51
|
Bioreductive Dissolution as a Pretreatment for Recalcitrant Rare-Earth Phosphate Minerals Associated with Lateritic Ores. MINERALS 2019. [DOI: 10.3390/min9030136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research has demonstrated the applicability of a biotechnological approach for extracting base metals using acidophilic bacteria that catalyze the reductive dissolution of ferric iron oxides from oxidized ores, using elemental sulfur as an electron donor. In Brazil, lateritic deposits are frequently associated with phosphate minerals such as monazite, which is one of the most abundant rare-earth phosphate minerals. Given the fact that monazite is highly refractory, rare earth elements (REE) extraction is very difficult to achieve and conventionally involves digesting with concentrated sodium hydroxide and/or sulfuric acid at high temperatures; therefore, it has not been considered as a potential resource. This study aimed to determine the effect of the bioreductive dissolution of ferric iron minerals associated with monazite using Acidithiobacillus (A.) species in pH- and temperature-controlled stirred reactors. Under aerobic conditions, using A. thiooxidans at extremely low pH greatly enhanced the solubilization of iron from ferric iron minerals, as well that of phosphate (about 35%), which can be used as an indicator of the dissolution of monazite. The results from this study have demonstrated the potential of using bioreductive mineral dissolution, which can be applied as pretreatment to remove coverings of ferric iron minerals in a process analogous to the bio-oxidation of refractory golds and expand the range of minerals that could be processed using this approach.
Collapse
|
52
|
Wang M, Li S, Chen S, Meng N, Li X, Zheng H, Zhao C, Wang D. Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:413-421. [PMID: 30176454 DOI: 10.1016/j.scitotenv.2018.08.174] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 05/13/2023]
Abstract
The objective of this study was to understand the effect of biofertilizers on cadmium (Cd)-induced phytotoxicity and the rhizosphere bacterial community. The crop specie rice (Oryza sativa L.) was planted in Cd-contaminated soils, and Illumina high-throughput sequencing was performed to investigate how the composition of the rhizosphere bacterial community responded to the addition of biofertilizers. Biofertilizers were effective in alleviating Cd phytotoxicity as indicated by the significant increase in plant biomass (up to 85.2% and 48.4% for roots and shoots, respectively) and decrease in tissue Cd concentration (up to 72.2% in roots) of rice receiving fertilizer treatments compared with the CK (no treatment). These positive effects were likely due to the increase in soil pH, which can be attributed primarily to Cd immobilization, and the promotion of beneficial taxa such as Proteobacteria, Bacteroidetes, Gemmatimonadetes, and Firmicutes. In addition, autoclaved biofertilizers tended to have similar beneficial effects and similar bacterial community alpha diversities as the original biofertilizer treatments. This suggests that the change in soil physicochemical properties by biofertilizer addition might drive the structure of rhizosphere bacterial community, and not the biofertilizer microbes themselves. In both the original and sterilized biofertilizer treatments, the effectiveness in mitigating of Cd phytotoxicity was found to be dependent on the type of biofertilizer applied. Comparatively, the biofertilizer denoted as DY was more effective in mitigating Cd phytotoxicity than others. These results demonstrate that biofertilizer addition could be a promising approach to immobilize soil Cd by manipulating the rhizosphere bacterial community, thus to facilitate plant growth.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shanshan Li
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Nan Meng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoyue Li
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, PR China
| | - Han Zheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chunmei Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, PR China
| |
Collapse
|
53
|
Ulloa R, Moya-Beltrán A, Rojas-Villalobos C, Nuñez H, Chiacchiarini P, Donati E, Giaveno A, Quatrini R. Domestication of Local Microbial Consortia for Efficient Recovery of Gold Through Top-Down Selection in Airlift Bioreactors. Front Microbiol 2019; 10:60. [PMID: 30761108 PMCID: PMC6363673 DOI: 10.3389/fmicb.2019.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
Extreme acidophiles play central roles in the geochemical cycling of diverse elements in low pH environments. This has been harnessed in biotechnologies such as biomining, where microorganisms facilitate the recovery of economically important metals such as gold. By generating both extreme acidity and a chemical oxidant (ferric iron) many species of prokaryotes that thrive in low pH environments not only catalyze mineral dissolution but also trigger both community and individual level adaptive changes. These changes vary in extent and direction depending on the ore mineralogy, water availability and local climate. The use of indigenous versus introduced microbial consortia in biomining practices is still a matter of debate. Yet, indigenous microbial consortia colonizing sulfidic ores that have been domesticated, i.e., selected for their ability to survive under specific polyextreme conditions, are claimed to outperform un-adapted foreign consortia. Despite this, little is known on the domestication of acidic microbial communities and the changes elicited in their members. In this study, high resolution targeted metagenomic techniques were used to analyze the changes occurring in the community structure of local microbial consortia acclimated to growing under extreme acidic conditions and adapted to endure the conditions imposed by the target mineral during biooxidation of a gold concentrate in an airlift reactor over a period of 2 years. The results indicated that operative conditions evolving through biooxidation of the mineral concentrate exerted strong selective pressures that, early on, purge biodiversity in favor of a few Acidithiobacillus spp. over other iron oxidizing acidophiles. Metagenomic analysis of the domesticated consortium present at the end of the adaptation experiment enabled reconstruction of the RVS1-MAG, a novel representative of Acidithiobacillus ferrooxidans from the Andacollo gold mineral district. Comparative genomic analysis performed with this genome draft revealed a net enrichment of gene functions related to heavy metal transport and stress management that are likely to play a significant role in adaptation and survival to adverse conditions experienced by these acidophiles during growth in presence of gold concentrates.
Collapse
Affiliation(s)
- Ricardo Ulloa
- PROBIEN (CCT Comahue-CONICET, UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | - Harold Nuñez
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Patricia Chiacchiarini
- PROBIEN (CCT Comahue-CONICET, UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Edgardo Donati
- CINDEFI-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandra Giaveno
- PROBIEN (CCT Comahue-CONICET, UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
54
|
Işıldar A, van Hullebusch ED, Lenz M, Du Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker MA, Kuchta K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) - A review. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:467-481. [PMID: 30268020 DOI: 10.1016/j.jhazmat.2018.08.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/05/2023]
Abstract
Critical raw materials (CRMs) are essential in the development of novel high-tech applications. They are essential in sustainable materials and green technologies, including renewable energy, emissionfree electric vehicles and energy-efficient lighting. However, the sustainable supply of CRMs is a major concern. Recycling end-of-life devices is an integral element of the CRMs supply policy of many countries. Waste electrical and electronic equipment (WEEE) is an important secondary source of CRMs. Currently, pyrometallurgical processes are used to recycle metals from WEEE. These processes are deemed imperfect, energy-intensive and non-selective towards CRMs. Biotechnologies are a promising alternative to the current industrial best available technologies (BAT). In this review, we present the current frontiers in CRMs recovery from WEEE using biotechnology, the biochemical fundamentals of these bio-based technologies and discuss recent research and development (R&D) activities. These technologies encompass biologically induced leaching (bioleaching) from various matrices,biomass-induced sorption (biosorption), and bioelectrochemical systems (BES).
Collapse
Affiliation(s)
- Arda Işıldar
- IHE Delft Institute for Water Education, Delft, The Netherlands; Université Paris-Est, Laboratoire Geomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France.
| | - Eric D van Hullebusch
- IHE Delft Institute for Water Education, Delft, The Netherlands; Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Universitè Paris Diderot, UMR 7154, CNRS, F-75005 Paris, France
| | - Markus Lenz
- Fachhochschule Nordwestschweiz, University of Applied Sciences and Arts Northwestern Switzerland, Brugg, Switzerland; Sub-Department of Environmental Technology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Gijs Du Laing
- Department of Applied Analytical and Physical Chemistry, Ghent University, Belgium
| | - Alessandra Marra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Italy
| | - Alessandra Cesaro
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Italy
| | - Sandeep Panda
- Mineral-Metal Recovery and Recycling Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| | - Mehmet Ali Kucuker
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics, Waste Resources Management, Harburger Schloßstr. 36, 21079 Hamburg, Germany
| | - Kerstin Kuchta
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics, Waste Resources Management, Harburger Schloßstr. 36, 21079 Hamburg, Germany
| |
Collapse
|
55
|
Ma L, Wu J, Liu X, Tan L, Wang X. The detoxification potential of ferric ions for bioleaching of the chalcopyrite associated with fluoride-bearing gangue mineral. Appl Microbiol Biotechnol 2019; 103:2403-2412. [PMID: 30617533 DOI: 10.1007/s00253-018-09599-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022]
Abstract
Fluoride toxicity to microorganisms was a predominant factor contributing to the failure of a commercial scale bioleach heap. An integrated control strategy for fluoride complexation without jarosite generation by stepwise adding ferric ions was first proposed to enable the bioleaching of the chalcopyrite associated with fluoride-bearing gangue mineral by Acidithiobacillus ferrooxidans. Chemical speciation calculation revealed that with the presence of Fe3+, the concentration of the main lethal fluoride to microorganism, HF, decreased dramatically. The pure culture study showed that the detrimental effect of fluoride on microorganism was eliminated by increasing the molar ratio of Fe3+/F- to 3:1. Furthermore, chalcopyrite bioleaching experiment revealed the minimum Fe3+/F- molar ratio that enabled the bioleaching was 6:1. Stepwise addition was an effective way to promote a balanced system and avoid the formation of jarosite caused by the excessive Fe3+. Above all, the introduction of Fe3+ is a feasible method for reducing the fluoride toxicity during the bioleaching of chalcopyrite, shedding light on the industrial applications.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Jiangjun Wu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, 410083, China
| | - Ling Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xingjie Wang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
56
|
Monachon M, Albelda-Berenguer M, Joseph E. Biological oxidation of iron sulfides. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:1-27. [PMID: 31128745 DOI: 10.1016/bs.aambs.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biological oxidation of minerals and ores, called bioleaching, has been studied for the last decades to solubilize metals and recover them. In particular, iron sulfides are the most studied ores for an optimum extraction of different metals, such as copper or zinc. The use of chemolithotrophic bacteria, as Acidothiobacillus ferrooxidans, to oxidize both iron and sulfur species in aerobic conditions and at acidic pH shows promising results. In the field of heritage preservation, the development of "green" treatments is more and more studied. Waterlogged archeological wood presents an accumulation of iron sulfides within its structure, which, after exposition to oxygen, lead to salt precipitation and acidification and so to the degradation of the wooden artifact. A new extraction method, based on the dissolution of iron sulfides by the use of bacteria could be an alternative to the current chemical extraction methods, as being more respectful and ecological. While A. ferrooxidans is very effective in mines and groundwater, in the field of conservation-restoration of wood, Thiobacillus denitrificans is a better candidate as it grows at neutral pH, which is less aggressive for organic substrates (wood here). Preliminary studies show the efficiency of T. denitrificans for the dissolution of iron sulfides, as the concentration of nitrates used as electron donors decreases while the concentration of sulfates produced increases without degrading the wooden matrix. Long-term behavior should be studied to assess the stability of the artifacts after treatment.
Collapse
|
57
|
Assessment of Bioleaching Microbial Community Structure and Function Based on Next-Generation Sequencing Technologies. MINERALS 2018. [DOI: 10.3390/min8120596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is widely known that bioleaching microorganisms have to cope with the complex extreme environment in which microbial ecology relating to community structure and function varies across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still a challenge. To address this challenge, numerous technologies have been developed. In recent years, high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial ecology. The next-generation sequencing technology allowing processing DNA sequences can produce available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high efficiency in quantifying the changing expression level of each transcript under different conditions. It has been demonstrated as a powerful tool for dissecting the relationship between genotype and phenotype, leading to interpreting functional elements of the genome and revealing molecular mechanisms of adaption. This review aims to describe the high-throughput sequencing approach for bioleaching environmental microorganisms, particularly focusing on its application associated with challenges.
Collapse
|
58
|
Christel S, Herold M, Bellenberg S, Buetti-Dinh A, El Hajjami M, Pivkin IV, Sand W, Wilmes P, Poetsch A, Vera M, Dopson M. Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching. Front Microbiol 2018; 9:3059. [PMID: 30631311 PMCID: PMC6315122 DOI: 10.3389/fmicb.2018.03059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial interest is steadily increasing and today, circa 15-20% of the world's copper production can be traced back to this method. However, bioleaching of the world's most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans' weaker iron oxidation to be studied in the future, as well as underlined the need for new mechanisms to control the microbial population in bioleaching heaps.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.,Aquatic Biotechnology, Universität Duisburg-Essen, Essen, Germany
| | - Antoine Buetti-Dinh
- Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Igor V Pivkin
- Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Wolfgang Sand
- Aquatic Biotechnology, Universität Duisburg-Essen, Essen, Germany.,College of Environmental Science and Engineering, Donghua University, Shanghai, China.,Mining Academy and Technical University Freiberg, Freiberg, Germany
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | - Mario Vera
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
59
|
Blackmore S, Vriens B, Sorensen M, Power IM, Smith L, Hallam SJ, Mayer KU, Beckie RD. Microbial and geochemical controls on waste rock weathering and drainage quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1004-1014. [PMID: 30021267 DOI: 10.1016/j.scitotenv.2018.05.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Bacteria can adversely affect the quality of drainage released from mine waste by catalyzing the oxidation of sulfide minerals and thereby accelerating the release of acidity and metals. However, the microbiological and geochemical controls on drainage quality from unsaturated and geochemically heterogeneous waste rock remain poorly understood. Here, we identified coexisting neutrophilic and acidophilic bacteria in different types of waste rock, indicating that robust endemic consortia are sustained within pore-scale microenvironments. Subsequently, natural weathering was simulated in laboratory column experiments with waste rock that contained either in-situ microbial consortia or suppressed populations with up to 1000 times smaller abundance and reduced phenotypic diversity after heating and drying. Drainage from waste rock with in-situ populations was up to two pH units lower and contained up to 16 times more sulfate and heavy metals compared to drainage from waste rock bearing treated populations, indicating significantly higher sulfide-oxidation rates. The drainage chemistry was further affected by sorption and formation of secondary-mineral phases (e.g., gypsum and hydroxy-carbonates). This study provides direct evidence for the existence of diverse microbial communities in waste rock and their important catalytic role on weathering rates, and illustrates the mutual controls of microbiology and geochemistry on waste-rock drainage quality.
Collapse
Affiliation(s)
- Sharon Blackmore
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada; BGC Engineering Inc., 1718 Argyle Street, Suite 630, Halifax B3J 3N6, Canada
| | - Bas Vriens
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada.
| | - Melanie Sorensen
- Department of Microbiology and Immunology, The University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada; Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle 98195-5065, United States
| | - Ian M Power
- School of the Environment, Trent University, 1600 West Bank Drive, Peterborough K9L 0G2, Canada
| | - Leslie Smith
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, The University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada
| | - K Ulrich Mayer
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada
| | - Roger D Beckie
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4, Canada
| |
Collapse
|
60
|
Wang Y, Chen X, Zhou H. Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide. BIORESOURCE TECHNOLOGY 2018; 268:480-487. [PMID: 30114667 DOI: 10.1016/j.biortech.2018.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
The lack of knowledge about responses of microbial community to temperature in copper sulfide bioleaching, and subsequent effects on copper extraction hampered understanding of how to improve bioleaching efficiency. This study presents first detailed quantitative data on microbial diversity and dynamics during bioleaching of low grade copper sulfide at different temperatures. The results demonstrate that temperature had significant effects on microbial community and copper extraction. The microbial structures on the ore surfaces were independent of communities in the leachates. Different species dominated the communities at different temperatures and portions of laboratory scale heap column. Moderate thermophiles rather than extreme thermophiles dominated the communities at 65 °C. The height of ore bed was sufficient to affect microbial communities at 30 °C and 65 °C. Sulfur-oxidizers were very important to improve copper extraction. High microbial diversity also were beneficial to enhance copper extraction within a certain temperature range in the final stage.
Collapse
Affiliation(s)
- Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China.
| |
Collapse
|
61
|
A Geometallurgical Approach to Tailings Management: An Example from the Savage River Fe-Ore Mine, Western Tasmania. MINERALS 2018. [DOI: 10.3390/min8100454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At the Old Tailings Dam (OTD), Savage River, Western Tasmania, 38 Mt of pyritic tailings were deposited (1967 to 1982) and have since been generating acid and metalliferous drainage (AMD). Mineral chemistry analysis confirmed high concentrations of refractory cobalt in pyrite (up to 3 wt %). This study sought to determine, through a series of bench scale tests, if Co could be liberated using biohydrometallurgical techniques. Four bulk tailings samples were collected across the OTD, from up to 1.5 m depth, targeting three sulphide-bearing facies. The study was conducted in four stages: (1) bacterial adaption using BIOX® bacteria; (2) biooxidation optimization with pH, temperature and Fe medium parameters tested; (3) flotation test work to produce a sulphide concentrate followed by biooxidation; and (4) Fe and Co precipitation tests. The BIOX® culture adapted to the bulk composite (containing 7 wt % pyrite) in ~10 days, with biooxidation occurring most efficiently at pH 1.5–1.6 and 40 °C whilst the Fe medium concentration was identified as a less-controlling parameter. Flotation produced a 71% pyrite concentrate with total oxidation occurring after 14 days of biooxidation with 99% of Co leached. At pH 3, Co was effectively separated from Fe, however Ni and Cu were also present in the pregnant liquor solution and therefore required refining before production of cobalt hydroxide, the intermediate saleable product. This study shows that adopting a geometallurgical approach to tailings characterisation can identify if mine waste has commodity potential and how best to extract it therefore unlocking the potential for unconventional rehabilitation of AMD affected sites.
Collapse
|
62
|
Identification of trehalose as a compatible solute in different species of acidophilic bacteria. J Microbiol 2018; 56:727-733. [PMID: 30267316 DOI: 10.1007/s12275-018-8176-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
The major industrial heap bioleaching processes are located in desert regions (mainly Chile and Australia) where fresh water is scarce and the use of resources with low water activity becomes an attractive alternative. However, in spite of the importance of the microbial populations involved in these processes, little is known about their response or adaptation to osmotic stress. In order to investigate the response to osmotic stress in these microorganisms, six species of acidophilic bacteria were grown at elevated osmotic strength in liquid media, and the compatible solutes synthesised were identified using ion chromatography and MALDI-TOF mass spectrometry. Trehalose was identified as one of, or the sole, compatible solute in all species and strains, apart from Acidithiobacillus thiooxidans where glucose and proline levels increased at elevated osmotic potentials. Several other potential compatible solutes were tentatively identified by MALDITOF analysis. The same compatible solutes were produced by these bacteria regardless of the salt used to produce the osmotic stress. The results correlate with data from sequenced genomes which confirm that many chemolithotrophic and heterotrophic acidophiles possess genes for trehalose synthesis. This is the first report to identify and quantify compatible solutes in acidophilic bacteria that have important roles in biomining technologies.
Collapse
|
63
|
Santos AL, Johnson DB. Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine. Front Microbiol 2018; 9:2051. [PMID: 30214439 PMCID: PMC6125330 DOI: 10.3389/fmicb.2018.02051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
A sulfidogenic bioreactor, operated at low pH (4–5), was set up and used to remove transition metals (copper, nickel, cobalt, and zinc) from a synthetic mine water, based on the chemistry of a moderately acidic (pH 5) drainage stream at an operating copper mine in Brazil. The module was constructed as an upflow biofilm reactor, with microorganisms immobilized on porous glass beads, and was operated continuously for 462 days, during which time the 2 L bioreactor processed >2,000 L of synthetic mine water. The initial treatment involved removing copper (the most abundant metal present) off-line in a stream of H2S-containing gas generated by the bioreactor, which caused the synthetic mine water pH to fall to 2.1. The copper-free water was then amended with glycerol (the principal electron donor), yeast extract and basal salts, and pumped directly into the bioreactor where the other three transition metals were precipitated (also as sulfides), concurrent with increased solution pH. Although some acetate was generated, most of the glycerol fed to the bioreactor was oxidized to carbon dioxide, and was coupled to the reduction of sulfate to hydrogen sulfide. No archaea or eukaryotes were detected in the bioreactor microbial community, which was dominated by acidophilic sulfate-reducing Firmicutes (Peptococcaceae strain CEB3 and Desulfosporosinus acididurans); facultatively anaerobic non-sulfidogens (Acidithiobacillus ferrooxidans and Actinobacterium strain AR3) were also found in small relative abundance. This work demonstrated how a single low pH sulfidogenic bioreactor can be used to remediate a metal-rich mine water, and to facilitate the recovery (and therefore recycling) of target metals. The system was robust, and was operated empirically by means of pH control. Comparison of costs of the main consumables (glycerol and yeast extract) and the values of the metals recovered showed a major excess of the latter, supporting the view that sulfidogenic biotechnology can have significant economic as well as environmental advantages over current approaches used to remediate mine waters which produce secondary toxic wastes and fail to recover valuable metals.
Collapse
Affiliation(s)
- Ana L Santos
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - D Barrie Johnson
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
64
|
Reflecting on Gold Geomicrobiology Research: Thoughts and Considerations for Future Endeavors. MINERALS 2018. [DOI: 10.3390/min8090401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Research in gold (Au) geomicrobiology has developed extensively over the last ten years, as more Au-bearing materials from around the world point towards a consistent story: That microbes interact with Au. In weathering environments, Au is mobile, taking the form of oxidized, soluble complexes or reduced, elemental Au nanoparticles. The transition of Au between aqueous and solid states is attributed to varying geochemical conditions, catalyzed in part by the biosphere. Hence, a global Au-biogeochemical-cycle was proposed. The primary focus of this mini-review is to reflect upon the biogeochemical processes that contribute to what we currently know about Au cycling. In general, the global Au-biogeochemical-cycle begins with the liberation of gold-silver particles from a primary host rock, by physical weathering. Through oxidative-complexation, inorganic and organic soluble-Au complexes are produced. However, in the presence of microbes or other reductants—e.g., clays and Fe-oxides—these Au complexes can be destabilized. The reduction of soluble Au ultimately leads to the bioprecipitation and biomineralization of Au, the product of which can aggregate into larger structures, thereby completing the Au cycle. Evidence of these processes have been “recorded” in the preservation of secondary Au structures that have been observed on Au particles from around the world. These structures—i.e., nanometer-size to micrometer-size Au dissolution and reprecipitation features—are “snap shots” of biogeochemical influences on Au, during its journey in Earth-surface environments. Therefore, microbes can have a profound effect on the occurrence of Au in natural environments, given the nutrients necessary for microbial metabolism are sustained and Au is in the system.
Collapse
|
65
|
Singh VK, Singh AL, Singh R, Kumar A. Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0024-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
66
|
The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors. MINERALS 2018. [DOI: 10.3390/min8080343] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current global demand in terms of both the amounts and range of metals for industrial and domestic use greatly exceeds that at any previous time in human history. Recycling is inadequate to meet these needs and therefore mining primary metal ores will continue to be a major industry in the foreseeable future. The question of how metal mining can develop in a manner which is less demanding of energy and less damaging of the environment in a world whose population is increasingly aware of, and concerned about, the environment, requires urgent redress. Increased application of biotechnologies in the mining sector could go some way in solving this conundrum, yet, biomining (harnessing microorganisms to enhance the recovery of base and precious metals) has remained a niche application since it was first knowingly used in the 1960s. This manuscript reviews the development and current status of biomining applications and highlights their limitations as well as their strengths. New areas of biotechnology that could be applied in the mining sector, and their potential impact in terms of both their potential environmental and economic benefits, are also discussed.
Collapse
|
67
|
Iron-oxidizing bacteria in marine environments: recent progresses and future directions. World J Microbiol Biotechnol 2018; 34:110. [PMID: 29974320 DOI: 10.1007/s11274-018-2491-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Iron-oxidizing bacteria (FeOB) refers to a group of bacteria with the ability to exchange and accumulate divalent iron dissolved in water as trivalent iron inside and outside the bacterial cell. Most FeOB belong the largest bacterial phylum, Proteobacteria. Within this phylum, FeOB with varying physiology with regards to their response to oxygen (obligate aerobes, facultative and obligate anaerobes) and pH optimum for proliferation (neutrophiles, moderate and extreme acidophiles) can be found. Although FeOB have been reported from a wide variety of environments, most of them have not been isolated and their biochemical characteristics remain largely unknown. This is especially true for those living in the marine realm, where the properties of FeOB was not known until the isolation of the Zetaproteobacteria Mariprofundus ferrooxydans, first reported in 2007. Since the proposal of Zetaproteobacteria by Emerson et al., the detection and isolation of those microorganisms from the marine environment has greatly escalated. Furthermore, FeOB have also recently been reported from works on ocean drilling and metal corrosion. This review aims to summarize the current state of phylogenetic and physiological diversity in marine FeOB, the significance of their roles in their environments (on both global and local scales), as well as their growing importance and applications in the industry.
Collapse
|
68
|
Acid Rock Drainage or Not—Oxidative vs. Reductive Biofilms—A Microbial Question. MINERALS 2018. [DOI: 10.3390/min8050199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (Basel) 2018; 9:E116. [PMID: 29466321 PMCID: PMC5852612 DOI: 10.3390/genes9020116] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms.
Collapse
Affiliation(s)
- Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Naomi J Boxall
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Himel N Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology (TUT), Tampere, 33101, Finland.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University (MSU), Bozeman, MT 59717, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
70
|
Cetinel S, Shen WZ, Aminpour M, Bhomkar P, Wang F, Borujeny ER, Sharma K, Nayebi N, Montemagno C. Biomining of MoS 2 with Peptide-based Smart Biomaterials. Sci Rep 2018; 8:3374. [PMID: 29463859 PMCID: PMC5820330 DOI: 10.1038/s41598-018-21692-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS2) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS2, clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS2-binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS2 from tailing ponds and downstream mining processes.
Collapse
Affiliation(s)
- Sibel Cetinel
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Wei-Zheng Shen
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Maral Aminpour
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Prasanna Bhomkar
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,National Institute of Nanotechnology (NINT), University of Alberta, T6G 2M9, Edmonton, AB, Canada
| | - Feng Wang
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,National Institute of Nanotechnology (NINT), University of Alberta, T6G 2M9, Edmonton, AB, Canada
| | - Elham Rafie Borujeny
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Kumakshi Sharma
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Niloofar Nayebi
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Carlo Montemagno
- Ingenuity Lab, 11421 Saskatchewan Drive, T6G 2M9, Edmonton, AB, Canada. .,Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada. .,Southern Illinois University, 62901, Carbondale, IL, USA.
| |
Collapse
|
71
|
Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 2018; 43:139-147. [PMID: 29414445 DOI: 10.1016/j.mib.2018.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/23/2022]
Abstract
Extremely acidic environments have global distribution and can have natural or, increasingly, anthropogenic origins. Extreme acidophiles grow optimally at pH 3 or less, have multiple strategies for tolerating stresses that accompany high levels of acidity and are scattered in all three domains of the tree of life. Metagenomic studies have expanded knowledge of the diversity of extreme acidophile communities, their ecological networks and their metabolic potentials, both confirmed and inferred. High resolution compositional and functional profiling of these microbiomes have begun to reveal spatial diversity patterns at global, regional, local, zonal and micro-scales. Future integration of genomic and other meta-omic data will offer new opportunities to utilize acidic microbiomes and to engineer beneficial interactions within them in biotechnologies.
Collapse
|
72
|
Razmilic V, Castro JF, Marchant F, Asenjo JA, Andrews B. Metabolic modelling and flux analysis of microorganisms from the Atacama Desert used in biotechnological processes. Antonie van Leeuwenhoek 2018; 111:1479-1491. [DOI: 10.1007/s10482-018-1031-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 01/16/2023]
|
73
|
Wang Y, Li K, Chen X, Zhou H. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide. BIORESOURCE TECHNOLOGY 2018; 249:146-153. [PMID: 29040848 DOI: 10.1016/j.biortech.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
The microbial diversity and dynamics in the leachates and on the ore surfaces of different depth of the column were analyzed during bioleaching of low grade copper sulfide at different pH, after inoculation with the same inoculum containing mesophiles and moderate thermophiles. The results indicate that low pH was beneficial to enhance copper extraction. The highest copper extraction (86%) was obtained when pH was controlled at 1.0-1.5. The microbial structures on the ore surfaces were independent of community structures in the leachate, even at the top portion of column. Microbial richness and evenness increased with decreasing pH during bioleaching. pH had significant effects on microbial community structure in the leachate and on the mineral surface of different depth of the column. Leptospirillum ferriphilum accounted for the highest proportions of the community at most times when pH was operated during bioleaching, especially at the end of run.
Collapse
Affiliation(s)
- Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Kai Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| |
Collapse
|
74
|
|
75
|
Smith SL, Johnson DB. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus. Extremophiles 2018; 22:327-333. [PMID: 29330649 PMCID: PMC5847181 DOI: 10.1007/s00792-018-1001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.
Collapse
Affiliation(s)
- Sarah L Smith
- College of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK.
| | - D Barrie Johnson
- College of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| |
Collapse
|
76
|
Kanao T, Onishi M, Kajitani Y, Hashimoto Y, Toge T, Kikukawa H, Kamimura K. Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Biosci Biotechnol Biochem 2018; 82:152-160. [PMID: 29303046 DOI: 10.1080/09168451.2017.1415128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetrathionate hydrolase (4THase), a key enzyme of the S4-intermediate (S4I) pathway, was partially purified from marine acidophilic bacterium, Acidithiobacillus thiooxidans strain SH, and the gene encoding this enzyme (SH-tth) was identified. SH-Tth is a homodimer with a molecular mass of 97 ± 3 kDa, and contains a subunit 52 kDa in size. Enzyme activity was stimulated in the presence of 1 M NaCl, and showed the maximum at pH 3.0. Although 4THases from A. thiooxidans and the closely related Acidithiobacillus caldus strain have been reported to be periplasmic enzymes, SH-Tth seems to be localized on the outer membrane of the cell, and acts as a peripheral protein. Furthermore, both 4THase activity and SH-Tth proteins were detected in sulfur-grown cells of strain SH. These results suggested that SH-Tth is involved in elemental sulfur-oxidation, which is distinct from sulfur-oxidation in other sulfur-oxidizing strains such as A. thiooxidans and A. caldus.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Moe Onishi
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Yuki Hashimoto
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | - Tatsuya Toge
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Kazuo Kamimura
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| |
Collapse
|
77
|
Huang C, Qin C, Feng X, Liu X, Yin H, Jiang L, Liang Y, Liu H, Tao J. Chalcopyrite bioleaching of an in situ leaching system by introducing different functional oxidizers. RSC Adv 2018; 8:37040-37049. [PMID: 35557786 PMCID: PMC9088944 DOI: 10.1039/c8ra07085g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Introducing exogenous species to an indigenous microbial community is an effective way to reveal the connections between metabolic processes, ecological function and microbial community structure. Herein, three different functional consortia (ferrous oxidizers, sulfur oxidizers and ferrous/sulfur oxidizers) were added to a natural leaching solution system derived from Zijin copper mine, China. The leaching experiment showed that the copper extraction rate of the community invaded by a sulfur-oxidizing consortium was 50.40% higher than that of the indigenous leachate at the endpoint of bioleaching. The variations of ferrous content, total iron, pH and redox potential in leachates also provided evidence that the community with exogenous sulfur oxidizers was more efficient. XRD analysis demonstrated that a proper addition of the sulfur-oxidizing consortium could eliminate sulfur passivation, promote production of chalcocite and enhance leaching. Furthermore, an exogenous ferrous-oxidizing consortium and a sulfur-oxidizing consortium greatly changed the community structure and microbial succession and promoted the cell growth rate during the bioleaching process, while ferrous/sulfur oxidizers showed no obvious effects on the indigenous community. Exogenous ferrous oxidizers, mainly L. ferriphilum, and sulfur oxidizers, mainly A. thiooxidans, successfully established and colonized in the indigenous community. However, only colonized A. thiooxidans, rather than L. ferriphilum, showed advantageous enhancement in the dissolution of chalcopyrite. Results indicated that exogenous sulfur oxidizer A. thiooxidans, which was scarce in the indigenous community, could easily colonize in the indigenous community, significantly change the community structure, sufficiently execute its function, and greatly enhance copper dissolution. Introducing different functional consortia into a native system revealed that complementary sulfur invaders greatly enhanced the community function.![]()
Collapse
Affiliation(s)
- Caoming Huang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- China Nonferrous Metal Mining (Group) Co., Ltd
| | - Chong Qin
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| | - Xue Feng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| | - Yili Liang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| | - Jiemeng Tao
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha
- China
- Key Laboratory of Biometallurgy
| |
Collapse
|
78
|
Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. J Ind Microbiol Biotechnol 2017; 44:1613-1625. [DOI: 10.1007/s10295-017-1973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Abstract
Adaptive laboratory evolution (ALE) was employed to isolate arsenate and copper cross-resistant strains, from the copper-resistant M. sedula CuR1. The evolved strains, M. sedula ARS50-1 and M. sedula ARS50-2, contained 12 and 13 additional mutations, respectively, relative to M. sedula CuR1. Bioleaching capacity of a defined consortium (consisting of a naturally occurring strain and a genetically engineered copper sensitive strain) was increased by introduction of M. sedula ARS50-2, with 5.31 and 26.29% more copper recovered from enargite at a pulp density (PD) of 1 and 3% (w/v), respectively. M. sedula ARS50-2 arose as the predominant species and modulated the proportions of the other two strains after it had been introduced. Collectively, the higher Cu2+ resistance trait of M. sedula ARS50-2 resulted in a modulated microbial community structure, and consolidating enargite bioleaching especially at elevated PD.
Collapse
|
79
|
Joshi V, Shah N, Wakte P, Dhakephalkar P, Dhakephalkar A, Khobragade R, Naphade B, Shaikh S, Deshmukh A, Adhapure N. Comparative bioleaching of metals from pulverized and non-pulverized PCBs of cell phone charger: advantages of non-pulverized PCBs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28277-28286. [PMID: 29177777 DOI: 10.1007/s11356-017-0780-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Sample inhomogeneity is a severe issue in printed circuit boards especially when we are comparing the bioleaching efficiency. To avoid the ambiguous results obtained due to inhomogeneity in PCBs, 12 similar cell phone chargers (of renowned company) having same make and batch number were collected from scrap market. PCBs obtained from them were used in present studies. Out of these 12, three PCBs were used separately for chemical analysis of PCBs with prior acid digestion in aqua regia. It was found that, 10.8, 68.0, and 710.9 mg/l of Zn, Pb, and Cu were present in it, respectively. Six PCBs were used for bioleaching experiment with two variations, pulverized and non-pulverized. Though the pulverized sample have shown better leaching than non-pulverized one, former has some disadvantages if overall recycling of e-waste (metallic and nonmetallic fraction) is to be addressed. At the end of leaching experiments, copper was recovered using a simple setup of electrodeposition and 92.85% recovery was attained. The acidophiles involved in bioleaching were identified by culture dependent and culture independent techniques such as DGGE and species specific primers in PCR.
Collapse
Affiliation(s)
- Vyenkatesh Joshi
- Department of Biotechnology, Badrinarayan Barwale College, Jalna, MS, India
| | - Neha Shah
- Department of Biotechnology, Badrinarayan Barwale College, Jalna, MS, India
| | - Prashant Wakte
- Department of Microbiology, D.S.M. College, Parbhani, MS, India
| | | | - Anita Dhakephalkar
- Microbial Sciences Division, Agharkar Research Institute, Pune, MS, India
| | - Rahul Khobragade
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, sub-campus, Osmanabad, MS, India
| | - Bhushan Naphade
- Department of Microbiology, Badrinarayan Barwale College, Jalna, MS, India
| | - Sajid Shaikh
- Department of Microbiology, New Arts, Commerce and Science College, Ahmednagar, MS, India
| | - Arvind Deshmukh
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, sub-campus, Osmanabad, MS, India
| | - Nitin Adhapure
- Department of Biotechnology, Badrinarayan Barwale College, Jalna, MS, India.
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, sub-campus, Osmanabad, MS, India.
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad, MS, India.
| |
Collapse
|
80
|
Medeiros JD, Leite LR, Pylro VS, Oliveira FS, Almeida VM, Fernandes GR, Salim ACM, Araújo FMG, Volpini AC, Oliveira G, Cuadros-Orellana S. Single-cell sequencing unveils the lifestyle and CRISPR-based population history of Hydrotalea
sp. in acid mine drainage. Mol Ecol 2017; 26:5541-5551. [DOI: 10.1111/mec.14294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
Affiliation(s)
- J. D. Medeiros
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Institute of Biological Sciences; Federal University of Minas Gerais; UFMG; Belo Horizonte MG Brazil
| | - L. R. Leite
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Institute of Biological Sciences; Federal University of Minas Gerais; UFMG; Belo Horizonte MG Brazil
| | - V. S. Pylro
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Department of Soil Science; “Luiz de Queiroz” College of Agriculture; University of São Paulo; ESALQ/USP; Piracicaba SP Brazil
| | - F. S. Oliveira
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Institute of Biological Sciences; Federal University of Minas Gerais; UFMG; Belo Horizonte MG Brazil
| | - V. M. Almeida
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Institute of Biological Sciences; Federal University of Minas Gerais; UFMG; Belo Horizonte MG Brazil
| | - G. R. Fernandes
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
| | - A. C. M. Salim
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
| | - F. M. G. Araújo
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
| | - A. C. Volpini
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
| | - G. Oliveira
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Vale Institute of Technology - Sustainable Development; Belém PA Brazil
| | - S. Cuadros-Orellana
- Biosystems Informatics and Genomics Group; René Rachou Research Center; FIOCRUZ-MG; Belo Horizonte MG Brazil
- Centro de Biotecnología de los Recursos Naturales; Facultad de Ciencias Agrarias y Forestales; Universidad Católica del Maule; Talca Chile
| |
Collapse
|
81
|
Complete Genome Sequence of Sulfuriferula sp. Strain AH1, a Sulfur-Oxidizing Autotroph Isolated from Weathered Mine Tailings from the Duluth Complex in Minnesota. GENOME ANNOUNCEMENTS 2017; 5:5/32/e00673-17. [PMID: 28798167 PMCID: PMC5552976 DOI: 10.1128/genomea.00673-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the closed and annotated genome sequence of Sulfuriferula sp. strain AH1. Strain AH1 has a 2,877,007-bp chromosome that includes a partial Sox system for inorganic sulfur oxidation and a complete nitrogen fixation pathway. It also has a single 39,138-bp plasmid with genes for arsenic and mercury resistance.
Collapse
|
82
|
Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Appl Environ Microbiol 2017; 83:AEM.00909-17. [PMID: 28600313 DOI: 10.1128/aem.00909-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste.IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits.
Collapse
|
83
|
Ramírez-Aldaba H, Vazquez-Arenas J, Sosa-Rodríguez FS, Valdez-Pérez D, Ruiz-Baca E, García-Meza JV, Trejo-Córdova G, Lara RH. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20082-20092. [PMID: 28702905 DOI: 10.1007/s11356-017-9619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS2)-like, S n2-/S0, and As2S3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.
Collapse
Affiliation(s)
- Hugo Ramírez-Aldaba
- Programa de Doctorado Interinstitucional en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango S/N, Col. Valle del Sur, 34120, Durango, DGO, Mexico
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Jorge Vazquez-Arenas
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Avenida Acueducto s/n, Col. La Laguna Ticomán, 07340, Ciudad de México, Mexico
| | - Fabiola S Sosa-Rodríguez
- Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Donato Valdez-Pérez
- Instituto Politécnico Nacional, UPALM, Edif. Z-4 3er Piso, 07738, Ciudad de México, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Jessica Viridiana García-Meza
- Geomicrobiología, Facultad de Ingeniería, UASLP, Av. Sierra Leona 550, Lomas 2da, 78210, San Luis Potosí, SLP, Mexico
| | - Gabriel Trejo-Córdova
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro-Sanfandila, 76703, Pedro Escobedo, QRO, Mexico
| | - René H Lara
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico.
| |
Collapse
|
84
|
Draft Genome Sequence of Magnesium-Dissolving Lactococcus garvieae A1, Isolated from Soil. GENOME ANNOUNCEMENTS 2017; 5:5/21/e00386-17. [PMID: 28546485 PMCID: PMC5477398 DOI: 10.1128/genomea.00386-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The probiotic bacterium
Lactococcus garvieae
A1, isolated from soil, is interesting for biomining applications. Here, we report the draft genome sequence and annotation of this strain, with a focus on metal transporter enzymes.
Collapse
|
85
|
Bruneel O, Mghazli N, Hakkou R, Dahmani I, Filali Maltouf A, Sbabou L. In-depth characterization of bacterial and archaeal communities present in the abandoned Kettara pyrrhotite mine tailings (Morocco). Extremophiles 2017; 21:671-685. [PMID: 28447266 DOI: 10.1007/s00792-017-0933-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/17/2017] [Indexed: 01/28/2023]
Abstract
In Morocco, pollution caused by closed mines continues to be a serious threat to the environment, like the generation of acid mine drainage. Mine drainage is produced by environmental and microbial oxidation of sulfur minerals originating from mine wastes. The fundamental role of microbial communities is well known, like implication of Fe-oxidizing and to a lesser extent S-oxidizing microorganism in bioleaching. However, the structure of the microbial communities varies a lot from one site to another, like diversity depends on many factors such as mineralogy, concentration of metals and metalloids or pH, etc. In this study, prokaryotic communities in the pyrrhotite-rich tailings of Kettara mine were characterized using the Illumina sequencing. In-depth phylogenetic analysis revealed a total of 12 phyla of bacteria and 1 phyla of Archaea. The majority of sequences belonged to the phylum of Proteobacteria and Firmicutes with a predominance of Bacillus, Pseudomonas or Corynebacterium genera. Many microbial populations are implicated in the iron, sulfur and arsenic cycles, like Acidiferrobacter, Leptospirillum, or Alicyclobacillus in Fe; Acidiferrobacter and Sulfobacillus in S; and Bacillus or Pseudomonas in As. This is one of the first description of prokaryotic communities in pyrrhotite-rich mine tailings using high-throughput sequencing.
Collapse
Affiliation(s)
- Odile Bruneel
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco.
- Laboratoire HydroSciences Montpellier, UMR5569 (CNRS/IRD/UM), Université de Montpellier, CC0057 (MSE), 16, rue Auguste Broussonet, 34090, Montpellier, France.
| | - N Mghazli
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| | - R Hakkou
- Laboratoire de Chimie des Matériaux et de l'Environnement (LCME), Faculté des Sciences et Technique Guéliz, Université de Cadi Ayyad, Avenue Abdelkarim Elkhattabi, Gueliz, P.O. Box 549, Marrakech, Morocco
| | - I Dahmani
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| | - A Filali Maltouf
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| | - L Sbabou
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| |
Collapse
|
86
|
Grabarczyk DB, Berks BC. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. PLoS One 2017; 12:e0173395. [PMID: 28257465 PMCID: PMC5336275 DOI: 10.1371/journal.pone.0173395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 01/04/2023] Open
Abstract
The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct.
Collapse
Affiliation(s)
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
87
|
Differential fluoride tolerance between sulfur- and ferrous iron-grown Acidithiobacillus ferrooxidans and its mechanism analysis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Societal Risk Evaluation Scheme (SRES): Scenario-Based Multi-Criteria Evaluation of Synthetic Biology Applications. PLoS One 2017; 12:e0168564. [PMID: 28052080 PMCID: PMC5214958 DOI: 10.1371/journal.pone.0168564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/03/2016] [Indexed: 12/02/2022] Open
Abstract
Synthetic biology (SB) applies engineering principles to biology for the construction of novel biological systems designed for useful purposes. From an oversight perspective, SB products come with significant uncertainty. Yet there is a need to anticipate and prepare for SB applications before deployment. This study develops a Societal Risk Evaluation Scheme (SRES) in order to advance methods for anticipatory governance of emerging technologies such as SB. The SRES is based upon societal risk factors that were identified as important through a policy Delphi study. These factors range from those associated with traditional risk assessment, such as health and environmental consequences, to broader features of risk such as those associated with reversibility, manageability, anticipated levels of public concern, and uncertainty. A multi-disciplinary panel with diverse perspectives and affiliations assessed four case studies of SB using the SRES. Rankings of the SRES components are compared within and across the case studies. From these comparisons, we found levels of controllability and familiarity associated with the cases to be important for overall SRES rankings. From a theoretical standpoint, this study illustrates the applicability of the psychometric paradigm to evaluating SB cases. In addition, our paper describes how the SRES can be incorporated into anticipatory governance models as a screening tool to prioritize research, information collection, and dialogue in the face of the limited capacity of governance systems. To our knowledge, this is the first study to elicit data on specific cases of SB with the goal of developing theory and tools for risk governance.
Collapse
|
89
|
|
90
|
Bindschedler S, Vu Bouquet TQT, Job D, Joseph E, Junier P. Fungal Biorecovery of Gold From E-waste. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:53-81. [PMID: 28438268 DOI: 10.1016/bs.aambs.2017.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold.
Collapse
Affiliation(s)
| | | | - Daniel Job
- University of Neuchâtel, Neuchâtel, Switzerland
| | | | | |
Collapse
|
91
|
Biotechnology and the Mine of Tomorrow. Trends Biotechnol 2017; 35:79-89. [DOI: 10.1016/j.tibtech.2016.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 01/21/2023]
|
92
|
Latorre M, Cortés MP, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini RA, Cambiazo V, Maass A. The bioleaching potential of a bacterial consortium. BIORESOURCE TECHNOLOGY 2016; 218:659-666. [PMID: 27416516 DOI: 10.1016/j.biortech.2016.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.
Collapse
Affiliation(s)
- Mauricio Latorre
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Christian Hödar
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Mauricio González
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | | | - Verónica Cambiazo
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
93
|
Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments. Appl Environ Microbiol 2016; 82:5741-55. [PMID: 27422841 DOI: 10.1128/aem.01151-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields.
Collapse
|
94
|
Menezes AA, Montague MG, Cumbers J, Hogan JA, Arkin AP. Grand challenges in space synthetic biology. J R Soc Interface 2016; 12:20150803. [PMID: 26631337 PMCID: PMC4707852 DOI: 10.1098/rsif.2015.0803] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.
Collapse
Affiliation(s)
- Amor A Menezes
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA
| | - Michael G Montague
- Applications of Vital Knowledge, 113 Chestnut Hill Way, Frederick, MD 21702, USA
| | - John Cumbers
- NASA Ames Space Portal, NASA Ames Research Center, MS 555-2, Moffett Field, CA 94035, USA
| | - John A Hogan
- Bioengineering Branch, NASA Ames Research Center, MS 239-15, Moffett Field, CA 94035, USA
| | - Adam P Arkin
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS955-512 L, Berkeley, CA 94720, USA Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
95
|
Fonti V, Dell'Anno A, Beolchini F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:302-319. [PMID: 27139303 DOI: 10.1016/j.scitotenv.2016.04.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Bioleaching is a consolidated biotechnology in the mining industry and in bio-hydrometallurgy, where microorganisms mediate the solubilisation of metals and semi-metals from mineral ores and concentrates. Bioleaching also has the potential for ex-situ/on-site remediation of aquatic sediments that are contaminated with metals, which represent a key environmental issue of global concern. By eliminating or reducing (semi-)metal contamination of aquatic sediments, bioleaching may represent an environmentally friendly and low-cost strategy for management of contaminated dredged sediments. Nevertheless, the efficiency of bioleaching in this context is greatly influenced by several abiotic and biotic factors. These factors need to be carefully taken into account before selecting bioleaching as a suitable remediation strategy. Here we review the application of bioleaching for sediment bioremediation, and provide a critical view of the main factors that affect its performance. We also discuss future research needs to improve bioleaching strategies for contaminated aquatic sediments, in view of large-scale applications.
Collapse
Affiliation(s)
- Viviana Fonti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Beolchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
96
|
Ma L, Li Q, Shen L, Feng X, Xiao Y, Tao J, Liang Y, Yin H, Liu X. Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays. J Ind Microbiol Biotechnol 2016; 43:1441-53. [PMID: 27519020 DOI: 10.1007/s10295-016-1827-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022]
Abstract
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Qian Li
- School of Nuclear Resources Engineering, University of South China, Hengyang, China.,Key Discipline Laboratory for National Defense of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xue Feng
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Jiemeng Tao
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China. .,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China.
| |
Collapse
|
97
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
98
|
Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans. MINERALS 2016. [DOI: 10.3390/min6030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99
|
Cárdenas JP, Quatrini R, Holmes DS. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Res Microbiol 2016; 167:529-38. [PMID: 27394987 DOI: 10.1016/j.resmic.2016.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed.
Collapse
Affiliation(s)
| | | | - David S Holmes
- Fundación Ciencia & Vida, Santiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
100
|
Chen LX, Huang LN, Méndez-García C, Kuang JL, Hua ZS, Liu J, Shu WS. Microbial communities, processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol 2016; 38:150-8. [DOI: 10.1016/j.copbio.2016.01.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|