu C, Kong W, Zhang D. Hierarchical Temporal Attention Network for Thyroid Nodule Recognition Using Dynamic CEUS Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1646-1660. [PMID: 33651687 DOI: 10.1109/tmi.2021.3063421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) has emerged as a popular imaging modality in thyroid nodule diagnosis due to its ability to visualize vascular distribution in real time. Recently, a number of learning-based methods are dedicated to mine pathological-related enhancement dynamics and make prediction at one step, ignoring a native diagnostic dependency. In clinics, the differentiation of benign or malignant nodules always precedes the recognition of pathological types. In this paper, we propose a novel hierarchical temporal attention network (HiTAN) for thyroid nodule diagnosis using dynamic CEUS imaging, which unifies dynamic enhancement feature learning and hierarchical nodules classification into a deep framework. Specifically, this method decomposes the diagnosis of nodules into an ordered two-stage classification task, where diagnostic dependency is modeled by Gated Recurrent Units (GRUs). Besides, we design a local-to-global temporal aggregation (LGTA) operator to perform a comprehensive temporal fusion along the hierarchical prediction path. Particularly, local temporal information is defined as typical enhancement patterns identified with the guidance of perfusion representation learned from the differentiation level. Then, we leverage an attention mechanism to embed global enhancement dynamics into each identified salient pattern. In this study, we evaluate the proposed HiTAN method on the collected CEUS dataset of thyroid nodules. Extensive experimental results validate the efficacy of dynamic patterns learning, fusion and hierarchical diagnosis mechanism.
Collapse
|
59
|
Wan P, Chen F, Shao W, Liu C, Zhang Y, Wen B, Kong W, Zhang D. Irregular Respiratory Motion Compensation for Liver Contrast-Enhanced Ultrasound via Transport-Based Motion Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1117-1130. [PMID: 33108284 DOI: 10.1109/tuffc.2020.3033984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) imaging has been widely applied for the detection and characterization of focal liver lesions (FLLs), for its ability to visualize the blood flow in real time. However, cyclic liver motion poses a great challenge to the recovery of perfusion curves as well as quantitative kinetic parameters estimation. Recently, a few gating methods have been proposed to eliminate unexpected intensity fluctuations by the breathing phase estimation, with the assumption that each breathing phase corresponds to a specific lesion position strictly. While practical liver motion tends to be irregular due to changes in the patient's underlying physiologic status, that is, the same phase might not correspond to the same position. To tackle the challenge of motion irregularity, we present a novel motion estimation-based respiratory compensation method, named RCME, which first estimates salient motion information through the framework of optimal transport (OT) by jointly modeling pixel intensity as well as their locations and then employs sparse subspace clustering (SSC) to identify the subset of frames acquired at the same position. Our proposed method is evaluated on 15 clinical CEUS sequences in both qualitative and quantitative manners. Experimental results demonstrate good performance on irregular liver motion compensation.
Collapse
|
60
|
Taiji R, Nishiofuku H, Tanaka T, Minamiguchi K, Fukuoka Y, Saito N, Taguchi H, Matsumoto T, Marugami N, Hirai T, Kichikawa K. Useful Parameters in Dynamic Contrast-enhanced Ultrasonography for Identifying Early Response to Chemotherapy in a Rat Liver Tumor Model. J Clin Imaging Sci 2021; 11:15. [PMID: 33767907 PMCID: PMC7981939 DOI: 10.25259/jcis_6_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives The objective of the study is to determine a parameter on the time-intensity curve (TIC) of dynamic contrast-enhanced ultrasonography (DCE-US) that best correlates with tumor growth and to evaluate whether the parameter could correlate with the early response to irinotecan in a rat liver tumor model. Material and Methods Twenty rats with tumors were evaluated (control: Saline, n = 6; treatment: Irinotecan, n = 14) regarding four parameters from TIC: Peak intensity (PI), k value, slope (PI × k), and time to peak (TTP). Relative changes in maximum tumor diameter between day 0 and 10, and parameters in the first 3 days were evaluated. The Mann-Whitney U-test was used to compare differences in tumor size and other parameters. Pearson's correlation coefficients (r) between tumor size and parameters in the control group were calculated. In the treatment group, relative changes of parameters in the first 3 days were compared between responder and non-responder (<20% and ≥20% increase in size on day 10, respectively). Results PI, k value, PI × k, and TTP significantly correlated with tumor growth (r = 0.513, 0.911, 0.665, and 0.741, respectively). The mean RC in k value among responders (n = 6) was significantly lower than non-responders (n = 8) (mean k value, 4.96 vs. 72.5; P = 0.003). Conclusion Parameters of DCE-US could be a useful parameter for identifying early response to irinotecan.
Collapse
Affiliation(s)
- Ryosuke Taiji
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Toshihiro Tanaka
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Yasushi Fukuoka
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | - Natsuhiko Saito
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | - Hidehiko Taguchi
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | - Takeshi Matsumoto
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | - Nagaaki Marugami
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | - Toshiko Hirai
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
61
|
Ponorac S, Gošnak RD, Urlep D, Ključevšek D. Contrast-enhanced ultrasonography in the evaluation of Crohn disease activity in children: comparison with histopathology. Pediatr Radiol 2021; 51:410-418. [PMID: 33411024 DOI: 10.1007/s00247-020-04870-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/06/2020] [Accepted: 10/04/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Contrast-enhanced ultrasound (US) of the bowel wall has been suggested as an alternative imaging modality for the follow-up of children with Crohn disease. OBJECTIVE To evaluate the diagnostic performance of contrast-enhanced US in the estimation of Crohn disease activity in children with histopathology as the reference standard. MATERIALS AND METHODS In 24 children with Crohn disease confirmed on histopathology, disease activity was evaluated on 40 bowel segments using US score and subjective and quantitative contrast-enhanced US evaluation. Contrast-enhanced US evaluation included enhancement pattern analysis with a graphic representation of log time-intensity curve and calculation of kinetic parameters with the definition of thresholds for disease activity, as determined by receiver operating characteristics curve analysis. The diagnostic accuracy of US with colour Doppler imaging and subjective and quantitative contrast-enhanced US were calculated. RESULTS Moderate or severe inflammation was identified in 18 segments and remission or mild inflammation was identified in 22 segments on histopathology. The quantitative contrast-enhanced US, namely the peak enhancement value, had 72.2% sensitivity (95% confidence interval [CI] 46.5-90.3), 100% specificity (95% CI 84.6-100.0) and 87.5% diagnostic accuracy (95% CI 73.2-95.8) in predicting moderate or severe grade inflammation at histopathology. The sensitivity, specificity and diagnostic accuracy of subjective contrast-enhanced US were 77.8% (95% CI 52.4-93.6), 77.3% (95% CI 54.6-92.2) and 77.5% (95% CI 61.6-89.2), respectively, and of US with colour Doppler imaging were 55.6% (95% CI 30.8-78.5), 86.4% (95% CI 65.1-79.1) and 72.5% (95% CI 56.1-85.4), respectively. CONCLUSION Quantitative contrast-enhanced US has the potential of becoming a complementary method in the evaluation of Crohn disease activity in children. Fibrosis may affect peak enhancement results and underestimate inflammatory activity.
Collapse
Affiliation(s)
- Slavojka Ponorac
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Raja Dahmane Gošnak
- Chair of Biomedicine, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Urlep
- Department of Gastroenterology, Hepatology, and Nutrition, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Damjana Ključevšek
- Department of Radiology, Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, 1000, Ljubljana, Slovenia.
| |
Collapse
|
62
|
Goncin U, Ton N, Reddy A, El Kaffas A, Brinkmann M, Machtaler S. Contrast-enhanced ultrasound imaging for assessing organ perfusion in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141231. [PMID: 33182180 DOI: 10.1016/j.scitotenv.2020.141231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) imaging has great potential as a non-lethal, inexpensive monitoring tool in aquatic toxicology. It is a well-established clinical imaging approach that combines real-time, quantitative assessment of organ blood flow, with morphological data. In humans, it has been extensively used to measure changes in blood flow that can be attributed to cancer, inflammation, and other biological abnormalities. However, it has yet to be explored as a tool for fish physiology or environmental toxicology. In this study, our goal was to determine if CEUS could be used to visualize and measure blood flow in the liver of a rainbow trout. All rainbow trout received two injections of an ultrasound contrast agent, microbubbles. A subset received a third injection after administration of propranolol, a non-specific beta1 & 2-blocker, to determine if changes in blood flow could be detected. Ultrasound contrast time-intensity curves (TIC) were obtained, fit to a lognormal model, and different perfusion parameters were calculated. Contrast enhancement was observed in all rainbow trout livers, with high percentage between repeated measurements, including blood flow (80.6 ± 27.3%), area under the curve (73.2 ± 14%), blood volume (84 ± 14.2%) and peak enhancement (86.7 ± 7.5%). After administration of propranolol, we detected a non-significant (p > 0.05) increase in area under the curve (102.6 ± 44.2%), peak enhancement (77.3 ± 106.4), blood volume (48.2 ± 74.5%), and decrease in hepatic blood flow (-17.3 ± 37.1%). These data suggest that CEUS imaging is suitable to measure organ blood flow in fish, and demonstrates tremendous potential for exploring different organs, fish species, and effects of chemical contaminants in future studies.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ngoc Ton
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ashwin Reddy
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ahmed El Kaffas
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Markus Brinkmann
- School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security (GIWS), University of Saskatchewan, Saskatoon, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
63
|
Therapeutic response monitoring after targeted therapy in an orthotopic rat model of hepatocellular carcinoma using contrast-enhanced ultrasound: Focusing on inter-scanner, and inter-operator reproducibility. PLoS One 2020; 15:e0244304. [PMID: 33362203 PMCID: PMC7757904 DOI: 10.1371/journal.pone.0244304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess therapeutic response monitoring after targeted therapy in an orthotopic rat model of hepatocellular carcinoma (HCC) using CEUS with focusing on inter-scanner and inter-operator reproducibility. Materials and methods For reproducibility, CEUS was performed using two different US scanners by two operators in sixteen rat models of HCC. Using perfusion analysis software (VueBox ®), eleven parameters were collected, and intra-class correlation coefficient (ICC) was used to analyze reproducibility. Then seventeen rat models of HCC were divided into treatment group (n = 8, 30 mg/kg/day sorafenib for five days) and control group (n = 9). CEUS was performed at baseline and 14 days after first treatment, and changes of perfusion parameters were analyzed. Results In treatment group, CEUS perfusion parameters showed a significant change. The peak enhancement (PE, 2.50 x103±1.68 x103 vs 5.55x102±4.65x102, p = 0.010) and wash-in and wash out AUC (WiWoAUC, 1.07x105±6.48 x104 vs 2.65x104±2.25x104, p = 0.009) had significantly decreased two weeks after treatment. On the contrary, control group did not show a significant change, including PE (1.15 x103±7.53x102 vs 9.43x102± 7.81 x102, p = 0.632) and WiWoAUC (5.09 x104±3.25x104 vs 5.92 x104±3.20x104, p = 0.646). For reproducibility, the various degrees of inter-scanner reproducibility were from poor to good (ICC: <0.01–0.63). However, inter-operator reproducibility of important perfusion parameters, including WiAUC, WoAUC, and WiWoAUC, ranged from fair to excellent (ICC: 0.59–0.93) in a different scanner. Conclusion Our results suggest that CEUS is useful for assessment of the treatment response after targeted therapy and with fair to excellent inter-operator reproducibility.
Collapse
|
64
|
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020; 17:56. [PMID: 33138843 PMCID: PMC7607677 DOI: 10.1186/s12989-020-00386-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
65
|
Andersen SB, Taghavi I, Hoyos CAV, Søgaard SB, Gran F, Lönn L, Hansen KL, Jensen JA, Nielsen MB, Sørensen CM. Super-Resolution Imaging with Ultrasound for Visualization of the Renal Microvasculature in Rats Before and After Renal Ischemia: A Pilot Study. Diagnostics (Basel) 2020; 10:diagnostics10110862. [PMID: 33105888 PMCID: PMC7690607 DOI: 10.3390/diagnostics10110862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
In vivo monitoring of the microvasculature is relevant since diseases such as diabetes, ischemia, or cancer cause microvascular impairment. Super-resolution ultrasound imaging allows in vivo examination of the microvasculature by detecting and tracking sparsely distributed intravascular microbubbles over a minute-long period. The ability to create detailed images of the renal vasculature of Sprague-Dawley rats using a modified clinical ultrasound platform was investigated in this study. Additionally, we hypothesized that early ischemic damage to the renal microcirculation could be visualized. After a baseline scan of the exposed kidney, 10 rats underwent clamping of the renal vein (n = 5) or artery (n = 5) for 45 min. The kidneys were rescanned at the onset of clamp release and after 60 min of reperfusion. Using a processing pipeline for tissue motion compensation and microbubble tracking, super-resolution images with a very high level of detail were constructed. Image filtration allowed further characterization of the vasculature by isolating specific vessels such as the ascending vasa recta with a 15–20 μm diameter. Using the super-resolution images alone, it was only possible for six assessors to consistently distinguish the healthy renal microvasculature from the microvasculature at the onset of vein clamp release. Future studies will aim at attaining quantitative estimations of alterations in the renal microvascular blood flow using super-resolution ultrasound imaging.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | | | - Stinne Byrholdt Søgaard
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Fredrik Gran
- BK Medical ApS, 2730 Herlev, Denmark; (C.A.V.H.); (F.G.)
| | - Lars Lönn
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.S.); (L.L.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | |
Collapse
|
66
|
Doll J, Bürkle F, Neide A, Tsitlakidis S, Bruckner T, Schmidmaier G, Fischer C. Contrast-enhanced ultrasound for determining muscular perfusion after oral intake of L-citrulline, L-arginine, and galloylated epicatechines: A study protocol. Medicine (Baltimore) 2020; 99:e22318. [PMID: 33031270 PMCID: PMC7544292 DOI: 10.1097/md.0000000000022318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The market for dietary supplements in the sports sector has been growing rapidly for several years, though there is still lacking evidence regarding their claimed benefits. One group is that of nitric oxide increasing supplements, so-called "NO-boosters," which are claimed to improve the supply of oxygen and nutrients to the muscle by enhancing vasodilation.The aim of this study was to investigate 3 of these supplements in healthy male athletes for their muscle perfusion-enhancing potential using contrast-enhanced ultrasound (CEUS). METHODS This placebo-controlled, double-blind, randomized cross-over trial will be carried out at the Center for Orthopedics, Trauma Surgery and Spinal Cord Injury of the University Hospital Heidelberg. Three commercial NO enhancing products including 300 mg of the specific green tea extract VASO6 and a combination of 8 g L-citrulline malate and 3 g L-arginine hydrochloride will be examined for their potential to increase muscular perfusion in 30-male athletes between 18 and 40 years and will be compared with a placebo. On each of the 3 appointments CEUS of the dominant biceps muscle will be performed at rest and after a standardized resistance training. Every athlete receives each of the 3 supplements once after a wash-out period of at least 1 week. Perfusion will be quantified via VueBox quantification software. The results of CEUS perfusion measurements will be compared intra- and interindividually and correlated with clinical parameters. DISCUSSION The results of this study may help to establish CEUS as a suitable imaging modality for the evaluation of potentially vasodilatory drugs in the field of sports. Other supplements could also be evaluated in this way to verify the content of their advertising claims. TRIAL REGISTRATION German Clinical Trials Register (DRKS), ID: DRKS00016972, registered on 25.03.2019.
Collapse
Affiliation(s)
- Julian Doll
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Franziska Bürkle
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Arndt Neide
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Stefanos Tsitlakidis
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| |
Collapse
|
67
|
Gokli A, Acord MR, Hwang M, Medellin-Kowalewski A, Rubesova E, Anupindi SA. Contrast-enhanced US in Pediatric Patients: Overview of Bowel Applications. Radiographics 2020; 40:1743-1762. [PMID: 33001781 DOI: 10.1148/rg.2020200019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Contrast material-enhanced US is a technique that is approved by the U.S. Food and Drug Administration for the characterization of liver lesions and intravesicular applications in children; however, contrast-enhanced US has several other pediatric applications in clinical practice. The most common application is for patients with inflammatory bowel disease (IBD). Contrast-enhanced US can be used to diagnose IBD, distinguish regions of active or chronic inflammation of the bowel wall, and evaluate associated complications such as abscesses, fistulas, and strictures. Dynamic contrast material evaluation provides qualitative and quantitative information about mural and mesenteric blood flow, which is essential in the determination of disease activity in these patients. It also has the potential to provide a means of monitoring the response to therapy beyond endoscopy or MR enterography. In addition to its use for IBD, contrast-enhanced US can be used to assess for bowel perfusion when problem solving in patients with necrotizing enterocolitis, neonatal bowel infarction, or intussusception. It is a useful imaging technique to fortify diagnoses that may otherwise be indeterminate, such as appendicitis, epiploic appendagitis, intraluminal bowel masses, and complex cysts. Finally, innovative applications such as shear-wave elastography have the potential to provide information about the stiffness of the bowel wall. Online supplemental material is available for this article. ©RSNA, 2020 See discussion on this article by Watson and Humphries.
Collapse
Affiliation(s)
- Ami Gokli
- From the Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 (A.G., M.R.A., M.H., S.A.A.); Department of Radiology, University of Calgary, Calgary, Alberta, Canada (A.M.K.); and Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, Calif (E.R.)
| | - Michael R Acord
- From the Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 (A.G., M.R.A., M.H., S.A.A.); Department of Radiology, University of Calgary, Calgary, Alberta, Canada (A.M.K.); and Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, Calif (E.R.)
| | - Misun Hwang
- From the Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 (A.G., M.R.A., M.H., S.A.A.); Department of Radiology, University of Calgary, Calgary, Alberta, Canada (A.M.K.); and Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, Calif (E.R.)
| | - Alexandra Medellin-Kowalewski
- From the Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 (A.G., M.R.A., M.H., S.A.A.); Department of Radiology, University of Calgary, Calgary, Alberta, Canada (A.M.K.); and Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, Calif (E.R.)
| | - Erika Rubesova
- From the Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 (A.G., M.R.A., M.H., S.A.A.); Department of Radiology, University of Calgary, Calgary, Alberta, Canada (A.M.K.); and Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, Calif (E.R.)
| | - Sudha A Anupindi
- From the Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 (A.G., M.R.A., M.H., S.A.A.); Department of Radiology, University of Calgary, Calgary, Alberta, Canada (A.M.K.); and Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, Calif (E.R.)
| |
Collapse
|
68
|
Gitto S, Messina C, Vitale N, Albano D, Sconfienza LM. Quantitative Musculoskeletal Ultrasound. Semin Musculoskelet Radiol 2020; 24:367-374. [PMID: 32992365 DOI: 10.1055/s-0040-1709720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ultrasound (US) imaging plays a crucial role in the assessment of musculoskeletal (MSK) disorders. Several quantitative tools are offered by US systems and add information to conventional US imaging. This article reviews the quantitative US imaging tools currently available in MSK radiology, specifically focusing on the evaluation of elasticity with shear-wave elastography, perfusion with contrast-enhanced US and noncontrast superb microvascular imaging, and bone and muscle mass with quantitative US methods. Some of them are well established and already of clinical value, such as elasticity and contrast-enhanced perfusion assessment in muscles and tendons. MSK radiologists should be aware of the potential of quantitative US tools and take advantage of their use in everyday practice, both for clinical and research purposes.
Collapse
Affiliation(s)
- Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Nicoló Vitale
- Scuola di Specializzazione in Medicina Fisica e Riabilitativa, Dipartimento di Scienze Biomediche e Biotecnologiche, Università Degli Studi di Catania, Catania, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
69
|
Baun J. Contrast-Enhanced Ultrasound: Identification of Neovascularization Permits Characterization of Vulnerable Carotid Plaques. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2020. [DOI: 10.1177/8756479320929017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Carotid atherosclerotic vascular disease (ASVD) represents an ongoing health problem and is responsible for a significant proportion of all cerebral ischemic events (CIEs). Method: A review of the literature was performed on the application of contrast-enhanced ultrasound (CEUS) to enhance the diagnosis of ASVD and further avoid CIEs. Results: Cerebral ischemic events are those resulting from reduction or cessation of perfusion to localized regions of the brain made manifest by neurological, typically stroke-like, symptoms. Traditional triplex ultrasound evaluation is a reliable and widely established method of identifying carotid ASVD lesions and grading the accompanying degree of focal stenoses and their hemodynamic impact. While this information plays an integral role in determining management of patients with significant carotid ASVD, it is less useful in classifying individual lesions as “vulnerable” or not. Vulnerable lesions are those that, based on their histological and morphological features, predispose a patient to an increased risk of a CIE due to plaque or thrombus embolization. Conclusions: The addition of CEUS to carotid artery diagnostic studies offers new potential in identifying vulnerable plaques and predicting which patients will progress to sequelae associated with a cerebral ischemic event.
Collapse
Affiliation(s)
- Jim Baun
- University of Findlay, Toledo, OH, USA
| |
Collapse
|
70
|
Sojahrood AJ, Haghi H, Li Q, Porter TM, Karshafian R, Kolios MC. Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at various excitation pressures. ULTRASONICS SONOCHEMISTRY 2020; 66:105070. [PMID: 32279052 DOI: 10.1016/j.ultsonch.2020.105070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/29/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
This study presents the fundamental equations governing the pressure dependent disipation mechanisms in the oscillations of coated bubbles. A simple generalized model (GM) for coated bubbles accounting for the effect of compressibility of the liquid is presented. The GM was then coupled with nonlinear ODEs that account for the thermal effects. Starting with mass and momentum conservation equations for a bubbly liquid and using the GM, nonlinear pressure dependent terms were derived for power dissipation due to thermal damping (Td), radiation damping (Rd) and dissipation due to the viscosity of liquid (Ld) and coating (Cd). The pressure dependence of the dissipation mechanisms of the coated bubble have been analyzed. The dissipated energies were solved for uncoated and coated 2-20 μm in bubbles over a frequency range of 0.25fr-2.5fr (fr is the bubble resonance) and for various acoustic pressures (1 kPa-300 kPa). Thermal effects were examined for air and C3F8 gas cores. In the case of air bubbles, as pressure increases, the linear thermal model looses accuracy and accurate modeling requires inclusion of the full thermal model. However, for coated C3F8 bubbles of diameter 1-8 μm, which are typically used in medical ultrasound, thermal effects maybe neglected even at higher pressures. For uncoated bubbles, when pressure increases, the contributions of Rd grow faster and become the dominant damping mechanism for pressure dependent resonance frequencies (e.g. fundamental and super harmonic resonances). For coated bubbles, Cd is the strongest damping mechanism. As pressure increases, Rd contributes more to damping compared to Ld and Td. For coated bubbles, the often neglected compressibility of the liquid has a strong effect on the oscillations and should be incorporated in models. We show that the scattering to damping ratio (STDR), a measure of the effectiveness of the bubble as contrast agent, is pressure dependent and can be maximized for specific frequency ranges and pressures.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - Q Li
- Department of Mechanical Engineering and the Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - T M Porter
- Department of Mechanical Engineering and the Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
71
|
Contrast-Enhanced Ultrasound in Cystic Endometrial Hyperplasia-Pyometra Complex in the Bitch: A Preliminary Study. Animals (Basel) 2020; 10:ani10081368. [PMID: 32784584 PMCID: PMC7460530 DOI: 10.3390/ani10081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In canine cystic endometrial hyperplasia–pyometra (CEH) syndrome, toxic factors and endometrial inflammatory reactions are responsible of increased blood flow and lower vascular resistance in uterine arteries. Color Doppler ultrasound is regarded as an adjunctive tool for quantitative assessment of endometrial vascularization during uterine disorders. The aim of this study was to assess, through contrast-enhanced ultrasound (CEUS) exam, the vascularization in endometrial microvessels in CEH-pyometra in order to evaluate the possibility of application in this syndrome. In twelve female dogs with clinical symptoms related to pyometra, echographic, Color Doppler and CEUS exams were performed. Histopathological examination revealed severe CEH and pyometra, immunohistochemical stain with CD 34 confirmed the presence of angiogenesis. CEUS exam revealed a widespread, intense and rapidly developing homogeneous enhancement of the hyperplastic endometrium with absence of signal only in cystic areas. All parameters of the quantitative analysis were not significantly influenced by region of interest dimension and position. CEUS may improve not invasive evaluations in the CEH-pyometra syndrome and virtually in CEH-mucometra. Abstract In cystic endometrial hyperplasia (CEH)–pyometra syndrome, toxic factors and endometrial remodeling culminate in changes characterized by exudative and degenerative inflammatory reaction. Recent studies on hemodynamic found an increased blood flow and lower vascular resistance in uterine arteries, suggesting color Doppler ultrasound as an adjunctive tool for quantitative assessment of endometrial vascularization during pyometra. The aim of this study was to assess, through contrast-enhanced ultrasound (CEUS) exam, the vascularization in endometrial microvessels in CEH-pyometra in order to evaluate the possibility of application in this syndrome. In twelve female dogs with clinical symptoms related to pyometra, B-mode, color Doppler and CEUS exams were performed. In CEH-pyometra uteri, histopathological examination revealed severe CEH and pyometra, immunohistochemical stain with CD 34 confirmed the presence of angiogenesis. CEUS exams revealed a widespread, intense and rapidly developing homogeneous enhancement of the hyperplastic endometrium, with absence of signal only in cystic areas. All parameters of the quantitative analysis were not significantly influenced by region of interest dimension and position. CEUS has the potential to improve clinical not invasive evaluations in the CEH-pyometra syndrome and virtually in CEH-mucometra.
Collapse
|
72
|
Zhang J, Li N, Dong F, Liang S, Wang D, An J, Long Y, Wang Y, Luo Y, Zhang J. Ultrasound Microvascular Imaging Based on Super-Resolution Radial Fluctuations. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1507-1516. [PMID: 32064662 DOI: 10.1002/jum.15238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Super-resolution ultrasound (SRUS) has become a tool for in vivo microvascular imaging. Most of the SRUS methods are based on microbubble localization: namely, ultrasound localization microscopy (ULM). The aim of this study was to develop a nonlocalization SRUS method and verify its feasibility in microvascular imaging. METHODS We introduce a new super-resolution strategy based on the postprocessing of contrast-enhanced ultrasound. The proposed method, which is termed ultrasound diffraction attenuation microscopy (UDAM), uses super-resolution radial fluctuations instead of microbubble localization to overcome acoustic diffraction limits. Biceps of Japanese long-ear white rabbits were adopted to validate its feasibility on muscle vascular imaging, using a clinical accessible ultrasound system at a frame rate of 30 Hz under a single bolus injection of SonoVue (Bracco SpA, Milan, Italy). The super-resolution image was compared with the maximum-intensity projection and ULM. RESULTS The animal study illustrates that the proposed UDAM can obtain super-resolution microvascular images of rabbits' muscles under a single bolus injection of SonoVue with a 150-second contrast-enhanced ultrasound video. Both ULM and UDAM can achieve a very similar vascular structure with the maximum-intensity projection but much higher spatial resolution. The measurement of 1-dimensional signals shows that UDAM can distinguish the subwavelength structures and substantial reduce the full width at half-maximum of microvessels. CONCLUSIONS We conclude UDAM provides a noninvasive tool for in vivo super-resolution microvascular imaging.
Collapse
Affiliation(s)
- Jiabin Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Nan Li
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuyuan Liang
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yunfei Long
- College of Engineering, Peking University, Beijing, China
| | - Yuexiang Wang
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yukun Luo
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
| |
Collapse
|
73
|
Green RW, Epstein E. Dynamic contrast-enhanced ultrasound improves diagnostic performance in endometrial cancer staging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:96-105. [PMID: 31647145 DOI: 10.1002/uog.21885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 05/14/2023]
Abstract
OBJECTIVES To compare the sensitivity and specificity of conventional two-dimensional transvaginal ultrasound/power Doppler (2D-TVU/PD) alone and 2D-TVU/PD combined with dynamic contrast-enhanced ultrasound (DCE-US) in diagnosing deep myometrial invasion (MI) and cervical stromal involvement (CSI) in women with endometrial cancer (EC), and to assess the association of DCE-US semiquantitative and qualitative variables with International Federation of Gynecology and Obstetrics (FIGO) Stage ≥ IB and 'high-risk' cancer. METHODS This was a prospective study of 101 consecutive women with biopsy-confirmed EC, undergoing expert ultrasound examination at Karolinska University Hospital, a tertiary referral center. All consenting women underwent DCE-US using a 1.5-2.5-mL intravenous bolus of SonoVue contrast agent, as well as conventional 2D-TVU/PD examination. DCE-US videoclips were analyzed with regard to filling (global or focal), wash-in (prior, simultaneous or after) and wash-out (global or focal) patterns of the contrast agent in the tumor compared with the surrounding tissue, as well as semiquantitative DCE-US parameters (wash-in slope, time-to-peak, peak intensity and area under the time-intensity curve (TIC)) obtained from a TIC. The study cohort was compared with a control cohort of women with EC examined at our center according to the International Endometrial Tumor Analysis protocol using 2D-TVU/PD only, matched at a ratio of 3:1 for FIGO stage and grade. The sensitivity and specificity of 2D-TVU/PD alone in the control cohort and in combination with DCE-US in the study cohort in the diagnosis of deep MI, CSI and high-risk cancer (defined as FIGO Stage ≥ IB and/or Grade 3 endometrioid and/or non-endometrioid histology) were compared, using pathological evaluation after hysterectomy as the 'gold standard'. RESULTS After exclusions, 93 women were included in the study cohort and were matched to 279 women in the control cohort. The prevalence of FIGO Stage IA, Grade 1-2 EC was 52% in both cohorts. The sensitivity of 2D-TVU/PD with DCE-US in the study cohort was higher than that of 2D-TVU/PD alone in the control cohort in diagnosing both deep MI (0.74 vs 0.62; P = 0.036) and CSI (0.75 vs 0.51; P < 0.001), whereas the specificity was not significantly different (0.87 vs 0.85 and 0.96 vs 0.95, respectively). Compared with 2D-TVU/PD alone, the specificity of 2D-TVU/PD with DCE-US was higher in detecting high-risk cancer (0.94 vs 0.85; P = 0.024) but the sensitivity did not differ (0.73 vs 0.71). High-risk cancer and FIGO Stage ≥ IB were characterized by a 'focal' filling pattern, with a 'prior' wash-in pattern and a 'focal' wash-out pattern on subjective assessment of DCE-US videoclips. All semiquantitative DCE-US parameters were significantly predictive of FIGO Stage ≥ IB but not of high-risk cancer, despite a clear trend. CONCLUSIONS Compared with 2D-TVU/PD alone, combining 2D-TVU/PD with DCE-US can significantly improve the detection of deep MI and CSI in women with EC, without increasing the false-positive rate. It can also improve the correct classification of high-risk disease, mainly by increasing specificity, thereby possibly reducing the number of unnecessarily extensive surgeries by almost 10%. Semiquantitative DCE-US parameters, as well as a 'focal' filling pattern, endometrial wash-in prior to the myometrium and a 'focal' wash-out pattern, are all associated with more advanced disease. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- R W Green
- Karolinska Institute, Department of Women's and Children's Health, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - E Epstein
- Department of Clinical Science and Education, Karolinska Institute and Department of Obstetrics and Gynecology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
74
|
Wang Y, Jiang C, Huang H, Liu N, Wang Y, Chen Z, Liang S, Wu M, Jiang Y, Wang X, Zhou T, Chen H, Zhang L, Li H. Correlation of Cerebral White Matter Lesions with Carotid Intraplaque Neovascularization assessed by Contrast-enhanced Ultrasound. J Stroke Cerebrovasc Dis 2020; 29:104928. [PMID: 32689582 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Carotid atherosclerotic plaque is closely associated with cerebral white matter lesions (WMLs), while intraplaque neovascularization (IPN) contributes significantly to arterial remodeling and plaque vulnerability. In this study, we aim to evaluate the correlation of carotid IPN with cerebral WMLs. METHODS The presence of IPN and WMLs were assessed by contrast-enhanced ultrasound (CEUS) and MRI respectively. IPN was evaluated utilizing semi-quantification visual grading scale and WMLs was divided according to Fazekas grading scale. We investigated the baseline data, Fazekas grades, and IPN grades among 269 participants. We explored the influences of each variable on Fazekas grades using ordinal logistic regression and evaluated the relationship between IPN grades and WMLs Fazekas grades. RESULTS Increased age (OR: 1.06, P<0.001), hypertension (OR: 2.17, P=0.002), cerebral infarction (OR: 1.74, P=0.046), and elevated carotid IPN grading were significantly associated with aggravated Fazekas grades (grade 2 or 3). To be specific, people having grade 3, 2, and 1 carotid IPN were 25.84 (P<0.001), 10.64 (P<0.001), and 5.96 (P=0.010) times as likely to have elevated Fazekas grades compared with those who having grade 0 carotid IPN. CONCLUSION Increased carotid IPN is independently correlated with aggravated cerebral WMLs.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chao Jiang
- Department of Public Health, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Huang
- Department of Ultrasound, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Niu Liu
- Department of Ultrasound, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhaoyao Chen
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sen Liang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yajun Jiang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoxiao Wang
- GCP Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tingting Zhou
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hu Chen
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Zhang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Hui Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
75
|
Wildeboer RR, van Sloun RJG, Wijkstra H, Mischi M. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105316. [PMID: 31951873 DOI: 10.1016/j.cmpb.2020.105316] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 01/04/2020] [Indexed: 05/16/2023]
Abstract
Prostate cancer represents today the most typical example of a pathology whose diagnosis requires multiparametric imaging, a strategy where multiple imaging techniques are combined to reach an acceptable diagnostic performance. However, the reviewing, weighing and coupling of multiple images not only places additional burden on the radiologist, it also complicates the reviewing process. Prostate cancer imaging has therefore been an important target for the development of computer-aided diagnostic (CAD) tools. In this survey, we discuss the advances in CAD for prostate cancer over the last decades with special attention to the deep-learning techniques that have been designed in the last few years. Moreover, we elaborate and compare the methods employed to deliver the CAD output to the operator for further medical decision making.
Collapse
Affiliation(s)
- Rogier R Wildeboer
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands.
| | - Ruud J G van Sloun
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands.
| | - Hessel Wijkstra
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands; Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Massimo Mischi
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands
| |
Collapse
|
76
|
Lin LS, Chung CS. Novel contrast agent Visphere ™ is feasible for contrast-enhanced ultrasonography in dogs. Vet Radiol Ultrasound 2020; 61:461-470. [PMID: 32441861 DOI: 10.1111/vru.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022] Open
Abstract
Contrast-enhanced ultrasonography provides a more functional diagnostic image than conventional ultrasonography. This prospective exploratory study compared the novel contrast agent, Visphere™ , with commercial contrast agents in five healthy Beagle dogs. Visphere™ has the smallest diameter and highest concentration compared with Sonazoid® and SonoVue® . Each dog received an intravenous injection of Visphere™ , Sonazoid® , or SonoVue® . Images were recorded for 300, 600, and 60 s in the heart, liver, and left kidney, respectively. The mean pixel values of the regions of interest for each organ were expressed as time intensity curves (TIC). The agents all improved the visualization of left ventricular endocardial border delineation in the heart, and had similar TICs and clinical useful durations. In contrast, Visphere™ expressed the highest mean pixel value in the liver parenchyma at an early observation time and maintained the intensity until 600 s, like Sonazoid® . The renal evaluation results indicated there were no statistically significant differences in time-to-peak for the renal cortex or medulla among the agents. Compared with the other two agents, SonoVue® had the lowest peak enhancement for the renal cortex and medulla. No dogs had any adverse reactions during or after the study. All three agents provided adequate results for left ventricular endocardial border delineation, and Visphere™ may have the same potential as Sonazoid® to detect and characterize hepatic lesions. Visphere™ and Sonazoid® may offer better visualization quality to evaluate renal function. In conclusion, the novel contrast agent, Visphere™ , is comparable with commercial agents and could be applied in different major organs in dogs.
Collapse
Affiliation(s)
- Lee-Shuan Lin
- Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Cheng-Shu Chung
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
77
|
Hunt TM, Boyum JH. Diagnosing Gallbladder Perforation With Contrast-Enhanced Ultrasound: A Case Report. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2020. [DOI: 10.1177/8756479319895471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gallbladder perforation is a rare and severe complication of acute cholecystitis. Sonography is typically the first modality of choice for assessing gallbladder pathology due to its high sensitivity, portability, real-time imaging capability, and nonionizing technique. Gray-scale and color Doppler sonographic imaging may be equivocal for diagnosing perforation. In the presented case, gallbladder wall perforation was definitively diagnosed utilizing contrast-enhanced ultrasound, allowing for prompt treatment and a successful patient outcome.
Collapse
Affiliation(s)
| | - James H. Boyum
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
78
|
Kunz P, Mick P, Gross S, Schmidmaier G, Zeifang F, Weber MA, Fischer C. Contrast-Enhanced Ultrasound (CEUS) as Predictor for Early Retear and Functional Outcome After Supraspinatus Tendon Repair. J Orthop Res 2020; 38:1150-1158. [PMID: 31769543 DOI: 10.1002/jor.24535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023]
Abstract
Supraspinatus (SSP) tendon tears represent a common indication for shoulder surgery. Yet, prediction of postoperative function and tendon retear remains challenging and primarily relies on morphologic magnetic resonance imaging (MRI)-based parameters, supported by patients' demographic data like age, gender, and comorbidities. Considering continuously high retear rates, especially in patients with larger tears and negative prognostic factors, improved outcome prediction could be of high clinical value. Contrast-enhanced ultrasound (CEUS) enables an assessment of dynamic perfusion of the SSP muscle. As a potential surrogate for muscle vitality, CEUS might reflect functional properties of the SSP and support improved outcome prediction after tendon repair. Fifty patients with isolated SSP tendon tears were prospectively enrolled. Preoperatively, SSP muscle perfusion was quantified by CEUS and conventional morphologic parameters like tear size, fatty infiltration, and tendon retraction were assessed by MRI. At six months follow-up, shoulder function, tendon integrity, and muscle perfusion were reassessed. The predictive value of preoperative CEUS for postoperative shoulder function and tendon integrity was evaluated. 35 patients entered the statistical analysis. Preoperative CEUS-based assessment of SSP perfusion significantly correlated with early postoperative shoulder function (Constant, r = 0.48, p < 0.018) and tendon retear (r = 0.67, p < 0.001). CEUS-based subgroup analysis identified patients with exceptionally high, respectively low risk for tendon retear. CEUS-based assessment of the SSP seemed to predict early shoulder function and tendon retear after SSP repair and allowed to identify patient subgroups with exceptionally high or low risk for tendon retear. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:1150-1158, 2020.
Collapse
Affiliation(s)
- Pierre Kunz
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.,Clinic for Shoulder and Elbow Surgery, Catholic Hospital Mainz, An der Goldgrube 11, 55131, Mainz, Germany
| | - Paul Mick
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Sascha Gross
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Felix Zeifang
- Ethianum Klinik Heidelberg, Voßstraße 6, 69115, Heidelberg, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| |
Collapse
|
79
|
Sloand JN, Nguyen TT, Zinck SA, Cook EC, Zimudzi TJ, Showalter SA, Glick AB, Simon JC, Medina SH. Ultrasound-Guided Cytosolic Protein Delivery via Transient Fluorous Masks. ACS NANO 2020; 14:4061-4073. [PMID: 32134630 DOI: 10.1021/acsnano.9b08745] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The inability to spatiotemporally guide proteins in tissues and efficiently deliver them into cells remains a key barrier to realizing their full potential in precision medicine. Here, we report ultrasound-sensitive fluoro-protein nanoemulsions which can be acoustically tracked, guided, and activated for on-demand cytosolic delivery of proteins, including antibodies, using clinically relevant diagnostic ultrasound. This advance is accessed through the discovery of a family of fluorous tags, or FTags, that transiently mask proteins to mediate their efficient dispersion into ultrasound-sensitive liquid perfluorocarbons, a phenomenon akin to dissolving an egg in liquid Teflon. We identify the biochemical basis for protein fluorous masking and confirm FTag coatings are shed during delivery, without disrupting the protein structure or function. Harnessing the ultrasound sensitivity of fluorous emulsions, real-time imaging is used to simultaneously monitor and activate FTag-protein complexes to enable controlled cytosolic antibody delivery in vitro and in vivo. These findings may advance the development of image-guided, protein-based biosensing and therapeutic modalities.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Theodore T Nguyen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Zinck
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tawanda J Zimudzi
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
80
|
El Kaffas A, Hoogi A, Zhou J, Durot I, Wang H, Rosenberg J, Tseng A, Sagreiya H, Akhbardeh A, Rubin DL, Kamaya A, Hristov D, Willmann JK. Spatial Characterization of Tumor Perfusion Properties from 3D DCE-US Perfusion Maps are Early Predictors of Cancer Treatment Response. Sci Rep 2020; 10:6996. [PMID: 32332790 PMCID: PMC7181711 DOI: 10.1038/s41598-020-63810-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/26/2020] [Indexed: 02/08/2023] Open
Abstract
There is a need for noninvasive repeatable biomarkers to detect early cancer treatment response and spare non-responders unnecessary morbidities and costs. Here, we introduce three-dimensional (3D) dynamic contrast enhanced ultrasound (DCE-US) perfusion map characterization as inexpensive, bedside and longitudinal indicator of tumor perfusion for prediction of vascular changes and therapy response. More specifically, we developed computational tools to generate perfusion maps in 3D of tumor blood flow, and identified repeatable quantitative features to use in machine-learning models to capture subtle multi-parametric perfusion properties, including heterogeneity. Models were developed and trained in mice data and tested in a separate mouse cohort, as well as early validation clinical data consisting of patients receiving therapy for liver metastases. Models had excellent (ROC-AUC > 0.9) prediction of response in pre-clinical data, as well as proof-of-concept clinical data. Significant correlations with histological assessments of tumor vasculature were noted (Spearman R > 0.70) in pre-clinical data. Our approach can identify responders based on early perfusion changes, using perfusion properties correlated to gold-standard vascular properties.
Collapse
Affiliation(s)
- Ahmed El Kaffas
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA. .,Department of Radiology, Integrative Biomedical Imaging Informatics at Stanford, School of Medicine, Stanford University, Stanford, CA, USA. .,Department of Radiology, Body Imaging, Stanford University, Stanford, CA, USA.
| | - Assaf Hoogi
- Department of Radiology, Integrative Biomedical Imaging Informatics at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jianhua Zhou
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Isabelle Durot
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Huaijun Wang
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jarrett Rosenberg
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Albert Tseng
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hersh Sagreiya
- Department of Radiology, Integrative Biomedical Imaging Informatics at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Alireza Akhbardeh
- Department of Radiology, Integrative Biomedical Imaging Informatics at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel L Rubin
- Department of Radiology, Integrative Biomedical Imaging Informatics at Stanford, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aya Kamaya
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Radiology, Body Imaging, Stanford University, Stanford, CA, USA
| | - Dimitre Hristov
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Radiology, Body Imaging, Stanford University, Stanford, CA, USA
| |
Collapse
|
81
|
Liu DJX, Stock E, Broeckx BJG, Daminet S, Meyer E, Delanghe JR, Croubels S, Devreese M, Nguyen P, Bogaerts E, Hesta M, Vanderperren K. Weight-gain induced changes in renal perfusion assessed by contrast-enhanced ultrasound precede increases in urinary protein excretion suggestive of glomerular and tubular injury and normalize after weight-loss in dogs. PLoS One 2020; 15:e0231662. [PMID: 32315336 PMCID: PMC7173781 DOI: 10.1371/journal.pone.0231662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection of obesity-related glomerulopathy in humans is challenging as it might not be detected by routine biomarkers of kidney function. This study's aim was to use novel kidney biomarkers and contrast-enhanced ultrasound (CEUS) to evaluate the effect of obesity development and weight-loss on kidney function, perfusion, and injury in dogs. Sixteen healthy lean adult beagles were assigned randomly but age-matched to a control group (CG) (n = 8) fed to maintain a lean body weight (BW) for 83 weeks; or to a weight-change group (WCG) (n = 8) fed the same diet to induce obesity (week 0-47), to maintain stable obese weight (week 47-56) and to lose BW (week 56-83). At 8 time points, values of systolic blood pressure (sBP); serum creatinine (sCr); blood urea nitrogen (BUN); serum cystatin C (sCysC); urine protein-to-creatinine ratio (UPC); and urinary biomarkers of glomerular and tubular injury were measured. Glomerular filtration rate (GFR) and renal perfusion using CEUS were assayed (except for week 68). For CEUS, intensity- and time-related parameters representing blood volume and velocity were derived from imaging data, respectively. At 12-22% weight-gain, cortical time-to-peak, representing blood velocity, was shorter in the WCG vs. the CG. After 37% weight-gain, sCysC, UPC, glomerular and tubular biomarkers of injury, urinary immunoglobulin G and urinary neutrophil gelatinase-associated lipocalin, respectively, were higher in the WCG. sBP, sCr, BUN and GFR were not significantly different. After 23% weight-loss, all alterations were attenuated. Early weight-gain in dogs induced renal perfusion changes measured with CEUS, without hyperfiltration, preceding increased urinary protein excretion with potential glomerular and tubular injury. The combined use of routine biomarkers of kidney function, CEUS and site-specific urinary biomarkers might be valuable in assessing kidney health of individuals at risk for obesity-related glomerulopathy in a non-invasive manner.
Collapse
Affiliation(s)
- Daisy J. X. Liu
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart J. G. Broeckx
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Health Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Nguyen
- Oniris, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Evelien Bogaerts
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
82
|
Maresca D, Payen T, Lee-Gosselin A, Ling B, Malounda D, Demené C, Tanter M, Shapiro MG. Acoustic biomolecules enhance hemodynamic functional ultrasound imaging of neural activity. Neuroimage 2020; 209:116467. [PMID: 31846757 PMCID: PMC6955150 DOI: 10.1016/j.neuroimage.2019.116467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
Hemodynamic functional ultrasound imaging (fUS) of neural activity provides a unique combination of spatial coverage, spatiotemporal resolution and compatibility with freely moving animals. However, deep and transcranial monitoring of brain activity and the imaging of dynamics in slow-flowing blood vessels remains challenging. To enhance fUS capabilities, we introduce biomolecular hemodynamic enhancers based on gas vesicles (GVs), genetically encodable ultrasound contrast agents derived from buoyant photosynthetic microorganisms. We show that intravenously infused GVs enhance ultrafast Doppler ultrasound contrast and visually-evoked hemodynamic contrast in transcranial fUS of the mouse brain. This hemodynamic contrast enhancement is smoother than that provided by conventional microbubbles, allowing GVs to more reliably amplify neuroimaging signals.
Collapse
Affiliation(s)
- David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas Payen
- Physics for Medicine Paris, INSERM, CNRS, ESPCI, Paris, France
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Charlie Demené
- Physics for Medicine Paris, INSERM, CNRS, ESPCI, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, INSERM, CNRS, ESPCI, Paris, France
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
83
|
Turco S, Frinking P, Wildeboer R, Arditi M, Wijkstra H, Lindner JR, Mischi M. Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:518-543. [PMID: 31924424 DOI: 10.1016/j.ultrasmedbio.2019.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 05/14/2023]
Abstract
Ultrasound contrast agents (UCAs) have opened up immense diagnostic possibilities by combined use of indicator dilution principles and dynamic contrast-enhanced ultrasound (DCE-US) imaging. UCAs are microbubbles encapsulated in a biocompatible shell. With a rheology comparable to that of red blood cells, UCAs provide an intravascular indicator for functional imaging of the (micro)vasculature by quantitative DCE-US. Several models of the UCA intravascular kinetics have been proposed to provide functional quantitative maps, aiding diagnosis of different pathological conditions. This article is a comprehensive review of the available methods for quantitative DCE-US imaging based on temporal, spatial and spatiotemporal analysis of the UCA kinetics. The recent introduction of novel UCAs that are targeted to specific vascular receptors has advanced DCE-US to a molecular imaging modality. In parallel, new kinetic models of increased complexity have been developed. The extraction of multiple quantitative maps, reflecting complementary variables of the underlying physiological processes, requires an integrative approach to their interpretation. A probabilistic framework based on emerging machine-learning methods represents nowadays the ultimate approach, improving the diagnostic accuracy of DCE-US imaging by optimal combination of the extracted complementary information. The current value and future perspective of all these advances are critically discussed.
Collapse
Affiliation(s)
- Simona Turco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | - Rogier Wildeboer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Arditi
- École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Hessel Wijkstra
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
84
|
Abstract
Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
Collapse
|
85
|
Lowerison MR, Huang C, Lucien F, Chen S, Song P. Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia. Sci Rep 2020; 10:2478. [PMID: 32051485 PMCID: PMC7015937 DOI: 10.1038/s41598-020-59338-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Ultrasound localization microscopy (ULM) permits the reconstruction of super-resolved microvascular images at clinically relevant penetration depths, which can be potentially leveraged to provide non-invasive quantitative measures of tissue hemodynamics and hypoxic status. We demonstrate that ULM microbubble data processing methods, applied to images acquired with a Verasonics Vantage 256 system, can provide a non-invasive imaging surrogate biomarker of tissue oxygenation status. This technique was applied to evaluate the microvascular structure, vascular perfusion, and hypoxia of a renal cell carcinoma xenograft model grown in the chorioallantoic membrane of chicken embryos. Histological microvascular density was significantly correlated to ULM measures of intervessel distance (R = -0.92, CI95 = [-0.99,-0.42], p = 0.01). The Distance Metric, a measure of vascular tortuosity, was found to be significantly correlated to hypoxyprobe quantifications (R = 0.86, CI95 = [0.17, 0.99], p = 0.03). ULM, by providing non-invasive in vivo microvascular structural information, has the potential to be a crucial clinical imaging modality for the diagnosis and therapy monitoring of solid tumors.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
86
|
Mannaris C, Yang C, Carugo D, Owen J, Lee JY, Nwokeoha S, Seth A, Teo BM. Acoustically responsive polydopamine nanodroplets: A novel theranostic agent. ULTRASONICS SONOCHEMISTRY 2020; 60:104782. [PMID: 31539725 DOI: 10.1016/j.ultsonch.2019.104782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/21/2019] [Accepted: 09/06/2019] [Indexed: 05/06/2023]
Abstract
Ultrasound-induced cavitation has been used as a tool of enhancing extravasation and tissue penetration of anticancer agents in tumours. Initiating cavitation in tissue however, requires high acoustic intensities that are neither safe nor easy to achieve with current clinical systems. The use of cavitation nuclei can however lower the acoustic intensities required to initiate cavitation and the resulting bio-effects in situ. Microbubbles, solid gas-trapping nanoparticles, and phase shift nanodroplets are some examples in a growing list of proposed cavitation nuclei. Besides the ability to lower the cavitation threshold, stability, long circulation times, biocompatibility and biodegradability, are some of the desirable characteristics that a clinically applicable cavitation agent should possess. In this study, we present a novel formulation of ultrasound-triggered phase transition sub-micrometer sized nanodroplets (~400 nm) stabilised with a biocompatible polymer, polydopamine (PDA). PDA offers some important benefits: (1) facile fabrication, as dopamine monomers are directly polymerised on the nanodroplets, (2) high polymer biocompatibility, and (3) ease of functionalisation with other molecules such as drugs or targeting species. We demonstrate that the acoustic intensities required to initiate inertial cavitation can all be achieved with existing clinical ultrasound systems. Cell viability and haemolysis studies show that nanodroplets are biocompatible. Our results demonstrate the great potential of PDA nanodroplets as an acoustically active nanodevice, which is highly valuable for biomedical applications including drug delivery and treatment monitoring.
Collapse
Affiliation(s)
- Christophoros Mannaris
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Dario Carugo
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Mechatronics and Bioengineering Science Research Groups, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Joshua Owen
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Jeong Yu Lee
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Sandra Nwokeoha
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Anjali Seth
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Boon Mian Teo
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; School of Chemistry, Clayton Campus, Monash University Victoria, 3800, Australia.
| |
Collapse
|
87
|
Hwang J, Kang K, Kang J, Nam J, Park S, Yoon J, Choi M. Effect of catheter diameter and injection rate of flush solution on renal contrast-enhanced ultrasonography with perfluorobutane in dogs. Am J Vet Res 2019; 80:825-831. [PMID: 31449446 DOI: 10.2460/ajvr.80.9.825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess effects of catheter diameter and injection rate of flush solution (saline [0.9% NaCl] solution) on renal contrast-enhanced ultrasonography (CEUS) with perfluorobutane in dogs. ANIMALS 5 healthy Beagles. PROCEDURES CEUS of the kidneys was performed by IV injection of contrast medium (0.0125 mL/kg) followed by injection of 5 mL of saline solution at rates of 1, 3, and 5 mL/s through a 20-gauge or 24-gauge catheter; thus, CEUS was repeated 3 times for each catheter diameter. Time-intensity curves were created for regions of interest drawn in the renal cortex and medulla. Repeatability was determined by calculating the coefficient of variation (CV). Statistical analysis was used to assess whether perfusion variables or CV of the perfusion variables was associated with catheter diameter or injection rate. RESULTS Perfusion variables did not differ significantly between catheter diameters. Time to peak enhancement (TTP) in the renal cortex was affected by injection rate, and there were significantly lower values for TTP at higher injection rates. The CEUS variables with the lowest CVs among injection rates were TTP for the renal cortex; the CV for TTP of the renal cortex was the lowest at an injection rate of 5 mL/s. CONCLUSIONS AND CLINICAL RELEVANCE Use of a 24-gauge catheter did not alter CEUS with perfluorobutane; therefore, such catheters could be used for CEUS of the kidneys of small dogs. Moreover, a rate of 5 mL/s is recommended for injection of flush solution to obtain greater accuracy for renal CEUS in Beagles.
Collapse
|
88
|
Feng Y, Yang F, Zhou X, Guo Y, Tang F, Ren F, Guo J, Ji S. A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound Based Prostate Cancer Detection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1794-1801. [PMID: 29993750 DOI: 10.1109/tcbb.2018.2835444] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The important role of angiogenesis in cancer development has driven many researchers to investigate the prospects of noninvasive cancer diagnosis based on the technology of contrast-enhanced ultrasound (CEUS) imaging. This paper presents a deep learning framework to detect prostate cancer in the sequential CEUS images. The proposed method uniformly extracts features from both the spatial and the temporal dimensions by performing three-dimensional convolution operations, which captures the dynamic information of the perfusion process encoded in multiple adjacent frames for prostate cancer detection. The deep learning models were trained and validated against expert delineations over the CEUS images recorded using two types of contrast agents, i.e., the anti-PSMA based agent targeted to prostate cancer cells and the non-targeted blank agent. Experiments showed that the deep learning method achieved over 91 percent specificity and 90 percent average accuracy over the targeted CEUS images for prostate cancer detection, which was superior ( ) than previously reported approaches and implementations.
Collapse
|
89
|
Zhang J, Zhang Y, Chen J, Ling G, Wang X, Xu H. Respiratory motion correction for liver contrast-enhanced ultrasound by automatic selection of a reference image. Med Phys 2019; 46:4992-5001. [PMID: 31444798 DOI: 10.1002/mp.13776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Respiratory motion correction is necessary for the quantitative analysis of liver contrast-enhanced ultrasound (CEUS) image sequences. Most respiratory motion correction methods are based on the dual mode of CEUS image sequences, including contrast and grayscale image sequences. Due to free-breathing motion, the acquired two-dimensional (2D) ultrasound cine might show the in-plane and out-of-plane motion of tumors. The registration of an entire 2D ultrasound contrast image sequence based on out-of-plane images is ineffective. For the respiratory motion correction of CEUS sequences, the reference image is usually considered the standard for the deletion of any out-of-plane images. Most methods used for the selection of the reference image are subjective in nature. Here, a quantitative selection method for an optimal reference image from CEUS image sequences in the B mode and contrast mode was explored. METHODS The original high-dimensional ultrasound grayscale image data were mapped into a two-dimensional space using Laplacian Eigenmaps (LE), and K-means clustering was adopted. The center image of the larger cluster with a near-peak contrast intensity was considered the optimal ultrasound reference image. In the ultrasound grayscale image sequence, the images with the maximum correlations to the reference image in the same time interval were selected as the corrected image sequence. The effectiveness of this proposed method was then validated on 18 CEUS cases of VX2 tumors in rabbit livers. RESULTS Correction smoothed the time-intensity curves (TICs) extracted from the region of interest of the CEUS image sequences. Before correction, the average of the total mean structural similarity (TMSSIM) and the average of the mean correlation coefficient (MCC) from the image sequences were 0.45 ± 0.11 and 0.67 ± 0.16, respectively, and after correction, the average TMSSIM and MCC increased (P < 0.001) by 31% to 0.59 ± 0.11 and by 21% to 0.81 ± 0.11, respectively. The average deviation value (DV) index of the TICs from the image sequences prior to correction was 92.16 ± 18.12, and correction reduced the average to 31.71 ± 7.31. The average TMSSIM and MCC values after correction using the mean frame of the reference image (MBMFRI) were clearly lower than those after correction using the proposed method (P < 0.001). Moreover, the average DV after correction using the MBMFRI was obviously higher than that after correction using the proposed method (P < 0.001). CONCLUSIONS The breathing frequency of rabbits is notably faster than that of human beings, but the proposed correction method could reduce the effect of the respiratory motion in the CEUS image sequences. The reference image was selected quantitatively, which could improve the accuracy of the quantitative analysis of rabbit liver CEUS sequences using the reference image method based on the current standard of manual selection and the MBMFRI. This easy-to-operate method can potentially be used in both animal studies and clinical applications.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yanrong Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People's Republic of China.,Department of Radiology, Neuroradiology Section, Stanford University, Stanford, CA, 94305, USA
| | - Juan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People's Republic of China
| | - Gonghao Ling
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xiangyu Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
90
|
Zhou X, Zhou X, Leow CH, Tang MX. Measurement of Flow Volume in the Presence of Reverse Flow with Ultrasound Speckle Decorrelation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3056-3066. [PMID: 31378548 PMCID: PMC6863465 DOI: 10.1016/j.ultrasmedbio.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 05/28/2023]
Abstract
Direct measurement of volumetric flow rate in the cardiovascular system with ultrasound is valuable but has been a challenge because most current 2-D flow imaging techniques are only able to estimate the flow velocity in the scanning plane (in-plane). Our recent study demonstrated that high frame rate contrast ultrasound and speckle decorrelation (SDC) can be used to accurately measure the speed of flow going through the scanning plane (through-plane). The volumetric flow could then be calculated by integrating over the luminal area, when the blood vessel was scanned from the transverse view. However, a key disadvantage of this SDC method is that it cannot distinguish the direction of the through-plane flow, which limited its applications to blood vessels with unidirectional flow. Physiologic flow in the cardiovascular system could be bidirectional due to its pulsatility, geometric features, or under pathologic situations. In this study, we proposed a method to distinguish the through-plane flow direction by inspecting the flow within the scanning plane from a tilted transverse view. This method was tested on computer simulations and experimental flow phantoms. It was found that the proposed method could detect flow direction and improved the estimation of the flow volume, reducing the overestimation from over 100% to less than 15% when there was flow reversal. This method showed significant improvement over the current SDC method in volume flow estimation and can be applied to a wider range of clinical applications where bidirectional flow exists.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Xinhuan Zhou
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
91
|
Li F, Wang Y, Mo X, Deng Z, Yan F. Acoustic Characteristics of Biosynthetic Bubbles for Ultrasound Contrast Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10213-10222. [PMID: 31119938 DOI: 10.1021/acs.langmuir.9b01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biosynthetic bubbles produced by floating microorganisms, such as bacteria and algae, have recently attracted wide attention as novel ultrasound contrast agents owing to their significant potential in ultrasound imaging and acoustic reporter gene-based imaging. However, the acoustics properties of these bubbles are unclear. In this study, we developed a finite-element model to describe the oscillation of nonspherical biosynthetic bubbles composed of a gas core encapsulated in a protein shell. In this model, the elastic properties of the bubble shells were characterized in terms of the density, thickness, Young's modulus, and Poisson's ratio. Theoretical calculations were performed for a single bubble and an assembly of randomly oriented bubbles. Our results demonstrate that (1) there are many types of surface oscillation modes for nonspherical biosynthetic bubbles, and a systematic relationship exists between the surface modes and the resonance frequencies; (2) the bubble shell shape has a significant effect on the acoustic behavior; (3) the resonance frequency of an ellipsoidal bubble decreases with the decrease in its polar radius-to-equatorial axis ratio; and (4) the acoustic scattering of a randomly oriented suspension is isotropic at and below the first resonance frequency. Our findings provide physical insight into the biomedical applications of biosynthetic bubbles and can be used to optimize the acoustics properties of such bubbles.
Collapse
Affiliation(s)
- Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy , Shenzhen 518055 , China
| | - Yu Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- The Second School of Clinical Medicine , Southern Medical University , Guangzhou 510515 , China
- Guangdong Second Provincial General Hospital , Guangzhou 510317 , China
| | - Xinghai Mo
- Department of Ultrasound in Medicine, Shanghai East Hospital, School of Medicine , Tongji University , Shanghai 200120 , China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy , Shenzhen 518055 , China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy , Shenzhen 518055 , China
| |
Collapse
|
92
|
Kanoulas E, Butler M, Rowley C, Voulgaridou V, Diamantis K, Duncan WC, McNeilly A, Averkiou M, Wijkstra H, Mischi M, Wilson RS, Lu W, Sboros V. Super-Resolution Contrast-Enhanced Ultrasound Methodology for the Identification of In Vivo Vascular Dynamics in 2D. Invest Radiol 2019; 54:500-516. [PMID: 31058661 PMCID: PMC6661242 DOI: 10.1097/rli.0000000000000565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to provide an ultrasound-based super-resolution methodology that can be implemented using clinical 2-dimensional ultrasound equipment and standard contrast-enhanced ultrasound modes. In addition, the aim is to achieve this for true-to-life patient imaging conditions, including realistic examination times of a few minutes and adequate image penetration depths that can be used to scan entire organs without sacrificing current super-resolution ultrasound imaging performance. METHODS Standard contrast-enhanced ultrasound was used along with bolus or infusion injections of SonoVue (Bracco, Geneva, Switzerland) microbubble (MB) suspensions. An image analysis methodology, translated from light microscopy algorithms, was developed for use with ultrasound contrast imaging video data. New features that are tailored for ultrasound contrast image data were developed for MB detection and segmentation, so that the algorithm can deal with single and overlapping MBs. The method was tested initially on synthetic data, then with a simple microvessel phantom, and then with in vivo ultrasound contrast video loops from sheep ovaries. Tracks detailing the vascular structure and corresponding velocity map of the sheep ovary were reconstructed. Images acquired from light microscopy, optical projection tomography, and optical coherence tomography were compared with the vasculature network that was revealed in the ultrasound contrast data. The final method was applied to clinical prostate data as a proof of principle. RESULTS Features of the ovary identified in optical modalities mentioned previously were also identified in the ultrasound super-resolution density maps. Follicular areas, follicle wall, vessel diameter, and tissue dimensions were very similar. An approximately 8.5-fold resolution gain was demonstrated in vessel width, as vessels of width down to 60 μm were detected and verified (λ = 514 μm). Best agreement was found between ultrasound measurements and optical coherence tomography with 10% difference in the measured vessel widths, whereas ex vivo microscopy measurements were significantly lower by 43% on average. The results were mostly achieved using video loops of under 2-minute duration that included respiratory motion. A feasibility study on a human prostate showed good agreement between density and velocity ultrasound maps with the histological evaluation of the location of a tumor. CONCLUSIONS The feasibility of a 2-dimensional contrast-enhanced ultrasound-based super-resolution method was demonstrated using in vitro, synthetic and in vivo animal data. The method reduces the examination times to a few minutes using state-of-the-art ultrasound equipment and can provide super-resolution maps for an entire prostate with similar resolution to that achieved in other studies.
Collapse
Affiliation(s)
- Evangelos Kanoulas
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Mairead Butler
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Caitlin Rowley
- Department of Physics, Heriot-Watt University, Riccarton
| | - Vasiliki Voulgaridou
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | | | - William Colin Duncan
- Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan McNeilly
- Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Rhodri Simon Wilson
- **Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Weiping Lu
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Vassilis Sboros
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| |
Collapse
|
93
|
Tamura M, Nakamura K, Osuga T, Shimbo G, Sasaki N, Morishita K, Ohta H, Takiguchi M. Findings of contrast-enhanced ultrasonography with Sonazoid for cholangiocellular adenoma in three dogs. J Vet Med Sci 2019; 81:1104-1108. [PMID: 31243194 PMCID: PMC6715911 DOI: 10.1292/jvms.19-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Contrast-enhanced ultrasonography (CEUS) is useful to distinguish benign and malignant
focal liver lesions in dogs. Cholangiocellular adenoma is an extremely rare benign tumor
in dogs and has not been examined using CEUS with Sonazoid. The aim of this study was to
describe findings of CEUS with Sonazoid in three dogs with cholangiocellular adenoma. All
three dogs showed contrast defects in the Kupffer phase and these findings mimicked
malignant neoplasia during the Kupffer phase. Moreover, all dogs showed early washout and
hypoechoic lesions relative to the surrounding normal liver parenchyma in the portal
phase. To our knowledge, this is the first study to report that CEUS findings of
cholangiocellular adenoma with Sonazoid mimicked malignancy in three dogs.
Collapse
Affiliation(s)
- Masahiro Tamura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Kensuke Nakamura
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tatsuyuki Osuga
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0819, Japan
| | - Genya Shimbo
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0819, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0819, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| |
Collapse
|
94
|
Mangano C, Macrì F, Di Pietro S, Pugliese M, Santoro S, Iannelli NM, Mazzullo G, Crupi R, De Majo M. Use of contrast-enhanced ultrasound for assessment of nodular lymphoid hyperplasia (NLH) in canine spleen. BMC Vet Res 2019; 15:196. [PMID: 31185980 PMCID: PMC6560855 DOI: 10.1186/s12917-019-1942-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background Nodular lymphoid hyperplasia (NLH) is one of the most common non-neoplastic splenic lesions in dogs, especially in old ones, showing a splenic enlargement. More recent studies have been focused on Contrast Enhanced Ultrasonography (CEUS) analysis of the spleen for establishing normal perfusion patterns and blood pool phase peculiarities of focal lesions. The aim of the study was to evaluate the qualitative and quantitative CEUS analysis of the canine splenic NLH, characterizing the CEUS pattern of this pathology on 20 clinical cases. Results A prospective, observational study was performed using a system equipped with contrast-tuned imaging technology. Mechanical Index was set from 0.08 to 0.11; the contrast medium was a second generation contrast medium composed of sulphur hexafluoride encapsulated of a shell of phospholipids (SonoVue®). Qualitative and quantitative assessment of the enhancement pattern of splenic NLH were performed. Cytology and histology identified 20 splenic NLH. All of the benign hyperplastic lesions assessed were isoechoic with a homogeneous pattern than the surrounding normal spleen, during the wash-in phase (10–20 s) of the CEUS exam. Before finishing the wash-in phase, 20–45 s from the contrast medium inoculation, 19/20 benign nodules became markedly hypoechoic to the adjacent spleen. Sensitivity of hypoechoic pattern for NLH was 95%. Conclusions These findings should prove useful in the evaluation of focal splenic masses in dogs. Since enhancement and perfusion patterns of NLH seem to coincide with some neoplastic lesions of the spleen previously reported, in clinical practice attention must be paid to the final diagnosis of canine splenic lesions using only the CEUS exam.
Collapse
Affiliation(s)
- Cyndi Mangano
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy.
| | - Michela Pugliese
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Silvia Santoro
- Camagna Veterinary Clinic, Via Parco Caserta 13, RC 89124, Reggio Calabria, Italy
| | - Nicola M Iannelli
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Giuseppe Mazzullo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98168, Messina, Italy
| | - Massimo De Majo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| |
Collapse
|
95
|
Bakas S, Doulgerakis-Kontoudis M, Hunter GJA, Sidhu PS, Makris D, Chatzimichail K. Evaluation of Indirect Methods for Motion Compensation in 2-D Focal Liver Lesion Contrast-Enhanced Ultrasound (CEUS) Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1380-1396. [PMID: 30952468 DOI: 10.1016/j.ultrasmedbio.2019.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 01/05/2019] [Accepted: 01/27/2019] [Indexed: 05/14/2023]
Abstract
This study investigates the application and evaluation of existing indirect methods, namely point-based registration techniques, for the estimation and compensation of observed motion included in the 2-D image plane of contrast-enhanced ultrasound (CEUS) cine-loops recorded for the characterization and diagnosis of focal liver lesions (FLLs). The value of applying motion compensation in the challenging modality of CEUS is to assist in the quantification of the perfusion dynamics of an FLL in relation to its parenchyma, allowing for a potentially accurate diagnostic suggestion. Towards this end, this study also proposes a novel quantitative multi-level framework for evaluating the quantification of FLLs, which to the best of our knowledge remains undefined, notwithstanding many relevant studies. Following quantitative evaluation of 19 indirect algorithms and configurations, while also considering the requirement for computational efficiency, our results suggest that the "compact and real-time descriptor" (CARD) is the optimal indirect motion compensation method in CEUS.
Collapse
Affiliation(s)
- Spyridon Bakas
- Digital Information Research Centre (DIRC), School of Computer Science & Mathematics, Faculty of Science, Engineering and Computing (SEC), Kingston University, London, United Kingdom; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, University of Pennsylvania, Richards Medical Research Laboratories, Hamilton Walk, Philadelphia, Pennsylvania, USA.
| | - Matthaios Doulgerakis-Kontoudis
- Digital Information Research Centre (DIRC), School of Computer Science & Mathematics, Faculty of Science, Engineering and Computing (SEC), Kingston University, London, United Kingdom; Medical Imaging and Image Interpretation Group, School of Computer Science, University of Birmingham, Edgbaston, United Kingdom
| | - Gordon J A Hunter
- Digital Information Research Centre (DIRC), School of Computer Science & Mathematics, Faculty of Science, Engineering and Computing (SEC), Kingston University, London, United Kingdom
| | - Paul S Sidhu
- Department of Radiology, King's College Hospital, London, United Kingdom
| | - Dimitrios Makris
- Digital Information Research Centre (DIRC), School of Computer Science & Mathematics, Faculty of Science, Engineering and Computing (SEC), Kingston University, London, United Kingdom
| | - Katerina Chatzimichail
- Radiology & Imaging Research Centre, Evgenidion Hospital, National and Kapodistrian University, Ilisia, Athens, Greece
| |
Collapse
|
96
|
Moghimirad E, Bamber J, Harris E. Plane wave versus focused transmissions for contrast enhanced ultrasound imaging: the role of parameter settings and the effects of flow rate on contrast measurements. Phys Med Biol 2019; 64:095003. [PMID: 30917360 PMCID: PMC7655116 DOI: 10.1088/1361-6560/ab13f2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contrast enhanced ultrasound (CEUS) and dynamic contrast enhanced ultrasound
(DCE-US) can be used to provide information about the vasculature aiding
diagnosis and monitoring of a number of pathologies including cancer. In the
development of a CEUS imaging system, there are many choices to be made, such as
whether to use plane wave (PW) or focused imaging (FI), and the values for
parameters such as transmit frequency, F-number, mechanical index, and number of
compounding angles (for PW imaging). CEUS image contrast may also be dependent
on subject characteristics, e.g. flow speed and vessel orientation. We evaluated
the effect of such choices on vessel contrast for PW and FI in
vitro, using 2D ultrasound imaging. CEUS images were obtained using
a VantageTM (Verasonics Inc.) and a pulse-inversion (PI) algorithm on
a flow phantom. Contrast (C) and contrast reduction (CR) were calculated, where
C was the initial ratio of signal in vessel to signal in background and CR was
its reduction after 200 frames (acquired in 20 s). Two transducer orientations
were used: parallel and perpendicular to the vessel direction. Similar C and CR
was achievable for PW and FI by choosing optimal parameter values. PW imaging
suffered from high frequency grating lobe artefacts, which may lead to degraded
image quality and misinterpretation of data. Flow rate influenced the contrast
based on: (1) false contrast increase due to the bubble motion between the PI
positive and negative pulses (for both PW and FI), and (2) contrast reduction
due to the incoherency caused by bubble motion between the compounding angles
(for PW only). The effects were less pronounced for perpendicular transducer
orientation compared to a parallel one. Although both effects are undesirable,
it may be more straight forward to account for artefacts in FI as it only
suffers from the former effect. In conclusion, if higher frame rate imaging is
not required (a benefit of PW), FI appears to be a better choice of imaging mode
for CEUS, providing greater image quality over PW for similar rates of contrast
reduction.
Collapse
Affiliation(s)
- Elahe Moghimirad
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, United Kingdom
| | | | | |
Collapse
|
97
|
Alberich-Bayarri Á, Tomás-Cucarella J, Torregrosa-Lloret A, Sáiz Rodriguez J, Martí-Bonmatí L. Optimisation of ultrasound liver perfusion through a digital reference object and analysis tool. Eur Radiol Exp 2019; 3:15. [PMID: 30945029 PMCID: PMC6447630 DOI: 10.1186/s41747-019-0086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background Conventional ultrasound (US) provides important qualitative information, although there is a need to evaluate the influence of the input parameters on the output signal and standardise the acquisition for an adequate quantitative perfusion assessment. The present study analyses how the variation in the input parameters influences the measurement of the perfusion parameters. Methods A software tool with simulator of the conventional US signal was created, and the influence of the different input variables on the derived biomarkers was analysed by varying the image acquisition configuration. The input parameters considered were the dynamic range, gain, and frequency of the transducer. Their influence on mean transit time (MTT), the area under the curve (AUC), maximum intensity (MI), and time to peak (TTP) parameters as outputs of the quantitative perfusion analysis was evaluated. A group of 13 patients with hepatocarcinoma was analysed with both a commercial tool and an in-house developed software. Results The optimal calculated inputs which minimise errors while preserving images’ readability consisted of gain of 15 dB, dynamic range of 60 dB, and frequency of 1.5 MHz. The comparison between the in-house developed software and the commercial software provided different values for MTT and AUC, while MI and TTP were highly similar. Conclusion Input parameter selection introduces variability and errors in US perfusion parameter estimation. Our results may add relevant insight into the current knowledge of conventional US perfusion and its use in lesions characterisation, playing in favour of optimised standardised parameter configuration to minimise variability.
Collapse
Affiliation(s)
- Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026, Valencia, Spain. .,Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain.
| | - Jose Tomás-Cucarella
- Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026, Valencia, Spain
| | | | - Javier Sáiz Rodriguez
- Department of Electronics Engineering, Polytechnics University of Valencia, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI2^30), Hospital Universitari i Politècnic La Fe, Avda. Fernando Abril Martorell 106, Torre A, 46026, Valencia, Spain
| |
Collapse
|
98
|
Prostate Cancer Detection and Diagnosis: Role of Ultrasound with MRI Correlates. CURRENT RADIOLOGY REPORTS 2019. [DOI: 10.1007/s40134-019-0318-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
99
|
Nie L, Cowell DMJ, Carpenter TM, Mclaughlan JR, Cubukcu AA, Freear S. High-Frame-Rate Contrast-Enhanced Echocardiography Using Diverging Waves: 2-D Motion Estimation and Compensation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:359-371. [PMID: 30575531 DOI: 10.1109/tuffc.2018.2887224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Combining diverging ultrasound waves and microbubbles could improve contrast-enhanced echocardiography (CEE), by providing enhanced temporal resolution for cardiac function assessment over a large imaging field of view. However, current image formation techniques using coherent summation of echoes from multiple steered diverging waves (DWs) are susceptible to tissue and microbubble motion artifacts, resulting in poor image quality. In this study, we used correlation-based 2-D motion estimation to perform motion compensation for CEE using DWs. The accuracy of this motion estimation method was evaluated with Field II simulations. The root-mean-square velocity errors were 5.9% ± 0.2% and 19.5% ± 0.4% in the axial and lateral directions, when normalized to the maximum value of 62.8 cm/s which is comparable to the highest speed of blood flow in the left ventricle (LV). The effects of this method on image contrast ratio (CR) and contrast-to-noise ratio (CNR) were tested in vitro using a tissue mimicking rotating disk with a diameter of 10 cm. Compared against the control without motion compensation, a mean increase of 12 dB in CR and 7 dB in CNR were demonstrated when using this motion compensation method. The motion correction algorithm was tested in vivo on a CEE data set acquired with the Ultrasound Array Research Platform II performing coherent DW imaging. Improvement of the B-mode and contrast-mode image quality with cardiac motion and blood flow-induced microbubble motion was achieved. The results of motion estimation were further processed to interpret blood flow in the LV. This allowed for a triplex cardiac imaging technique, consisting of B mode, contrast mode, and 2-D vector flow imaging with a high frame rate of 250 Hz.
Collapse
|
100
|
Tamura M, Ohta H, Nisa K, Osuga T, Sasaki N, Morishita K, Takiguchi M. Contrast‐enhanced ultrasonography is a feasible technique for quantifying hepatic microvascular perfusion in dogs with extrahepatic congenital portosystemic shunts. Vet Radiol Ultrasound 2018; 60:192-200. [DOI: 10.1111/vru.12699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/15/2018] [Accepted: 10/06/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Masahiro Tamura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary MedicineHokkaido University Hokkaido Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary MedicineHokkaido University Hokkaido Japan
| | - Khoirun Nisa
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary MedicineHokkaido University Hokkaido Japan
| | - Tatsuyuki Osuga
- Veterinary Teaching HospitalGraduate school of Veterinary MedicineHokkaido University Sapporo, Hokkaido Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary MedicineHokkaido University Hokkaido Japan
| | - Keitaro Morishita
- Veterinary Teaching HospitalGraduate school of Veterinary MedicineHokkaido University Sapporo, Hokkaido Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary MedicineHokkaido University Hokkaido Japan
| |
Collapse
|