51
|
Mandal D, Khatun S, Gupta AN, Chandra A. DNA supported graphene quantum dots for Ag ion sensing. NANOTECHNOLOGY 2019; 30:255501. [PMID: 30780138 DOI: 10.1088/1361-6528/ab084c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of graphene quantum dots can be extended for bio-sensing and metal ion detection. Synergistic combination of graphene quantum dots (GQDs) with DNA leads to high performance Ag-ion detection system. The thoroughly characterized GQDs were found to have spherical morphology, with dimensions in the range of 5-10 nm. The atomic force microscopy studies proved that the synthesized GQDs were mostly comprised of two to four graphene layers. To make the system biocompatible, GQDs/NGQDs were combined with DNA. Two properties of DNA were exploited, capacity to provide nitrogen to GQDs; and to synergistically contribute to Ag+ detection. In addition to Ag+, the strong green photoluminescence (PL) of GQDs showed significant quenching, owing to the appearance of associated Förster resonance energy transfer processes. This led to high sensing efficiencies.
Collapse
Affiliation(s)
- Debabrata Mandal
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | | | | |
Collapse
|
52
|
Weichelt R, Ye J, Banin U, Eychmüller A, Seidel R. DNA-Mediated Self-Assembly and Metallization of Semiconductor Nanorods for the Fabrication of Nanoelectronic Interfaces. Chemistry 2019; 25:9012-9016. [PMID: 31081977 DOI: 10.1002/chem.201902148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 01/08/2023]
Abstract
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here, this approach is extended to semiconductor nanorods that possess interesting electrical properties and could be utilized for the bottom-up fabrication of nanoelectronic building blocks. The assembly scheme is based on an efficient DNA functionalization of the nanorods. A complete coverage of the rod surface with DNA ensures a high colloidal stability while maintaining the rod size and shape. It furthermore supports the assembly of the nanorods at defined docking positions of a DNA origami platform with binding efficiencies of up to 90 % as well as the formation of nanorod dimers with defined relative orientations. By incorporating orthogonal binding sites for gold nanoparticles, defined metal-semiconductor heterostructures can be fabricated. Subsequent application of a seeded growth procedure onto the gold nanoparticles (AuNPs) allows for to establish a direct metal-semiconductor interface as a crucial basis for the integration of semiconductors in self-assembled nanoelectronic devices.
Collapse
Affiliation(s)
- Richard Weichelt
- Physical Chemistry, Center for Advancing Electronics Dresden (cfaed), TU Dresden, 01069, Dresden, Germany
| | - Jingjing Ye
- Peter Debye Institute for Soft Matter Physics, Center for Advancing Electronics Dresden (cfaed), Universität Leipzig, 04103, Leipzig, Germany
| | - Uri Banin
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Alexander Eychmüller
- Physical Chemistry, Center for Advancing Electronics Dresden (cfaed), TU Dresden, 01069, Dresden, Germany
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Center for Advancing Electronics Dresden (cfaed), Universität Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
53
|
Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev 2019; 119:4819-4880. [PMID: 30920815 DOI: 10.1021/acs.chemrev.8b00733] [Citation(s) in RCA: 542] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The design of nanoparticles is critical for their efficient use in many applications ranging from biomedicine to sensing and energy. While shape and size are responsible for the properties of the inorganic nanoparticle core, the choice of ligands is of utmost importance for the colloidal stability and function of the nanoparticles. Moreover, the selection of ligands employed in nanoparticle synthesis can determine their final size and shape. Ligands added after nanoparticle synthesis infer both new properties as well as provide enhanced colloidal stability. In this article, we provide a comprehensive review on the role of the ligands with respect to the nanoparticle morphology, stability, and function. We analyze the interaction of nanoparticle surface and ligands with different chemical groups, the types of bonding, the final dispersibility of ligand-coated nanoparticles in complex media, their reactivity, and their performance in biomedicine, photodetectors, photovoltaic devices, light-emitting devices, sensors, memory devices, thermoelectric applications, and catalysis.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | - Neus Feliu
- Department of Laboratory Medicine (LABMED) , Karolinska Institutet , Stockholm 171 77 , Sweden.,Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Ioanna Bakaimi
- School of Chemistry, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO171BJ , U.K
| | - Majd Hamaly
- King Hussein Cancer Center , P. O. Box 1269, Al-Jubeiha, Amman 11941 , Jordan
| | - Alaaldin Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy , The University of Jordan , Amman 11942 , Jordan.,Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | | | - Atif Masood
- Fachbereich Physik , Philipps Universität Marburg , 30357 Marburg , Germany
| | - Maria F Casula
- INSTM and Department of Chemical and Geological Sciences , University of Cagliari , 09042 Monserrato , Cagliari , Italy.,Department of Mechanical, Chemical and Materials Engineering , University of Cagliari , Via Marengo 2 , 09123 Cagliari , Italy
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , Heraklion , 71110 Crete , Greece
| | - Eunkeu Oh
- KeyW Corporation , Hanover , Maryland 21076 , United States.,Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Kimihiro Susumu
- KeyW Corporation , Hanover , Maryland 21076 , United States.,Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , Heraklion , 71110 Crete , Greece
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| |
Collapse
|
54
|
Liszczak G, Muir TW. Barcoding mit Nukleinsäuren: Anwendung der DNA‐Sequenzierung als molekulares Zählwerk. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Glen Liszczak
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
- Aktuelle Adresse: Department of BiochemistryUT Southwestern Medical Center Dallas TX 75390 USA
| | - Tom W. Muir
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
| |
Collapse
|
55
|
Liszczak G, Muir TW. Nucleic Acid-Barcoding Technologies: Converting DNA Sequencing into a Broad-Spectrum Molecular Counter. Angew Chem Int Ed Engl 2019; 58:4144-4162. [PMID: 30153374 DOI: 10.1002/anie.201808956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/17/2022]
Abstract
The emergence of high-throughput DNA sequencing technologies sparked a revolution in the field of genomics that has rippled into many branches of the life and physical sciences. The remarkable sensitivity, specificity, throughput, and multiplexing capacity that are inherent to parallel DNA sequencing have since motivated its use as a broad-spectrum molecular counter. A key aspect of extrapolating DNA sequencing to non-traditional applications is the need to append nucleic-acid barcodes to entities of interest. In this review, we describe the chemical and biochemical approaches that have enabled nucleic-acid barcoding of proteinaceous and non-proteinaceous materials and provide examples of downstream technologies that have been made possible by DNA-encoded molecules. As commercially available high-throughput sequencers were first released less than 15 years ago, we believe related applications will continue to mature and close by proposing new frontiers to support this assertion.
Collapse
Affiliation(s)
- Glen Liszczak
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Present address: Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
56
|
Goryacheva OA, Novikova AS, Drozd DD, Pidenko PS, Ponomaryeva TS, Bakal AA, Mishra PK, Beloglazova NV, Goryacheva IY. Water-dispersed luminescent quantum dots for miRNA detection. Trends Analyt Chem 2019; 111:197-205. [DOI: 10.1016/j.trac.2018.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Chern M, Kays JC, Bhuckory S, Dennis AM. Sensing with photoluminescent semiconductor quantum dots. Methods Appl Fluoresc 2019; 7:012005. [PMID: 30530939 PMCID: PMC7233465 DOI: 10.1088/2050-6120/aaf6f8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent sensors benefit from high signal-to-noise and multiple measurement modalities, enabling a multitude of applications and flexibility of design. Semiconductor nanocrystal quantum dots (QDs) are excellent fluorophores for sensors because of their extraordinary optical properties. They have high thermal and photochemical stability compared to organic dyes or fluorescent proteins and are extremely bright due to their large molar cross-sections. In contrast to organic dyes, QD emission profiles are symmetric, with relatively narrow bandwidths. In addition, the size tunability of their emission color, which is a result of quantum confinement, make QDs exceptional emitters with high color purity from the ultra-violet to near infrared wavelength range. The role of QDs in sensors ranges from simple fluorescent tags, as used in immunoassays, to intrinsic sensors that utilize the inherent photophysical response of QDs to fluctuations in temperature, electric field, or ion concentration. In more complex configurations, QDs and biomolecular recognition moieties like antibodies are combined with a third component to modulate the optical signal via energy transfer. QDs can act as donors, acceptors, or both in energy transfer-based sensors using Förster resonance energy transfer (FRET), nanometal surface energy transfer (NSET), or charge or electron transfer. The changes in both spectral response and photoluminescent lifetimes have been successfully harnessed to produce sensitive sensors and multiplexed devices. While technical challenges related to biofunctionalization and the high cost of laboratory-grade fluorimeters have thus far prevented broad implementation of QD-based sensing in clinical or commercial settings, improvements in bioconjugation methods and detection schemes, including using simple consumer devices like cell phone cameras, are lowering the barrier to broad use of more sensitive QD-based devices.
Collapse
Affiliation(s)
- Margaret Chern
- Department of Materials Science and Engineering, Boston University, Boston, United States of America
| | | | | | | |
Collapse
|
58
|
Guo J, Qiu X, Mingoes C, Deschamps JR, Susumu K, Medintz IL, Hildebrandt N. Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler. ACS NANO 2019; 13:505-514. [PMID: 30508369 DOI: 10.1021/acsnano.8b07137] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA-nanoparticle conjugates are important tools in nanobiotechnology. Knowing the orientation, function, and length of DNA on nanoparticle surfaces at low nanomolar concentrations under physiological conditions is therefore of great interest. Here, we investigate the conformation of a 31 nucleotides (nt) long DNA attached to a semiconductor quantum dot (QD) via Förster resonance energy transfer (FRET) from Tb-DNA probes hybridized to different positions on the QD-DNA. Precise Tb-to-QD distance determination from 7 to 14 nm along 26 nt of the peptide-appended QD-DNA was realized by time-resolved FRET spectroscopy. The FRET nanoruler measured linear single-stranded (ssDNA) and double-stranded (dsDNA) extensions of ∼0.15 and ∼0.31 nm per base, reflecting the different conformations. Comparison with biomolecular modeling confirmed the denser conformation of ssDNA and a possibly more flexible orientation on the QD surface, whereas the dsDNA was fully extended with radial orientation. The temporally distinct photoluminescence decays of the different DNA-FRET configurations were used for prototypical DNA hybridization assays that demonstrated the large potential for extended temporal multiplexing. The extensive experimental and theoretical analysis of 11 different distances/configurations of the same QD-DNA conjugate provided important information on DNA conformation on nanoparticle surfaces and will be an important benchmark for the development and optimization of DNA-nanobiosensors.
Collapse
Affiliation(s)
- Jiajia Guo
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Xue Qiu
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Carlos Mingoes
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | | | | | | | - Niko Hildebrandt
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| |
Collapse
|
59
|
Lee J, Feng X, Chen O, Bawendi MG, Huang J. Stable, small, specific, low-valency quantum dots for single-molecule imaging. NANOSCALE 2018; 10:4406-4414. [PMID: 29451567 PMCID: PMC5866912 DOI: 10.1039/c7nr08673c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have developed a strategy for synthesizing immediately activable, water-soluble, compact (∼10-12 nm hydrodynamic diameter) quantum dots with a small number of stable and controllable conjugation handles for long distance delivery and subsequent biomolecule conjugation. Upon covalent conjugation with engineered monovalent streptavidin, the sample results in a population consisting of low-valency quantum dots. Alternatively, we have synthesized quantum dots with a small number of biotin molecules that can self-assemble with engineered divalent streptavidin via high-affinity biotin-streptavidin interactions. Being compact, stable and highly specific against biotinylated proteins of interest, these low-valency quantum dots are ideal for labeling and tracking single molecules on the cell surface with high spatiotemporal resolution for different biological systems and applications.
Collapse
Affiliation(s)
- Jungmin Lee
- Department of Chemistry, Massachusetts Institute of Technology
| | - Xinyi Feng
- Institute for Molecular Engineering, University of Chicago
| | - Ou Chen
- Department of Chemistry, Brown University, 324 Brook St. Providence, RI 02912, USA
| | | | - Jun Huang
- Institute for Molecular Engineering, University of Chicago
| |
Collapse
|
60
|
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes. MATERIALS 2018; 11:ma11020272. [PMID: 29425163 PMCID: PMC5848969 DOI: 10.3390/ma11020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022]
Abstract
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.
Collapse
|
61
|
Banerjee A, Grazon C, Pons T, Bhatia D, Valades-Cruz CA, Johannes L, Krishnan Y, Dubertret B. A novel type of quantum dot-transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. NANOSCALE 2017; 9:15453-15460. [PMID: 28976518 DOI: 10.1039/c7nr05838a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal nanoparticles such as Quantum Dots (QDs) are promising alternatives to organic fluorophores, especially for long duration bioimaging. For specific targeting applications, QDs frequently require functionalization with selected proteins. In this regard, conjugation of proteins to QDs such that the nanobioconjugates retain the endogenous behavior of the coupled protein remains challenging. We have developed a novel method to conjugate a protein, transferrin (Tf), to QDs using DNA hybridization. These conjugates are characterized biochemically, and the trafficking properties in live cells are investigated. Although the internalization kinetics into the cells is much reduced compared to Tf labelled with organic dye, we could show that DNA hybridization-based QD-Tf conjugates are the first for which recycling from endosomes to the plasma membrane can be observed. This recycling occurs with kinetics that is similar to dye labelled Tf. We could image and follow the trajectories of recycling of individual vesicles for several tens of minutes. The conjugation of QDs to proteins mediated by DNA hybridization yields a new generation of ultra-bright and photostable probes that preserves the intracellular properties of the dye labelled protein better than previously reported QD conjugates using other surface chemistries for direct coupling.
Collapse
Affiliation(s)
- Anusuya Banerjee
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI ParisTech, CNRS UMR 8213, Université Pierre et Marie Curie, 10 Rue Vauquelin, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm 2017; 521:346-356. [DOI: 10.1016/j.ijpharm.2017.02.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
64
|
Thanh NTK. Preface to 'Multifunctional nanostructures for diagnosis and therapy of diseases'. Interface Focus 2016; 6:20160077. [PMID: 27920901 DOI: 10.1098/rsfs.2016.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nguyễn T K Thanh
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London WC1E 6BT, UK; UCL Healthcare Biomagnetic and Nanomaterials Laboratory, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|