51
|
Bhandare S, Colom J, Baig A, Ritchie JM, Bukhari H, Shah MA, Sarkar BL, Su J, Wren B, Barrow P, Atterbury RJ. Reviving Phage Therapy for the Treatment of Cholera. J Infect Dis 2019; 219:786-794. [PMID: 30395214 DOI: 10.1093/infdis/jiy563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Cholera remains a major risk in developing countries, particularly after natural or man-made disasters. Vibrio cholerae El Tor is the most important cause of these outbreaks, and is becoming increasingly resistant to antibiotics, so alternative therapies are urgently needed. In this study, a single bacteriophage, Phi_1, was used to control cholera prophylactically and therapeutically in an infant rabbit model. In both cases, phage-treated animals showed no clinical signs of disease, compared with 69% of untreated control animals. Bacterial counts in the intestines of phage-treated animals were reduced by up to 4 log10 colony-forming units/g. There was evidence of phage multiplication only in animals that received a V. cholerae challenge. No phage-resistant bacterial mutants were isolated from the animals, despite extensive searching. This is the first evidence that a single phage could be effective in the treatment of cholera, without detectable levels of resistance. Clinical trials in human patients should be considered.
Collapse
Affiliation(s)
- Sudhakar Bhandare
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Joan Colom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Abiyad Baig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Jenny M Ritchie
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Habib Bukhari
- Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad campus, Islamabad, Pakistan
| | - Muhammad A Shah
- Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad campus, Islamabad, Pakistan
| | - Banwarilal L Sarkar
- National Institute of Cholera & Enteric Diseases, WHO Collaborating Centre for Diarrhoeal Diseases Research & Training, Kolkata, India
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| | - Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire
| |
Collapse
|
52
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Antibacterial and antibiofilm activity of bone marrow-derived human mesenchymal stem cells secretome against Vibrio cholerae. Microb Pathog 2019; 139:103867. [PMID: 31712121 DOI: 10.1016/j.micpath.2019.103867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/27/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
The ability of V. cholerae to survive and spread in the aquatic environment combined with the scarcity of effective antimicrobial agents, especially those effective against multidrug-resistant strains highlights the need for alternative non-antibiotic approaches for the treatment of V. cholerae infections. The aim of this study was to specifically examine the potential direct effect of unstimulated MSC secretome on V. cholerae killing and biofilm formation as a representative of non-invasive enteric bacterial pathogen. The bmMSCs were characterized by the presence of CD44 and CD73 and the absence of CD45 and CD34 molecular markers. Moreover, self-regeneration and differentiation capacity of MSCs into adipocytes and osteogenic lineages was assessed by immunohistology (IHC) method. The antibacterial activity of unstimulated MSCs supernatant against V. cholerae in broth microdilution assay decreased the bacterial suspension from 108 CFU/ml to 107 CFU/ml and showed a significant antimicrobial activity in a dose-dependent manner at dilutions of 1:8 to 1:128 (P < 0.05). The role of MSC secretome without preconditioning in the prevention of biofilm formation was assessed through plate-crystal violet assay and showed high antibiofilm activity against V. cholerae also in dose-dependent manner. As antibacterial mechanisms of MSC secretome are different from conventional antibiotics, together with its antibiofilm activity, proposes its application as a novel therapeutic approach combatting multi-drug resistant pathogens with no fear of developing antimicrobial resistance.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
53
|
Lepuschitz S, Baron S, Larvor E, Granier SA, Pretzer C, Mach RL, Farnleitner AH, Ruppitsch W, Pleininger S, Indra A, Kirschner AKT. Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated From a Large Austrian Lake Frequently Associated With Cases of Human Infection. Front Microbiol 2019; 10:2600. [PMID: 31781080 PMCID: PMC6857200 DOI: 10.3389/fmicb.2019.02600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae belonging to serogroups other than O1 and O139 are opportunistic pathogens which cause infections with a variety of clinical symptoms. Due to the increasing number of V. cholerae non-O1/non-O139 infections in association with recreational waters in the past two decades, they have received increasing attention in recent literature and by public health authorities. Since the treatment of choice is the administration of antibiotics, we investigated the distribution of antimicrobial resistance properties in a V. cholerae non-O1/non-O139 population in a large Austrian lake intensively used for recreation and in epidemiologically linked clinical isolates. In total, 82 environmental isolates - selected on the basis of comprehensive phylogenetic information - and nine clinical isolates were analyzed for their phenotypic antimicrobial susceptibility. The genomes of 46 environmental and eight clinical strains were screened for known genetic antimicrobial resistance traits in CARD and ResFinder databases. In general, antimicrobial susceptibility of the investigated V. cholerae population was high. The environmental strains were susceptible against most of the 16 tested antibiotics, except sulfonamides (97.5% resistant strains), streptomycin (39% resistant) and ampicillin (20.7% resistant). Clinical isolates partly showed additional resistance to amoxicillin-clavulanic acid. Genome analysis showed that crp, a regulator of multidrug efflux genes, and the bicyclomycin/multidrug efflux system of V. cholerae were present in all isolates. Nine isolates additionally carried variants of bla CARB-7 and bla CARB-9, determinants of beta-lactam resistance and six isolates carried catB9, a determinant of phenicol resistance. Three isolates had both bla CARB-7 and catB9. In 27 isolates, five out of six subfamilies of the MATE-family were present. For all isolates no genes conferring resistance to aminoglycosides, macrolides and sulfonamides were detected. The apparent lack of either known antimicrobial resistance traits or mobile genetic elements indicates that in cholera non-epidemic regions of the world, V. cholerae non-O1/non-O139 play a minor role as a reservoir of resistance in the environment. The discrepancies between the phenotypic and genome-based antimicrobial resistance assessment show that for V. cholerae non-O1/non-O139, resistance databases are currently inappropriate for an assessment of antimicrobial resistance. Continuous collection of both data over time may solve such discrepancies between genotype and phenotype in the future.
Collapse
Affiliation(s)
- Sarah Lepuschitz
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sandrine Baron
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Emeline Larvor
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Sophie A. Granier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougeres Laboratory, Fougeres, France
| | - Carina Pretzer
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
| | - Robert L. Mach
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
| | - Andreas H. Farnleitner
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
- Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Sonja Pleininger
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Alexander Indra
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Alexander K. T. Kirschner
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| |
Collapse
|
54
|
Gladkikh AS, Feranchuk SI, Ponomareva AS, Bochalgin NO, Mironova LV. Antibiotic resistance in Vibrio cholerae El Tor strains isolated during cholera complications in Siberia and the Far East of Russia. INFECTION GENETICS AND EVOLUTION 2019; 78:104096. [PMID: 31689544 DOI: 10.1016/j.meegid.2019.104096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
Currently, the spread of antimicrobial resistance (AMR) is a global trend and poses a severe threat to public health. The causative agent of cholera, a severe infectious disease with pandemic expansion, becomes more and more resistant to a wider range of drugs with every coming year. The Vibrio cholerae genome is highly flexible and adaptive; the acquisition of the SXT mobile element with a cluster of antibiotic resistance genes on it has marked a new stage in the adaptive evolution of the pathogen. The territory of Siberia and the Russian Far East is free of cholera; however, in the 1970s and 1990s a number of infection importation cases and acute outbreaks associated with the cholera importation were reported. The aim of this study was to describe the phenotypic characteristics and genetic determinants of AMR in V. cholerae strains isolated during epidemic complications in Siberia and the Far East of Russia, as well as to clarify the origin of the strains. The present research comprises analysis of nine V. cholerae El Tor strains isolated from patients and water sources during epidemic complications in Siberia and the Russian Far East in the 1990s. Here, we compared the phenotypic manifestations of antibiotic resistance among strains, harbored the resistance patterns in genomes; we also determined the structure, the type of SXT elements, and the mobilome profile based on the accepted classification. We identified that strains that caused outbreaks in Vladivostok and Yuzhno-Sakhalinsk in 1999 had ICEVchCHN4210 type SXT element with deletion of some loci. The research shows that the integration of the genome, SNP and the mobilome, associated with antibiotic resistance, analyses is necessary to understand the cholera epidemiology, it also helps to establish the origin of strains. The study of resistance determinants features allowed to make a conclusion about the heterogeneity of V. cholerae strains that were isolated during outbreaks in Vladivostok and Yuzhno-Sakhalinsk in 1999.
Collapse
Affiliation(s)
- A S Gladkikh
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia.
| | - S I Feranchuk
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - A S Ponomareva
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - N O Bochalgin
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - L V Mironova
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| |
Collapse
|
55
|
Paranjape SS, Shashidhar R. Glucose sensitizes the stationary and persistent population of Vibrio cholerae to ciprofloxacin. Arch Microbiol 2019; 202:343-349. [PMID: 31664493 DOI: 10.1007/s00203-019-01751-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/13/2019] [Accepted: 10/16/2019] [Indexed: 12/01/2022]
Abstract
The subject of analysis in this report was the antibiotic susceptibility of V. cholerae under glucose supplementation since the metabolites can significantly alter the antibiotic sensitivity of bacteria. Glucose could change the antibiotic susceptibility in a growth phase-dependent manner, however, the antibiotic susceptibility of exponentially growing cells was not affected in the presence of glucose. What has been shown is that the stationary phase cells which show higher antibiotic tolerance, could be sensitized to ciprofloxacin and ampicillin by glucose supplementation (tenfold sensitive). The glucose increases the respiration which in turn increases the metabolism and cell division rate. Furthermore, the addition of glucose could increase the susceptibility of persister cells to ciprofloxacin only. In general, the bacterial susceptibility can be increased by combining the antibiotics with glucose.
Collapse
Affiliation(s)
- Shridhar S Paranjape
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (Deemed to be University), Mumbai, 400094, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
- Life Sciences, Homi Bhabha National Institute (Deemed to be University), Mumbai, 400094, India.
| |
Collapse
|
56
|
Xu M, Wu J, Chen L. Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27338-27352. [PMID: 31325090 PMCID: PMC6733808 DOI: 10.1007/s11356-019-05287-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Vibrio cholerae is a leading waterborne pathogen worldwide. Continuous monitoring of V. cholerae contamination in aquatic products and identification of risk factors are crucial for assuring food safety. In this study, we determined the virulence, antimicrobial susceptibility, heavy metal tolerance, and genetic diversity of 400 V. cholerae isolates recovered from commonly consumed freshwater fish (Aristichthys nobilis, Carassius auratus, Ctenopharyngodon idellus, and Parabramis pekinensis) collected in July and August of 2017 in Shanghai, China. V. cholerae has not been previously detected in the half of these fish species. The results revealed an extremely low occurrence of pathogenic V. cholerae carrying the major virulence genes ctxAB (0.0%), tcpA (0.0%), ace (0.0%), and zot (0.0%). However, high incidence of virulence-associated genes was observed, including the RTX toxin gene cluster (rtxA-D) (83.0-97.0%), hlyA (87.8%), hapA (95.0%), and tlh (76.0%). Meanwhile, high percentages of resistance to antimicrobial agents streptomycin (65.3%), ampicillin (44.5%), and rifampicin (24.0%) were observed. Approximately 30.5% of the isolates displayed multidrug resistant (MDR) phenotypes with 42 resistance profiles, which were significantly different among the four fish species (MARI, P = 0.001). Additionally, tolerance of isolates to heavy metals Hg2+ (49.3%), Zn2+ (30.3%), and Pb2+ (12.0%) was observed. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting of the 400 V. cholerae isolates revealed 328 ERIC-genotypes, which demonstrated a large degree of genomic variation among the isolates. Overall, the results of this study support the need for food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Mengjie Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China
| | - Jinrong Wu
- College of Life Science and Technology, Xinjiang University, Xinjiang, 830000, People's Republic of China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
57
|
Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review. Adv Pharm Bull 2019; 9:335-347. [PMID: 31592430 PMCID: PMC6773942 DOI: 10.15171/apb.2019.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Antibiotic therapy is among the most important treatments against infectious diseases and has tremendously improved effects on public health. Nowadays, development in using this treatment has led us to the emergence and enhancement of drug-resistant pathogens which can result in some problems including treatment failure, increased mortality as well as treatment costs, reduced infection control efficiency, and spread of resistant pathogens from hospital to community. Therefore, many researches have tried to find new alternative approaches to control and prevent this problem. This study, has been revealed some possible and effective approaches such as using farming practice, natural antibiotics, nano-antibiotics, lactic acid bacteria, bacteriocin, cyclopeptid, bacteriophage, synthetic biology and predatory bacteria as alternatives for traditional antibiotics to prevent or reduce the emergence of drug resistant bacteria.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Alizadeh
- Department of Clinical Sciences (Surgery), Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
58
|
Chen C, Yang X, Shen X. Confirmed and Potential Roles of Bacterial T6SSs in the Intestinal Ecosystem. Front Microbiol 2019; 10:1484. [PMID: 31316495 PMCID: PMC6611333 DOI: 10.3389/fmicb.2019.01484] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
The contact-dependent type VI secretion system (T6SS) in diverse microbes plays crucial roles in both inter-bacterial and bacteria-host interactions. As numerous microorganisms inhabit the intestinal ecosystem at a high density, it is necessary to consider the functions of T6SS in intestinal bacteria. In this mini-review, we discuss T6SS-dependent functions in intestinal microbes, including commensal microbes and enteric pathogens, and list experimentally verified species of intestinal bacteria containing T6SS clusters. Several seminal studies have shown that T6SS plays crucial antibacterial roles in colonization resistance, niche occupancy, activation of host innate immune responses, and modulation of host intestinal mechanics. Some potential roles of T6SS in the intestinal ecosystem, such as targeting of single cell eukaryotic competitors, competition for micronutrients, and stress resistance are also discussed. Considering the distinct activities of T6SS in diverse bacteria residing in the intestine, we suggest that T6SS research in intestinal microbes may be beneficial for the future development of new medicines and clinical treatments.
Collapse
Affiliation(s)
- Can Chen
- Institute of Food and Drug Inspection, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
59
|
Emergence of Azithromycin Resistance Mediated by Phosphotransferase-Encoding mph(A) in Diarrheagenic Vibrio fluvialis. mSphere 2019; 4:4/3/e00215-19. [PMID: 31189560 PMCID: PMC6563354 DOI: 10.1128/msphere.00215-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The progressive rise in antibiotic resistance among enteric pathogens in developing countries is becoming a big concern. India is one of the largest consumers of antibiotics, and their use is not well regulated. V. fluvialis is increasingly recognized as an emerging diarrheal pathogen of public health importance. Here we report the emergence of azithromycin resistance in V. fluvialis isolates from diarrheal patients in Kolkata, India. Azithromycin has been widely used in the treatment of various infections, both in children and in adults. Resistance to azithromycin is encoded in the gene mph(A). Emerging azithromycin resistance in V. fluvialis is a major public health challenge, and future studies should be focused on identifying ways to prevent the dissemination of this antibiotic resistance gene. The azithromycin resistance conferred by phosphotransferase is encoded in the gene mph(A). This gene has been discovered in and reported for many bacterial species. We examined the prevalence of azithromycin resistance in Vibrio fluvialis (AR-VF) isolated during 2014 to 2015 from the hospitalized acute diarrheal patients in Kolkata, India. Most of the V. fluvialis isolates are identified as the sole pathogen (54%). The prevalence of AR-VF was higher in 2015 (19 [68%]) than in 2014 (9 [32%]). Among AR-VF isolates, the azithromycin MICs ranged from 4 to >256 mg/liter. Twenty-eight of the 48 (58%) V. fluvialis isolates harbored the gene mph(A) and phenotypically resistant to azithromycin. All the AR-VF isolates remained susceptible to doxycycline. In addition to azithromycin, other antimicrobial resistance-encoding genes of AR-VF were also characterized. All the AR-VF isolates were positive for class 1 integron, and most of them (17/28) carried the dfrA1 gene cassettes. Only one isolate was positive for the ereA gene, which encodes resistance to erythomycin. The majority of the isolates were resistant to β-lactam antibiotics (blaOXA-1 [96%], blaOXA-7 [93%], and blaTEM-9 [68%]) and aminoglycoside actetyltransferase, conferring resistance to ciprofloxacin-modifying enzyme [aac(6′)Ib-cr] (96%). Analyses by pulsed-field gel electrophoresis (PFGE) showed that the AR-VF isolates belonged to different genetic lineages. This is the first study to report azithromycin resistance and the presence of the mph(A) gene in V. fluvialis isolates. Circulation of AR-VF isolates with high azithromycin MICs is worrisome, since it may limit the treatment options for diarrheal infections. IMPORTANCE The progressive rise in antibiotic resistance among enteric pathogens in developing countries is becoming a big concern. India is one of the largest consumers of antibiotics, and their use is not well regulated. V. fluvialis is increasingly recognized as an emerging diarrheal pathogen of public health importance. Here we report the emergence of azithromycin resistance in V. fluvialis isolates from diarrheal patients in Kolkata, India. Azithromycin has been widely used in the treatment of various infections, both in children and in adults. Resistance to azithromycin is encoded in the gene mph(A). Emerging azithromycin resistance in V. fluvialis is a major public health challenge, and future studies should be focused on identifying ways to prevent the dissemination of this antibiotic resistance gene.
Collapse
|
60
|
Bua S, Osman SM, Del Prete S, Capasso C, AlOthman Z, Nocentini A, Supuran CT. Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholerae. Bioorg Chem 2019; 86:183-186. [PMID: 30716618 DOI: 10.1016/j.bioorg.2019.01.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
A series of 1,2,3-triazole-bearing benzenesulfonamides was assessed for the inhibition of carbonic anhydrases (CA, EC 4.2.1.1) from bacteria Vibrio cholerae (VchCAα and VchCAβ) and Mycobacterium tuberculosis (β-mtCA3). Growing resistance phenomena against existing antimicrobial drugs are globally spreading and highlight a urgent need of agents endowed with alternative mechanisms of action. Two global WHO strategies aim to reduce cholera deaths by 90% and eradicate the tuberculosis epidemic by 2030. The derivatives here reported represent interesting leads towards the optimization of new antibiotic agents showing excellent inhibitory efficiency and selectivity for the target CAs over the human (h) off-target isoform hCA I. In detail, the first subset of derivatives potently inhibits VchCAα in a low nanomolar range (KIs between 0.72 and 22.6 nM). Compounds of a second subset, differing from the first one for the position of the spacer between benzenesulfonamide and triazole, preferentially inhibit VchCAβ (KIs in the range 54.8-102.4 nM) and β-mtCA3 (KIs in the range 28.2-192.5 nM) even more than the clinically used AAZ, used as the standard.
Collapse
Affiliation(s)
- Silvia Bua
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Claudiu T Supuran
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
61
|
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol 2019; 68:679-692. [DOI: 10.1099/jmm.0.000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rajeev Kr. Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
62
|
Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current Status of Research and Challenges Ahead. Microorganisms 2019; 7:microorganisms7030084. [PMID: 30889831 PMCID: PMC6463129 DOI: 10.3390/microorganisms7030084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Vibrio alginolyticus and V. parahaemolyticus, the causative agents of Vibriosis in marine vertebrates and invertebrates, are also responsible for fatal illnesses such as gastroenteritis, septicemia, and necrotizing fasciitis in humans via the ingestion of contaminated seafood. Aquaculture farmers often rely on extensive prophylactic use of antibiotics in farmed fish to mitigate Vibrios and their biofilms. This has been postulated as being of serious concern in the escalation of antibiotic resistant Vibrios. For this reason, alternative strategies to combat aquaculture pathogens are in high demand. Bacteriophage-derived lytic enzymes and proteins are of interest to the scientific community as promising tools with which to diminish our dependency on antibiotics. Lysqdvp001 is the best-characterized endolysin with lytic activity against multiple species of Vibrios. Various homologues of Vibrio phage endolysins have also been studied for their antibacterial potential. These novel endolysins are the major focus of this mini review.
Collapse
|
63
|
Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci U S A 2019; 116:6226-6231. [PMID: 30867296 DOI: 10.1073/pnas.1900141116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Bay of Bengal is known as the epicenter for seeding several devastating cholera outbreaks across the globe. Vibrio cholerae, the etiological agent of cholera, has extraordinary competency to acquire exogenous DNA by horizontal gene transfer (HGT) and adapt them into its genome for structuring metabolic processes, developing drug resistance, and colonizing the human intestine. Antimicrobial resistance (AMR) in V. cholerae has become a global concern. However, little is known about the identity of the resistance traits, source of AMR genes, acquisition process, and stability of the genetic elements linked with resistance genes in V. cholerae Here we present details of AMR profiles of 443 V. cholerae strains isolated from the stool samples of diarrheal patients from two regions of India. We sequenced the whole genome of multidrug-resistant (MDR) and extensively drug-resistant (XDR) V. cholerae to identify AMR genes and genomic elements that harbor the resistance traits. Our genomic findings were further confirmed by proteome analysis. We also engineered the genome of V. cholerae to monitor the importance of the autonomously replicating plasmid and core genome in the resistance profile. Our findings provided insights into the genomes of recent cholera isolates and identified several acquired traits including plasmids, transposons, integrative conjugative elements (ICEs), pathogenicity islands (PIs), prophages, and gene cassettes that confer fitness to the pathogen. The knowledge generated from this study would help in better understanding of V. cholerae evolution and management of cholera disease by providing clinical guidance on preferred treatment regimens.
Collapse
|
64
|
Kritskii AA, Cheldyshova NB, Zadnova SP, Plekhanov NA, Smirnova NI. A Method for the Simultaneous Detection of Vibrio cholerae Strains and Drug-Resistant Genes in their Genome by Real-Time PCR. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s000368381809003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
65
|
Mohammed Y, Aboderin AO, Okeke IN, Olayinka AT. Antimicrobial resistance of Vibrio cholerae from sub-Saharan Africa: A systematic review. Afr J Lab Med 2018; 7:778. [PMID: 30643734 PMCID: PMC6325272 DOI: 10.4102/ajlm.v7i2.778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background The World Health Assembly adopted the Global Action Plan on Antimicrobial Resistance, which includes improving the knowledge base through surveillance and research. Noteworthily, the World Health Organization has advocated a Global Antimicrobial Resistance Surveillance System to address the plan’s surveillance objective, with most African countries enrolling in or after 2017. Aim The aim of this article was to review prior data on antimicrobial resistance of Vibrio cholerae from sub-Saharan Africa with a view for future control and intervention strategies. Methods We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (or ‘PRISMA’) guidelines to search the PubMed and African Journals Online databases, as well as additional articles provided by the Nigeria Centre for Disease Control, for articles reporting on the antibiotic susceptibility of V. cholerae between January 2000 and December 2017. Results We identified 340 publications, of which only 25 (reporting from 16 countries within the sub-Saharan African region) were eligible. The majority (20; 80.0%) of the cholera toxigenic V. cholerae isolates were of the serogroup O1 of the El Tor biotype with Ogawa and Inaba serotypes predominating. Resistance was predominantly documented to trimethoprim-sulphamethoxazole (50% of the studies), ampicillin (43.3% of the studies), chloramphenicol (43.3% of the studies) and streptomycin (30% of the studies). Resistance mechanisms were reported in 40% of the studies. Conclusion Our results demonstrate a documented antimicrobial resistance of V. cholerae to multiple antibiotic classes, including cell wall active agents and antimetabolites with evidence of phenotypic/genotypic resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Yahaya Mohammed
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aaron O Aboderin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Adebola T Olayinka
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
66
|
Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C, Mao S, Mukherjee S, Košmrlj A, Wingreen NS, Bassler BL, Stone HA. Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804153. [PMID: 30368924 PMCID: PMC8865467 DOI: 10.1002/adma.201804153] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/30/2018] [Indexed: 05/22/2023]
Abstract
Biofilms, surface-attached communities of bacterial cells, are a concern in health and in industrial operations because of persistent infections, clogging of flows, and surface fouling. Extracellular matrices provide mechanical protection to biofilm-dwelling cells as well as protection from chemical insults, including antibiotics. Understanding how biofilm material properties arise from constituent matrix components and how these properties change in different environments is crucial for designing biofilm removal strategies. Here, using rheological characterization and surface analyses of Vibrio cholerae biofilms, it is discovered how extracellular polysaccharides, proteins, and cells function together to define biofilm mechanical and interfacial properties. Using insight gained from our measurements, a facile capillary peeling technology is developed to remove biofilms from surfaces or to transfer intact biofilms from one surface to another. It is shown that the findings are applicable to other biofilm-forming bacterial species and to multiple surfaces. Thus, the technology and the understanding that have been developed could potentially be employed to characterize and/or treat biofilm-related infections and industrial biofouling problems.
Collapse
Affiliation(s)
- Jing Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Alexis Moreau
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Sepideh Khodaparast
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Antonio Perazzo
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Jie Feng
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Sampriti Mukherjee
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW This review describes the basic epidemiologic, clinical, and microbiologic aspects of cholera, highlights new developments within these areas, and presents strategies for applying currently available tools and knowledge more effectively. RECENT FINDINGS From 1990 to 2016, the reported global burden of cholera fluctuated between 74,000 and 595,000 cases per year; however, modeling estimates suggest the real burden is between 1.3 and 4.0 million cases and 95,000 deaths yearly. In 2018, the World Health Assembly endorsed a new initiative to reduce cholera deaths by 90% and eliminate local cholera transmission in 20 countries by 2030. New tools, including localized GIS mapping, climate modeling, whole genome sequencing, oral vaccines, rapid diagnostic tests, and new applications of water, sanitation, and hygiene interventions, could support this goal. Challenges include a high proportion of fragile states among cholera-endemic countries, urbanization, climate change, and the need for cholera treatment guidelines for pregnant women and malnourished children. SUMMARY Reducing cholera morbidity and mortality depends on real-time surveillance, outbreak detection and response; timely access to appropriate case management and cholera vaccines; and provision of safe water, sanitation, and hygiene.
Collapse
Affiliation(s)
- William Davis
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop H24-9, Atlanta, GA 30329, USA
| | - Rupa Narra
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop H24-9, Atlanta, GA 30329, USA
| | - Eric D. Mintz
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop H24-9, Atlanta, GA 30329, USA
| |
Collapse
|
68
|
Laviad-Shitrit S, Sharaby Y, Izhaki I, Peretz A, Halpern M. Antimicrobial Susceptibility of Environmental Non-O1/Non-O139 Vibrio cholerae Isolates. Front Microbiol 2018; 9:1726. [PMID: 30116229 PMCID: PMC6083052 DOI: 10.3389/fmicb.2018.01726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/11/2018] [Indexed: 01/21/2023] Open
Abstract
Vibrio cholerae serogroups O1 and O139 are the causative agents of cholera disease. There are more than 200 serogroups in this species that are termed V. cholerae non-O1/non-O139. Non-O1/non-O139 strains can cause gastroenteritis and cholera like diarrhea, wound infections, external otitis, and bacteraemia that may lead to mortality. Previous antimicrobial susceptibility studies were conducted mainly on O1/O139 serogroups and on clinical isolates. Our aim was to study and compare the antimicrobial susceptibilities of non-O1/non-O139 environmental strains isolated from chironomids, fish, and waterfowl. Significant differences were found in the antimicrobial susceptibilities between the environmental strains that were isolated from three different reservoir habitats. Significant increase in minimum inhibitory concentrations (MICs) of ampicillin and chloramphenicol was found in chironomid isolates from 2009 compared to those from 2005. V. cholerae isolates from different waterfowl species displayed the highest MIC values to chloramphenicol and trimethoprim-sulfamethoxazole (SXT), while chironomid isolates demonstrated the highest MIC values toward ampicillin. Isolates from fish and waterfowl showed high MIC values toward doxycycline. No significant differences were found between the MICs of isolates from the different waterfowl species. The percentage of antimicrobial resistance among V. cholerae isolates from waterfowl was the highest compared to the abundance of antimicrobial resistant isolates from chironomids or fish. The antimicrobial resistance genes can be carried on mobile genetic elements, thus, waterfowl may act as reservoirs for these elements and may spread them all over the globe. Data regarding treatment with antimicrobial agents toward V. cholerae non-O1/non-O139 serogroups is lacking and therefore further studies are needed.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yehonatan Sharaby
- Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Avi Peretz
- Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel.,Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Tiberias, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
69
|
Lydon KA, Robertson MJ, Lipp EK. Patterns of triclosan resistance in Vibrionaceae. PeerJ 2018; 6:e5170. [PMID: 30013840 PMCID: PMC6046194 DOI: 10.7717/peerj.5170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022] Open
Abstract
The antimicrobial additive triclosan has been used in personal care products widely across the globe for decades. Triclosan resistance has been noted among Vibrio spp., but reports have been anecdotal and the extent of phenotypic triclosan resistance across the Vibrionaceae family has not been established. Here, triclosan resistance was determined for Vibrionaceae strains across nine distinct clades. Minimum inhibitory concentrations (MIC) were determined for 70 isolates from clinical (n = 6) and environmental sources (n = 64); only two were susceptible to triclosan. The mean MIC for all resistant Vibrionaceae was 53 µg mL-1 (range 3.1-550 µg mL-1), but was significantly different between clades (p < 0.001). The highest mean triclosan MIC was observed in the Splendidus clade (200 µg mL-1; n = 3). Triclosan mean MICs were 68.8 µg mL-1 in the Damselae clade and 45.3 µg mL-1 in the Harveyi clade. The lowest mean MIC was observed in the Cholerae clade with 14.4 µg mL-1, which was primarily represented by clinical strains. There were no significant differences in triclosan MIC among individual species or among environmental strains isolated from different locations. Overall, phenotypic triclosan resistance appears to be widespread across multiple clades of Vibrionaceae.
Collapse
Affiliation(s)
- Keri A. Lydon
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Megan J. Robertson
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
70
|
Jiang F, Bi R, Deng L, Kang H, Gu B, Ma P. Virulence-associated genes and molecular characteristics of non-O1/non-O139 Vibrio cholerae isolated from hepatitis B cirrhosis patients in China. Int J Infect Dis 2018; 74:117-122. [PMID: 29969728 DOI: 10.1016/j.ijid.2018.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES We aimed to report virulence-associated genes and molecular characteristics of non-O1/non-O139 Vibrio cholerae isolated from hepatitis B cirrhosis patients in China. METHODS Patient clinical data including course of disease, laboratory tests, antibiotic treatment and outcomes were collected. Antimicrobial susceptibility testing was performed and virulence-associated genes were detected by PCR. Genetic relatedness among non-O1/non-O139 V. cholerae strains was investigated by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS All three strains in this study harbored pathogenicity related genes like rtxA, rtxC, toxR, hapA, hlyA and ompW whereas they lacked ctxA, ctxB, tcpA, ompU and zot genes. None of them showed resistance to any antibiotic detected. A new allele of gyrB was submitted to the MLST database and designated as 97. Two novel sequence types (ST518 and ST519) and ST271 were identified by multilocus sequence typing (MLST). PFGE indicated considerable diversity among three non-O1/non-O139 V. cholerae strains. CONCLUSIONS Three sporadic cases highlight that non-O1/non-O139 V. cholerae can cause opportunistic invasiveness infection in cirrhosis patients. Pathogenicity may be related to virulence-associated genes. Timely detection and antibiotic therapy should be paid more attention to in clinic.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China
| | - RuRu Bi
- Medical Technology Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - LiHua Deng
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China
| | - HaiQuan Kang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China
| | - Bing Gu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China; Medical Technology Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Ping Ma
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221002, China; Medical Technology Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
71
|
Redefinition and Unification of the SXT/R391 Family of Integrative and Conjugative Elements. Appl Environ Microbiol 2018; 84:AEM.00485-18. [PMID: 29654185 DOI: 10.1128/aem.00485-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5' end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance.
Collapse
|
72
|
Kaur S, Sharma P, Kalia N, Singh J, Kaur S. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Vibrio spp. Front Cell Infect Microbiol 2018; 8:120. [PMID: 29740541 PMCID: PMC5928150 DOI: 10.3389/fcimb.2018.00120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrheal disease caused by Vibrio cholerae is endemic in developing countries including India and is associated with high rate of mortality especially in children. V. cholerae is known to form biofilms on the gut epithelium, and the biofilms once formed are resistant to the action of antibiotics. Therefore agents that prevent the biofilm formation and disperse the preformed biofilms are associated with therapeutic benefits. The use of antibiotics for the treatment of cholera is associated with side effects such as gut dysbiosis due to depletion of gut microflora, and the increasing problem of antibiotic resistance. Thus search for safe alternative therapeutic agents is warranted. Herein, we screened the lactobacilli spp. isolated from the fecal samples of healthy children for their abilities to prevent biofilm formation and to disperse the preformed biofilms of V. cholerae and V. parahaemolyticus by using an in vitro assay. The results showed that the culture supernatant (CS) of all the seven isolates of Lactobacillus spp. used in the study inhibited the biofilm formation of V. cholerae by more than 90%. Neutralization of pH of CS completely abrogated their antimicrobial activities against V. cholera, but had negligible effects on their biofilm inhibitory potential. Further, CS of all the lactobacilli isolates caused the dispersion of preformed V. cholerae biofilms in the range 62–85%; however, pH neutralization of CS reduced the biofilm dispersal potential of the 4 out of 7 isolates by 19–57%. Furthermore, the studies showed that CS of none of the lactobacilii isolates had antimicrobial activity against V. parahaemolyticus, but 5 out of 7 isolates inhibited the formation of its biofilm in the range 62–82%. However, none of the CS dispersed the preformed biofilms of V. parahaemolyticus. The ability of CS to inhibit the adherence of Vibrio spp. to the epithelial cell line was also determined. Thus, we conclude that the biofilm dispersive action of CS of lactobacilli is strain-specific and pH-dependent. As Vibrio is known to form biofilms in the intestinal niche having physiological pH in the range 6–7, the probiotic strains that have dispersive action at high pH may have better therapeutic potential.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
73
|
Lu WJ, Lin HJ, Janganan TK, Li CY, Chin WC, Bavro VN, Lin HTV. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function. Int J Mol Sci 2018; 19:ijms19041000. [PMID: 29584668 PMCID: PMC5979437 DOI: 10.3390/ijms19041000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
Collapse
Affiliation(s)
- Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Thamarai K Janganan
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK.
| | - Cheng-Yi Li
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Wei-Chiang Chin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Vassiliy N Bavro
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| |
Collapse
|
74
|
Rajalaxmi M, Beema Shafreen R, Chithiraiselvi K, Karutha Pandian S. An in vitro and in silico identification of antibiofilm small molecules from seawater metaclone SWMC166 against Vibrio cholerae O1. Mol Cell Probes 2018; 39:14-24. [PMID: 29574083 DOI: 10.1016/j.mcp.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/06/2018] [Accepted: 03/20/2018] [Indexed: 01/27/2023]
Abstract
This study aimed to determine the antibiofilm activity of seawater microbes against Vibrio cholerae (VCO1) through functional metagenomics approach. A metagenomic library was constructed from Palk Bay seawater and the library was screened to identify the biofilm inhibitory metaclone. Metaclone SWMC166 (harbouring ∼30 kb metagenomic insert) was found to exhibit antibiofilm activity against VCO1. The biofilm inhibitory potential of partially purified ethyl acetate extract of SWMC166 (EA166) was further evaluated through microscopic studies and biochemical assays. Further, EA166 treated VCO1 divulged up-regulation of genes involved in high cell density-mediated quorum sensing (QS) pathway which was analysed by real-time PCR. In order to identify the genes of interest (within ∼30 kb insert), subcloning was performed through shotgun approach. Small molecules from positive subclones SC5 and SC8 were identified through HRLC-MS analysis. Resulted small molecules were docked against QS receptors of V. cholerae to identify the bioactive metabolites. Docking studies revealed that totally seven metabolites were able to interact with QS receptors that can possibly trigger the QS cascade and sequentially inhibit the biofilm formation and virulence factors of VCO1.
Collapse
Affiliation(s)
- Murugan Rajalaxmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, India
| | | | | | | |
Collapse
|
75
|
Narendrakumar L, Thomas S. Vibrio cholerae O1 gaining reduced susceptibility to doxycycline, India. J Glob Antimicrob Resist 2018; 12:141-142. [DOI: 10.1016/j.jgar.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 02/01/2023] Open
|
76
|
Mironova LV, Gladkikh AS, Ponomareva AS, Feranchuk SI, Bochalgin NО, Basov EA, Yu Khunkheeva Z, Balakhonov SV. Comparative genomics of Vibrio cholerae El Tor strains isolated at epidemic complications in Siberia and at the Far East. INFECTION GENETICS AND EVOLUTION 2018; 60:80-88. [PMID: 29462719 DOI: 10.1016/j.meegid.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/30/2022]
Abstract
The territory of Siberia and the Far East of Russia is classified as epidemically safe for cholera; however, in the 1970s and 1990s a number of infection importation cases and acute outbreaks associated with the cholera importation were reported. Here, we analyze genomes of four Vibrio cholerae El Tor strains isolated from humans during epidemic complications (imported cases, an outbreak) in the 1990s. The analyzed strains harbor the classical allele of the cholera toxin subunit B gene (ctxB1); thus, belong to genetically altered variants of the El Tor biotype. Analysis of the genomes revealed their high homology with the V. cholerae N16961 reference strain: 85-93 SNPs were identified in the core genome as compared to the reference. The determined features of SNPs in the CTX prophage made it possible to propose the presence of a new subtype - CTX-2a in two strains; the other two strains carried the prophage of CTX-3 type. Results of phylogenetic analysis based on SNP-typing demonstrated that two strains belonged to the second wave, and two - to the early third wave of cholera dissemination in the world. Phylogenetic reconstruction in combination with epidemiological data permitted to trace the origin of the strains and the way of their importation to the Russian Federation directly or through temporary cholera foci.
Collapse
Affiliation(s)
- Liliya V Mironova
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Anna S Gladkikh
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia.
| | - Anna S Ponomareva
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Sergey I Feranchuk
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia; Limnological Institute of Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya str., Irkutsk 664033, Russia
| | - Nikita О Bochalgin
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Evgenii A Basov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Zhanna Yu Khunkheeva
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Sergey V Balakhonov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| |
Collapse
|
77
|
Acosta-Smith E, Viveros-Jiménez K, Canizalez-Román A, Reyes-Lopez M, Bolscher JGM, Nazmi K, Flores-Villaseñor H, Alapizco-Castro G, de la Garza M, Martínez-Garcia JJ, Velazquez-Roman J, Leon-Sicairos N. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species. Front Microbiol 2018; 8:2633. [PMID: 29375503 PMCID: PMC5768654 DOI: 10.3389/fmicb.2017.02633] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.
Collapse
Affiliation(s)
- Erika Acosta-Smith
- Programa Regional Para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Karina Viveros-Jiménez
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Adrian Canizalez-Román
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán, Mexico
| | - Magda Reyes-Lopez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Hector Flores-Villaseñor
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio Estatal de Salud Pública de Sinaloa, Culiacán, Mexico
| | - Gerardo Alapizco-Castro
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico
| | - Jesús J Martínez-Garcia
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | - Jorge Velazquez-Roman
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Nidia Leon-Sicairos
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| |
Collapse
|
78
|
|
79
|
Sarwar S, Ali A, Pal M, Chakrabarti P. Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor. J Biol Chem 2017; 292:18303-18311. [PMID: 28882894 PMCID: PMC5672052 DOI: 10.1074/jbc.m117.793240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/04/2017] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae causes cholera and is the leading cause of diarrhea in developing countries, highlighting the need for the development of new treatment strategies to combat this disease agent. While exploring the possibility of using zinc oxide (ZnO) nanoparticles (NPs) in cholera treatment, we previously found that ZnO NPs reduce fluid accumulation in mouse ileum induced by the cholera toxin (CT) protein. To uncover the mechanism of action of ZnO NPs on CT activity, here we used classical (O395) and El Tor (C6706) V. cholerae biotypes in growth and biochemical assays. We found that a ZnO NP concentration of 10 μg/ml did not affect the growth rates of these two strains, nor did we observe that ZnO NPs reduce the expression levels of CT mRNA and protein. It was observed that ZnO NPs form a complex with CT, appear to disrupt the CT secondary structure, and block its interaction with the GM1 ganglioside receptor in the outer leaflet of the plasma membrane in intestinal (HT-29) cells and thereby reduce CT uptake into the cells. In the range of 2.5-10 μg/ml, ZnO NPs exhibited no cytotoxicity on kidney (HEK293) and HT-29 cells. We conclude that ZnO NPs prevent the first step in the translocation of cholera toxin into intestinal epithelial cells without exerting measurable toxic effects on HEK293 and HT-29 cells.
Collapse
Affiliation(s)
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India
| | | |
Collapse
|
80
|
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101188. [PMID: 28991153 PMCID: PMC5664689 DOI: 10.3390/ijerph14101188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Collapse
|
81
|
Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachère E. Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0300. [PMID: 27160602 DOI: 10.1098/rstb.2015.0300] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Jeremie Vidal-Dupiol
- Ifremer, UMR 241 EIO, LabexCorail, BP 7004, 98719 Taravao, Tahiti, French Polynesia
| | - Guillaume Mitta
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Yannick Gueguen
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Evelyne Bachère
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| |
Collapse
|
82
|
Ragunathan A, Malathi K, Anbarasu A. MurB as a target in an alternative approach to tackle the Vibrio cholerae resistance using molecular docking and simulation study. J Cell Biochem 2017; 119:1726-1732. [PMID: 28786497 DOI: 10.1002/jcb.26333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023]
Abstract
Cholera is a serious threat to a large population in the under developed countries. Though oral rehydration therapy is the preferred choice of treatment, the use of antibiotics could reduce the microbial load in the case of severity. The use of antibiotics is also sought in the scenarios where there is problem with access to clean water. However, Vibrio cholera (V. cholerae) strains have developed resistance to antibiotics such as amoxicillin, ampicillin, chloramphenicol, doxycycline, erythromycin, and tetracycline. In this work, we have addressed the resistance issue by targeting MurB protein which is essential for the cell wall biosynthesis in V. cholerae. 20 Phytochemical compounds were chosen to screen the potential inhibitors against V. cholerae to avoid the complications faced by synthesis of small molecules. The molecular docking and dynamics study indicates that quercetin is the most potential and stable inhibitor of Murb.
Collapse
Affiliation(s)
- Adhithya Ragunathan
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kullappan Malathi
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
83
|
De Vita D, Angeli A, Pandolfi F, Bortolami M, Costi R, Di Santo R, Suffredini E, Ceruso M, Del Prete S, Capasso C, Scipione L, Supuran CT. Inhibition of the α-carbonic anhydrase from Vibrio cholerae with amides and sulfonamides incorporating imidazole moieties. J Enzyme Inhib Med Chem 2017; 32:798-804. [PMID: 28569564 PMCID: PMC6445327 DOI: 10.1080/14756366.2017.1327522] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment.
Collapse
Affiliation(s)
- Daniela De Vita
- a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti , Università di Roma La Sapienza , Roma , Italy
| | - Andrea Angeli
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Fabiana Pandolfi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti , Università di Roma La Sapienza , Roma , Italy
| | - Martina Bortolami
- a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti , Università di Roma La Sapienza , Roma , Italy
| | - Roberta Costi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti , Università di Roma La Sapienza , Roma , Italy
| | - Roberto Di Santo
- a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti , Università di Roma La Sapienza , Roma , Italy
| | - Elisabetta Suffredini
- c Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria , Istituto Superiore di Sanità , Rome , Italy
| | - Mariangela Ceruso
- d Polo Scientifico, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - Sonia Del Prete
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy.,e Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy
| | | | - Luigi Scipione
- a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti , Università di Roma La Sapienza , Roma , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy.,d Polo Scientifico, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
84
|
Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One 2017; 12:e0181496. [PMID: 28792540 PMCID: PMC5549693 DOI: 10.1371/journal.pone.0181496] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Mozambique has recorded cyclically epidemic outbreaks of cholera. Antibiotic therapy is recommended in specific situations for management and control of cholera outbreaks. However, an increase in resistance rates to antibiotics by Vibrio cholerae has been reported in several epidemic outbreaks worldwide. On the other hand, there are few recent records of continuous surveillance of antibiotics susceptibility pattern of V. cholerae in Mozambique. GOALS The purpose of this study was to evaluate antibiotics resistance pattern of Vibrio cholerae O1 Ogawa isolated during Cholera outbreaks in Mozambique to commonly used antibiotics. METHODOLOGY We analyzed data from samples received in the context of surveillance and response to Cholera outbreaks in the National Reference Laboratory of Microbiology from the National Institute of Health of Mozambique, 159 samples suspected of cholera from cholera treatment centers of, Metangula (09), Memba (01), Tete City (08), Moatize (01), Morrumbala (01) districts, City of Quelimane (01), Lichinga (06) and Nampula (86) districts, from 2012 to 2015. Laboratory culture and standard biochemical tests were employed to isolate and identify Vibrio cholerae; serotypes were determined by antisera agglutination reaction in blade. Biotype and presence of important virulence factors analysis was done by PCR. Antibiotics susceptibility pattern was detected by disk diffusion method Kirby Bauer. Antibiotic susceptibility and results were interpreted by following as per recommendations of CLSI (Clinical and Laboratory Standards Institute) 2014. All samples were collected and tested in the context of Africhol Project, approved by the National Bioethics Committee for Health. RESULTS Among isolates from of Vibrio cholerae O1 El Tor Ogawa resistance to Sulphamethoxazole-trimethropim was 100% (53/53) to Trimethoprim-, being 100% (54/54) for Ampicillin, 99% (72/74) for Nalidixic Acid, 97% (64/66) to Chloramphenicol, 95% (42/44) for Nitrofurantoin and (19/20) Cotrimoxazole, 83% (80/97) Tetracycline, 56% (5/13) Doxycycline, 56% (39/70) Azithromycin and 0% (0/101) for Ciprofloxacin. PCR analysis suggested strains of V. cholerae O1 being descendants of the current seventh pandemic V. cholerae O1 CIRS 101 hybrid variant. The V. cholerae O1 currently causing cholera epidemics in north and central Mozambique confirmed a CTXΦ genotype and a molecular arrangement similar to the V. cholerae O1 CIRS 101. CONCLUSION Although V. cholerae infections in Mozambique are generally not treated with antibiotics circulating strains of the bacteria showed high frequency of in vitro resistance to available antibiotics. Continuous monitoring of antibiotic resistance pattern of epidemic strains is therefore crucial since the appearance of antibiotic resistance can influence cholera control strategies.
Collapse
|
85
|
Yang C, Wang X, Gao D, Wang J. Impact of Awareness Programs on Cholera Dynamics: Two Modeling Approaches. Bull Math Biol 2017; 79:2109-2131. [PMID: 28748506 DOI: 10.1007/s11538-017-0322-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
We propose two differential equation-based models to investigate the impact of awareness programs on cholera dynamics. The first model represents the disease transmission rates as decreasing functions of the number of awareness programs, whereas the second model divides the susceptible individuals into two distinct classes depending on their awareness/unawareness of the risk of infection. We study the essential dynamical properties of each model, using both analytical and numerical approaches. We find that the two models, though closely related, exhibit significantly different dynamical behaviors. Namely, the first model follows regular threshold dynamics while rich dynamical behaviors such as backward bifurcation may arise from the second one. Our results highlight the importance of validating key modeling assumptions in the development and selection of mathematical models toward practical application.
Collapse
Affiliation(s)
- Chayu Yang
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
| | - Xueying Wang
- Department of Mathematics, Washington State University, Pullman, WA, 99164, USA
| | - Daozhou Gao
- Mathematics and Science College, Shanghai Normal University, Shanghai, 200234, China.
| | - Jin Wang
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
| |
Collapse
|
86
|
Antibiogram and Serotyping of Vibrio cholerae O1 Isolates from a Tertiary Care Centre in South India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
87
|
Disarming the enemy: targeting bacterial toxins with small molecules. Emerg Top Life Sci 2017; 1:31-39. [PMID: 33525814 DOI: 10.1042/etls20160013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial strains has prompted efforts to find new and more efficacious treatment strategies. Targeting virulence factors produced by pathogenic bacteria has gained particular attention in the last few years. One of the inherent advantages of this approach is that it provides less selective pressure for the development of resistance mechanisms. In addition, antivirulence drugs could potentially be the answer for diseases in which the use of conventional antibiotics is counterproductive. That is the case for bacterial toxin-mediated diseases, in which the severity of the symptoms is a consequence of the exotoxins produced by the pathogen. Examples of these are haemolytic-uraemic syndrome produced by Shiga toxins, the profuse and dangerous dehydration caused by Cholera toxin or the life-threatening colitis occasioned by clostridial toxins. This review focuses on the recent advances on the development of small molecules with antitoxin activity against Enterohaemorrhagic Escherichia coli, Vibrio cholerae and Clostridium difficile given their epidemiological importance. The present work includes studies of small molecules with antitoxin properties that act directly on the toxin (direct inhibitors) or that act by preventing expression of the toxin (indirect inhibitors).
Collapse
|
88
|
Bruns MM, Kakarla P, Floyd JT, Mukherjee MM, Ponce RC, Garcia JA, Ranaweera I, Sanford LM, Hernandez AJ, Willmon TM, Tolson GL, Varela MF. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract. Arch Microbiol 2017; 199:1103-1112. [PMID: 28432381 DOI: 10.1007/s00203-017-1378-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.
Collapse
Affiliation(s)
- Merissa M Bruns
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Jared T Floyd
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Robert C Ponce
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - John A Garcia
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Alberto J Hernandez
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - T Mark Willmon
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Grace L Tolson
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
89
|
Mala W, Faksri K, Samerpitak K, Yordpratum U, Kaewkes W, Tattawasart U, Chomvarin C. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand. INFECTION GENETICS AND EVOLUTION 2017; 52:89-95. [PMID: 28412524 DOI: 10.1016/j.meegid.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022]
Abstract
Multidrug resistance in V. cholerae has been increasing around the world including northeastern Thailand. The aquatic environment is a reservoir of V. cholerae and might be an important source of resistant strains. The aims of this study were to investigate the phylogenetic relationships of intSXT gene sequences from 31 clinical and 14 environmental V. cholerae O1 and non-O1/non-O139 isolates and 11 sequences amplified directly from environmental water samples. We also amplified class 1 integrons, the SXT elements (targeting the intSXT gene) and antimicrobial resistance genes directly from water samples. Phylogenetic analysis displayed two major distinct clusters (clusters 1 and 2). Most V. cholerae O1 (19/20, 95%) and non-O1/non-O139 isolates (8/11, 72.7%) from clinical sources, and all sequences obtained directly from water samples, belonged to cluster 1. Cluster 2 mostly comprised environmental non-O1/non-O139 isolates (10/12, 83.3%). We successfully amplified the SXT elements directly from17.5% of water samples. Associated resistance genes were also amplified as follows: sul2 (41.3% of water samples), dfrA1 (60%), dfr18 (33.8%), strB (70%) and tetA (2.5%). Class 1 integrons were not found in water samples, indicating that the SXT element was the major contributor of multidrug resistance determinants in this region. The SXT element and antimicrobial resistance genes could be transferred from clinical V. cholerae O1 to environmental V. cholerae non-O1/non-O139 was demonstrated by conjugation experiment. These findings indicate that there may have been cross dissemination and horizontal gene transfer (HGT) of the SXT element harbored by V. cholerae O1 and non-O1/non-O139 strains isolated from clinical and environmental water sources. Environmental water might be an important source of antimicrobial resistance genes in V. cholerae in this region. Direct detection of antimicrobial resistance genes in water samples can be used for monitoring the spread of such genes in the ecosystem.
Collapse
Affiliation(s)
- Wanida Mala
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Kittipan Samerpitak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Umaporn Yordpratum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wanlop Kaewkes
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Unchalee Tattawasart
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Chariya Chomvarin
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
90
|
3-Amino 1,8-naphthalimide, a structural analog of the anti-cholera drug virstatin inhibits chemically-biased swimming and swarming motility in vibrios. Microbes Infect 2017; 19:370-375. [PMID: 28392408 DOI: 10.1016/j.micinf.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 11/23/2022]
Abstract
A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation.
Collapse
|
91
|
Rashed SM, Hasan NA, Alam M, Sadique A, Sultana M, Hoq MM, Sack RB, Colwell RR, Huq A. Vibrio cholerae O1 with Reduced Susceptibility to Ciprofloxacin and Azithromycin Isolated from a Rural Coastal Area of Bangladesh. Front Microbiol 2017; 8:252. [PMID: 28270803 PMCID: PMC5318396 DOI: 10.3389/fmicb.2017.00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Cholera outbreaks occur each year in the remote coastal areas of Bangladesh and epidemiological surveillance and routine monitoring of cholera in these areas is challenging. In this study, a total of 97 Vibrio cholerae O1 isolates from Mathbaria, Bangladesh, collected during 2010 and 2014 were analyzed for phenotypic and genotypic traits, including antimicrobial susceptibility. Of the 97 isolates, 95 possessed CTX-phage mediated genes, ctxA, ace, and zot, and two lacked the cholera toxin gene, ctxA. Also both CTX+ and CTX−V. cholerae O1 isolated in this study carried rtxC, tcpAET, and hlyA. The classical cholera toxin gene, ctxB1, was detected in 87 isolates, while eight had ctxB7. Of 95 CTX+V. cholerae O1, 90 contained rstRET and 5 had rstRCL. All isolates, except two, contained SXT related integrase intSXT. Resistance to penicillin, streptomycin, nalidixic acid, sulfamethoxazole-trimethoprim, erythromycin, and tetracycline varied between the years of study period. Most importantly, 93% of the V. cholerae O1 were multidrug resistant. Six different resistance profiles were observed, with resistance to streptomycin, nalidixic acid, tetracycline, and sulfamethoxazole-trimethoprim predominant every year. Ciprofloxacin and azithromycin MIC were 0.003–0.75 and 0.19–2.00 μg/ml, respectively, indicating reduced susceptibility to these antibiotics. Sixteen of the V. cholerae O1 isolates showed higher MIC for azithromycin (≥0.5 μg/ml) and were further examined for 10 macrolide resistance genes, erm(A), erm(B), erm(C), ere(A), ere(B), mph(A), mph(B), mph(D), mef(A), and msr(A) with none testing positive for the macrolide resistance genes.
Collapse
Affiliation(s)
- Shah M Rashed
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Nur A Hasan
- CosmosID, Inc.Rockville, MD, USA; Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of MarylandCollege Park, MD, USA
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Abdus Sadique
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Md Mozammel Hoq
- Department of Microbiology, University of Dhaka Dhaka, Bangladesh
| | - R Bradley Sack
- Johns Hopkins Bloomberg School of Public Health Baltimore, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of MarylandCollege Park, MD, USA; CosmosID, Inc.Rockville, MD, USA; Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of MarylandCollege Park, MD, USA; Johns Hopkins Bloomberg School of Public HealthBaltimore, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of MarylandCollege Park, MD, USA; Maryland Institute of Applied Environmental Health, University of MarylandCollege Park, MD, USA
| |
Collapse
|
92
|
Prajanban BO, Jangpromma N, Araki T, Klaynongsruang S. Antimicrobial effects of novel peptides cOT2 and sOT2 derived from Crocodylus siamensis and Pelodiscus sinensis ovotransferrins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:860-869. [PMID: 28159460 DOI: 10.1016/j.bbamem.2017.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/14/2017] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
Abstract
In light of the increasing threat of bacterial drug resistance to human health on a global scale, research and development of antimicrobial peptides as a novel class of potent antibiotics has gained considerable attention. The present study focuses on the structural evaluation and membrane interaction of two new cationic antimicrobial peptides, cOT2 and sOT2, derived from Siamese crocodile (Crocodylus siamensis) and Chinese softshell turtle (Pelodiscus sinensis) ovotransferrins. Here, cOT1 (+3) and sOT1 (+3) were derived from reptile ovotransferrins by chromatographic purification and characterized by mass spectrometry and N-terminal sequencing analysis. In order to increase the antimicrobial efficacy, two novel peptides, cOT2 (+6) and sOT2 (+5), were designed and synthesized as "naturally-engineered" by primary amino acid sequence extension of cOT1 and sOT1, respectively. These rational designs of modified peptides were assayed in term of antimicrobial activity. These peptides display strong antimicrobial activity against several bacterial strains, e.g. Vibrio cholerae, Bacillus megaterium, and Bacillus pumilus TISTR 905, with MICs of 7-16.1μM. In terms of structural conformation in mimic environments, CD spectroscopic analysis of the secondary peptides structure features revealed fairly the similarity on α-helical content with magainin II. Hence, the modes of actions have been speculated as toroidal and carpet model. Furthermore, the disruption of intact bacterial cells induced by cOT2 and sOT2 was investigated by SEM and AFM. The results provided evidence that cOT2 and sOT2 have the potential to cause different morphological changes of bacterial cells and that these effects can be enhanced by increasing the peptide concentration.
Collapse
Affiliation(s)
- Bung-On Prajanban
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Office of the Dean, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 869-140, Japan
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
93
|
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324. [PMID: 28103259 PMCID: PMC5245877 DOI: 10.1371/journal.pone.0169324] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Chonchanok Theethakaew
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Orasa Sutheinkul
- Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
94
|
Mégraud F, Musso D, Drancourt M, Lehours P. Curved and Spiral Bacilli. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
95
|
Oh YT, Kim HY, Kim EJ, Go J, Hwang W, Kim HR, Kim DW, Yoon SS. Selective and Efficient Elimination of Vibrio cholerae with a Chemical Modulator that Targets Glucose Metabolism. Front Cell Infect Microbiol 2016; 6:156. [PMID: 27900286 PMCID: PMC5111416 DOI: 10.3389/fcimb.2016.00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Vibrio cholerae, a Gram-negative bacterium, is the causative agent of pandemic cholera. Previous studies have shown that the survival of the seventh pandemic El Tor biotype V. cholerae strain N16961 requires production of acetoin in a glucose-rich environment. The production of acetoin, a neutral fermentation end-product, allows V. cholerae to metabolize glucose without a pH drop, which is mediated by the production of organic acid. This finding suggests that inhibition of acetoin fermentation can result in V. cholerae elimination by causing a pH imbalance under glucose-rich conditions. Here, we developed a simple high-throughput screening method and identified an inducer of medium acidification (iMAC). Of 8364 compounds screened, we identified one chemical, 5-(4-chloro-2-nitrobenzoyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, that successfully killed glucose-metabolizing N16961 by inducing acidic stress. When N16961 was grown with abundant glucose in the presence of iMAC, acetoin production was completely suppressed and concomitant accumulation of lactate and acetate was observed. Using a beta-galactosidase activity assay with a single-copy palsD::lacZ reporter fusion, we show that that iMAC likely inhibits acetoin production at the transcriptional level. Thin-layer chromatography revealed that iMAC causes a significantly reduced accumulation of intracellular (p)ppGpp, a bacterial stringent response alarmone known to positively regulate acetoin production. In vivo bacterial colonization and fluid accumulation were also markedly decreased after iMAC treatment. Finally, we demonstrate iMAC-induced bacterial killing for 22 different V. cholerae strains belonging to diverse serotypes. Together, our results suggest that iMAC, acting as a metabolic modulator, has strong potential as a novel antibacterial agent for treatment against cholera.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Microbiology and Immunology, Yonsei University College of Medicine Seoul, South Korea
| | - Hwa Young Kim
- Department of Microbiology and Immunology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University Ansan, South Korea
| | - Junhyeok Go
- Department of Microbiology and Immunology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea
| | - Wontae Hwang
- Department of Microbiology and Immunology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea
| | - Hyoung Rae Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology Daejeon, South Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang UniversityAnsan, South Korea; Institute of Pharmacological Research, Hanyang UniversityAnsan, South Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of MedicineSeoul, South Korea
| |
Collapse
|
96
|
Ceccarelli D, Alam M, Huq A, Colwell RR. Reduced Susceptibility to Extended-Spectrum β-Lactams in Vibrio cholerae Isolated in Bangladesh. Front Public Health 2016; 4:231. [PMID: 27803895 PMCID: PMC5067765 DOI: 10.3389/fpubh.2016.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/04/2016] [Indexed: 11/21/2022] Open
Abstract
β-lactams are antibiotic molecules able to inhibit cell wall biosynthesis. Among other mechanisms, resistance in Gram-negative bacteria is mostly associated with production of β-lactamase enzymes able to bind and hydrolyze the β-lactam ring. Extended-spectrum β-lactamases extend this ability also to third- and fourth-generation cephalosporins, as well as to carbapenems and monobactams. Vibrio cholerae is the causative agent of epidemic cholera and a public health burden for developing countries like Bangladesh. Although appropriate oral or intravenous rehydration is the therapy of choice for cholera, severe infections and V. cholerae-associated septicemia are treated with antimicrobial drugs, including doxycycline, erythromycin, azithromycin, ciprofloxacin, and/or third-generation cephalosporins. In the years after the introduction of antibiotics in clinical practice, V. cholerae developed resistance to commonly used drugs worldwide mostly through gene acquisition via horizontal gene transfer. Reduced susceptibility of V. cholerae to third-generation cephalosporins has been occasionally documented. However, carbapenemase-producing V. cholerae has been reported at higher rates than resistance to extended-spectrum β-lactams, mainly associated with blaNDM-1 emergence and successful plasmid dissemination. Recent findings suggest limited β-lactam resistance is present in V. cholerae O1 isolates collected during ecological and epidemiological surveillance in Bangladesh. However, a trend to intermediate-susceptibility insurgence was observed. Horizontal gene transfer of β-lactam resistance from enteric pathogens to environmental microorganisms should not be underrated, given the ability of V. cholerae to acquire new genetic information.
Collapse
Affiliation(s)
- Daniela Ceccarelli
- Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| | - Munirul Alam
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b) , Dhaka , Bangladesh
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; Maryland Institute for Applied Environmental Health, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; Maryland Institute for Applied Environmental Health, University of Maryland, College Park, MD, USA; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA; Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
97
|
Henriques I, Tacão M, Leite L, Fidalgo C, Araújo S, Oliveira C, Alves A. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes. MARINE POLLUTION BULLETIN 2016; 109:427-434. [PMID: 27210560 DOI: 10.1016/j.marpolbul.2016.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/05/2016] [Accepted: 05/14/2016] [Indexed: 06/05/2023]
Abstract
The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.
Collapse
Affiliation(s)
- Isabel Henriques
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal.
| | - Marta Tacão
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal
| | - Laura Leite
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal
| | - Cátia Fidalgo
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal
| | - Susana Araújo
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal
| | - Cláudia Oliveira
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal
| | - Artur Alves
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
98
|
Bolger G, Roy S, Zapol'skii VA, Kaufmann DE, Schnürch M, Mihovilovic MD, Nandy RK, Tegge W. Targeting aphA : a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae. J Med Microbiol 2016; 65:678-687. [DOI: 10.1099/jmm.0.000276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Galina Bolger
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sambit Roy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Viktor A. Zapol'skii
- Institute of Organic Chemistry, Technical University of Clausthal, Clausthal-Zellerfeld, Germany
| | - Dieter E. Kaufmann
- Institute of Organic Chemistry, Technical University of Clausthal, Clausthal-Zellerfeld, Germany
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Ranjan K. Nandy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
99
|
Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study. Antimicrob Resist Infect Control 2016; 5:23. [PMID: 27274815 PMCID: PMC4893239 DOI: 10.1186/s13756-016-0122-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholera is a major cause of mortality and morbidity in underdeveloped countries including Nepal. Recently drug resistance in Vibrio cholerae has become a serious problem mainly in developing countries. The main objectives of our study were to investigate the occurrence of Vibrio cholerae in stool samples from patients with watery diarrhea and to determine the antimicrobial susceptibility patterns of V. cholerae isolates. METHODS A total of 116 stool samples from patients suffering from watery diarrhea during July to December 2012 were obtained from outbreak areas from all over Nepal. Alkaline peptone water and thiosulphate citrate bile salt sucrose agar (TCBS) were used to isolate the Vibrio cholerae. The isolates were identified with the help of colony morphology, Gram's staining, conventional biochemical testing, serotyping and biotyping. Antimicrobial susceptibility testing was performed by determining the minimum inhibitory concentration (MIC) by agar dilution method. RESULTS Vibrio cholerae was isolated from 26.72 % of total samples. All isolated Vibrio cholerae were confirmed to be Vibrio cholerae serogoup O1 biotype El Tor and serotype Ogawa. All isolates were resistant to ampicillin and cotrimoxazole. Twenty nine isolates were resistant toward two different classes of antibiotics, one strain was resistant to three different classes of antibiotics and one strain was resistant to four different classes of antibiotics. According to the definition of the multidrug resistant bacteria; 6.45 % of the strains of Vibrio cholerae were found to be multidrug resistant. CONCLUSIONS Cholera due to multidrug resistant Vibrio cholerae is also possible in Nepal. According to the antimicrobial susceptibility pattern of Vibrio cholerae in our study we recommend to use any antibiotics among tetracycline, doxycycline, levofloxacin, azithromycin, chloramphenicol and ciprofloxacin for preliminary treatment of cholera in Nepal.
Collapse
Affiliation(s)
- Pappu Kumar Gupta
- Department of microbiology, Kathmandu college of science and technology, Kathmandu, Nepal
| | - Narayan Dutt Pant
- Department of microbiology, Grande international hospital, Dhapasi Kathmandu, Nepal
| | | | - Padma Shrestha
- Department of microbiology, Kathmandu college of science and technology, Kathmandu, Nepal
| |
Collapse
|
100
|
Ranjbar R, Sadeghy J, Shokri Moghadam M, Bakhshi B. Multi-locus variable number tandem repeat analysis of Vibrio cholerae isolates from 2012 to 2013 cholera outbreaks in Iran. Microb Pathog 2016; 97:84-8. [PMID: 27247094 DOI: 10.1016/j.micpath.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 11/18/2022]
Abstract
Cholera remains to be an international threat, with high rates of illness and death. In 2012 and 2013, two cholera outbreak happened in Iran, affecting lots of people. Vibrio cholerae O1 was confirmed as the etiological agent. Source identification and controlling the spread of the cholera disease are two critical approaches in cholera outbreaks. In this study, thirty V. cholerae O1 isolates were selected and has been evaluated for antimicrobial resistant as well as molecular typing by multilocus variable-number tandem-repeat analysis (MLVA) method. Twenty-nine (97%) isolates were sero-grouped as El Tor (one isolate was classical) and 100% were related to Inaba serotype. All of the isolates were susceptible to ciprofloxacin, chloramphenicol, ampicillin and gentamicin. On the other hand, 60% of the isolates were MDR (resistant to 3 or more classes). There were three resistance patterns. The most prevalent pattern was resistance to streptomycin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline (ST-SXT-E-T) which was seen in 50% of isolates. Using MLVA method 14 MLVA types were identified. MLVA type 2 (5-7-7-16-15) accounted for 43% of isolates. Isolates with the same genotype often did not have the same antibiogram. Overall, the data indicate that the Iranian V. cholerae were MDR and clonaly related. Furthermore, the results of this study shows that MLVA can be used as useful method for V. cholerae genotyping in epidemiological investigations.
Collapse
Affiliation(s)
- R Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - J Sadeghy
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Iran
| | - M Shokri Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Iran
| | - B Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Iran.
| |
Collapse
|