51
|
Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tümmler B, Baquero F, Martínez JL. The neglected intrinsic resistome of bacterial pathogens. PLoS One 2008; 3:e1619. [PMID: 18286176 PMCID: PMC2238818 DOI: 10.1371/journal.pone.0001619] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/17/2008] [Indexed: 11/18/2022] Open
Abstract
Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.
Collapse
Affiliation(s)
- Alicia Fajardo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - Nadia Martínez-Martín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - María Mercadillo
- Unidad Asociada al Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC) “Resistencia a los antibióticos y virulencia bacteriana”, Hospital Ramón y Cajal, Madrid, Spain
| | - Juan C. Galán
- Unidad Asociada al Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC) “Resistencia a los antibióticos y virulencia bacteriana”, Hospital Ramón y Cajal, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Hospital Ramón y Cajal, Madrid, Spain
- Departamento de Microbiología, Hospital Ramón y Cajal, Madrid, Spain
| | - Bart Ghysels
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Matthijs
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lutz Wiehlmann
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Hannover, Germany
| | - Burkhard Tümmler
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Hannover, Germany
| | - Fernando Baquero
- Unidad Asociada al Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC) “Resistencia a los antibióticos y virulencia bacteriana”, Hospital Ramón y Cajal, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Hospital Ramón y Cajal, Madrid, Spain
- Departamento de Microbiología, Hospital Ramón y Cajal, Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC) “Resistencia a los antibióticos y virulencia bacteriana”, Hospital Ramón y Cajal, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Hospital Ramón y Cajal, Madrid, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
52
|
Baert B, Baysse C, Matthijs S, Cornelis P. Multiple phenotypic alterations caused by a c-type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa. Microbiology (Reading) 2008; 154:127-138. [DOI: 10.1099/mic.0.2007/008268-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Barbara Baert
- VIB, Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Christine Baysse
- UMR6026, Interactions Cellulaires et Moléculaires, Université de Rennes 1, Campus de Beaulieu, avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Sandra Matthijs
- VIB, Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Pierre Cornelis
- VIB, Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
53
|
Denayer S, Matthijs S, Cornelis P. Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. J Bacteriol 2007; 189:7663-8. [PMID: 17720787 PMCID: PMC2168733 DOI: 10.1128/jb.00992-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble (S-type) pyocins are Pseudomonas aeruginosa bacteriocins that kill nonimmune P. aeruginosa strains via a specific receptor. The genes coding for pyocin Sa (consisting of a killing protein and an immunity protein) were cloned and expressed in Escherichia coli. Sequence analysis revealed that Sa is identical to pyocin S2. Seventy-nine strains of P. aeruginosa were tested for their sensitivity to pyocins S1, S2, and S3, and their ferripyoverdine receptors were typed by multiplex PCR. No strain was found to be sensitive to both S2 and S3, suggesting that the receptors for these two pyocins cannot coexist in one strain. As expected, all S3-sensitive strains had the type II ferripyoverdine receptor fpvA gene, confirming our previous reports. S1 killed strains irrespective of the type of ferripyoverdine receptor they produced. All S2-sensitive strains had the type I fpvA gene, and the inactivation of type I fpvA in an S2-sensitive strain conferred resistance to the S2 pyocin. Accordingly, complementation with type I fpvA in trans restored sensitivity to S2. Some S2-resistant type I fpvA-positive strains were detected, the majority (all but five) of which had the S1-S2 immunity gene. Comparison of type I fpvA sequences from immunity gene-negative S2-sensitive and S2-resistant strains revealed only a valine-to-isoleucine substitution at position 46 of type I FpvA. However, both type I fpvA genes conferred the capacity for type I pyoverdine utilization and sensitivity to S2. When these two type I fpvA genes were introduced into strain 7NSK2 carrying mutations in type II fpvA (encoding the type II pyoverdine receptor) and fpvB (encoding the alternative type I receptor), growth in the presence of type I pyoverdine was observed and the strain became sensitive to S2. We also found that type I pyoverdine could signal type II pyoverdine production via the type I FpvA receptor in 7NSK2.
Collapse
Affiliation(s)
- Sarah Denayer
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | |
Collapse
|
54
|
Mossialos D, Amoutzias GD. Siderophores in fluorescent pseudomonads: new tricks from an old dog. Future Microbiol 2007; 2:387-95. [PMID: 17683275 DOI: 10.2217/17460913.2.4.387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron is an essential nutrient for almost all bacteria; however, at neutral pH its bioavailability is limited. Siderophores are iron-binding compounds of low molecular weight that enable the microorganisms that produce them to obtain the necessary iron from the environment. Fluorescent pseudomonads include those that are plant growth promoting, human and plant pathogens, as well as bacteria involved in the biodegradation of xenobiotics. Although pyoverdine is the main siderophore produced by different fluorescent pseudomonads, other siderophores produced by fluorescent pseudomonads include pyochelin, (thio)quinolobactin and pyridine-2, 6-bis thiocarboxylic acid. Research on siderophores continues to reveal new information on their regulation, biosynthesis, function and properties. In this review, we focus on recent advances in the field, particularly on newly characterized siderophores produced by fluorescent pseudomonads and their biotechnological potential.
Collapse
Affiliation(s)
- Dimitris Mossialos
- University of Thessaly, Department of Biochemistry & Biotechnology, Larissa, Greece.
| | | |
Collapse
|
55
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 811] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Greenwald J, Hoegy F, Nader M, Journet L, Mislin GLA, Graumann PL, Schalk IJ. Real Time Fluorescent Resonance Energy Transfer Visualization of Ferric Pyoverdine Uptake in Pseudomonas aeruginosa. J Biol Chem 2007; 282:2987-95. [PMID: 17148441 DOI: 10.1074/jbc.m609238200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To acquire iron, Pseudomonas aeruginosa secretes a major fluorescent siderophore, pyoverdine (PvdI), that chelates iron and shuttles it into the cells via the specific outer membrane transporter, FpvAI. We took advantage of the fluorescence properties of PvdI and its metal chelates as well as the efficient FRET between donor tryptophans in FpvAI and PvdI to follow the fate of the siderophore during iron uptake. Our findings with PvdI-Ga and PvdI-Cr uptake indicate that iron reduction is required for the dissociation of PvdI-Fe, that a ligand exchange for iron occurs, and that this dissociation occurs in the periplasm. We also observed a delay between PvdI-Fe dissociation and the rebinding of PvdI to FpvAI, underlining the kinetic independence of metal release and siderophore recycling. Meanwhile, PvdI is not modified but recycled to the medium, still competent for iron chelation and transport. Finally, in vivo fluorescence microscopy revealed patches of PvdI, suggesting that uptake occurs via macromolecular assemblies on the cell surface.
Collapse
Affiliation(s)
- Jason Greenwald
- Métaux et Microorganismes: Chimie, Biologie, et Applications, UMR 7175-LC1 Institut Gilbert-Laustriat, CNRS-Université Louis Pasteur, ESBS, Boulevard Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
57
|
Yu L, Yang H, Ho Q, Tai PC. Expression, purification, and characterization of Pseudomonas aeruginosa SecA. Protein Expr Purif 2006; 50:179-84. [PMID: 16904905 DOI: 10.1016/j.pep.2006.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/19/2006] [Accepted: 06/22/2006] [Indexed: 11/17/2022]
Abstract
A secA gene from Pseudomonas aeruginosa PAO1 was amplified and expressed in Escherichia coli BL21.19 (secA13) under conditions where E. coli SecA was depleted. The binding of P. aeruginosa SecA (PaSecA) to the SP-Sepharose column was facilitated by ammonium sulfate fractionation but was not necessary for E. coli SecA (EcSecA) as the later bound more efficiently. PaSecA and EcSecA were purified by the single chromatographic step to greater than 98% purity and had a recovery of more than 20 and 40%, respectively, from the soluble fraction. This simple step purification obtained a higher homogeneity than previously reported. Cross-reactivity by immunoblotting showed that the purified PaSecA contained little EcSecA if any. The purified PaSecA is a dimer in solution, as judged by size exclusion chromatography, and is slightly larger than its counterpart EcSecA with an estimated molecular weight of 240 kDa. Further studies by the sedimentation velocity method indicate that PaSecA tends to remain as a monomer in solution. The purified PaSecA possessed ATPase activity; the intrinsic and liposome-stimulated ATPase specific activities of PaSecA were approximately 50% of EcSecA.
Collapse
Affiliation(s)
- Liyan Yu
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, 402 Kell Hall, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
58
|
Voulhoux R, Filloux A, Schalk IJ. Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J Bacteriol 2006; 188:3317-23. [PMID: 16621825 PMCID: PMC1447448 DOI: 10.1128/jb.188.9.3317-3323.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under iron-limiting conditions, Pseudomonas aeruginosa PAO1 secretes a fluorescent siderophore called pyoverdine (Pvd). After chelating iron, this ferric siderophore is transported back into the cells via the outer membrane receptor FpvA. The Pvd-dependent iron uptake pathway requires several essential genes involved in both the synthesis of Pvd and the uptake of ferric Pvd inside the cell. A previous study describing the global phenotype of a tat-deficient P. aeruginosa strain showed that the defect in Pvd-mediated iron uptake was due to the Tat-dependent export of proteins involved in Pvd biogenesis and ferric Pvd uptake (U. Ochsner, A. Snyder, A. I. Vasil, and M. L. Vasil, Proc. Natl. Acad. Sci. USA 99:8312-8317, 2002). Using biochemical and biophysical tools, we showed that despite its predicted Tat signal sequence, FpvA is correctly located in the outer membrane of a tat mutant and is fully functional for all steps of the iron uptake process (ferric Pvd uptake and recycling of Pvd on FpvA after iron release). However, in the tat mutant, no Pvd was produced. This suggested that a key element in the Pvd biogenesis pathway must be exported to the periplasm by the Tat pathway. We located PvdN, a still unknown but essential component in Pvd biogenesis, at the periplasmic side of the cytoplasmic membrane and showed that its export is Tat dependent. Our results further support the idea that a critical step of the Pvd biogenesis pathway involving PvdN occurs at the periplasmic side of the cytoplasmic membrane.
Collapse
|
59
|
Shen JS, Geoffroy V, Neshat S, Jia Z, Meldrum A, Meyer JM, Poole K. FpvA-mediated ferric pyoverdine uptake in Pseudomonas aeruginosa: identification of aromatic residues in FpvA implicated in ferric pyoverdine binding and transport. J Bacteriol 2006; 187:8511-5. [PMID: 16321958 PMCID: PMC1317021 DOI: 10.1128/jb.187.24.8511-8515.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of aromatic residues were seen to cluster in the upper portion of the three-dimensional structure of the FpvA ferric pyoverdine receptor of Pseudomonas aeruginosa, reminiscent of the aromatic binding pocket for ferrichrome in the FhuA receptor of Escherichia coli. Alanine substitutions in three of these, W362, W391, and F795, markedly compromised ferric pyoverdine binding and transport, consistent with a role of FpvA in ferric pyoverdine recognition.
Collapse
Affiliation(s)
- Jiang-Sheng Shen
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
60
|
Ghysels B, Ochsner U, Möllman U, Heinisch L, Vasil M, Cornelis P, Matthijs S. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 2005; 246:167-74. [PMID: 15899402 DOI: 10.1016/j.femsle.2005.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/01/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022] Open
Abstract
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.
Collapse
Affiliation(s)
- Bart Ghysels
- Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Flanders Interuniversity Institute of Biotechnology (VIB6), Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
61
|
Winstanley C, Kaye SB, Neal TJ, Chilton HJ, Miksch S, Hart CA. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J Med Microbiol 2005; 54:519-526. [PMID: 15888458 DOI: 10.1099/jmm.0.46005-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A collection of 63 isolates of Pseudomonas aeruginosa associated with ulcerative keratitis, collected from six centres in England, were typed using serotyping and random amplified polymorphic DNA-PCR, and screened for several variable virulence-related genotypes and phenotypes. Sixty-one percent of the isolates were of either serotype O1 or serotype O11, but there was no evidence for a common clone. The majority of isolates (59%) were PCR-positive for exoU rather than for exoS (38%), and carried a-type fliC genes (76%) rather than b-type (24%). Isolates were PCR-positive for pyoverdine-receptor types at a prevalence of 38% for type I, 46 % for type II and 8 % for type III. All but one of the isolates exhibited twitching activity. There was a correlation between the presence of exoS and twitching activity (P = 0.04), suggesting that a combination of exoS genotype and good twitching activity may have a role to play in ExoU-independent corneal virulence.
Collapse
Affiliation(s)
- Craig Winstanley
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Stephen B Kaye
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Timothy J Neal
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Helen J Chilton
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Silvia Miksch
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - C Anthony Hart
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
62
|
Tümmler B, Cornelis P. Pyoverdine receptor: a case of positive Darwinian selection in Pseudomonas aeruginosa. J Bacteriol 2005; 187:3289-92. [PMID: 15866912 PMCID: PMC1111992 DOI: 10.1128/jb.187.10.3289-3292.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Burkhard Tümmler
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, D-30623 Hannover, Germany.
| | | |
Collapse
|
63
|
Cianciotto NP, Cornelis P, Baysse C. Impact of the bacterial type I cytochromecmaturation system on different biological processes. Mol Microbiol 2005; 56:1408-15. [PMID: 15916594 DOI: 10.1111/j.1365-2958.2005.04650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the alpha-, beta- and gamma-Proteobacteria, the so-called cytochrome c maturation (Ccm) system is known to promote the covalent attachment of the haem to periplasmic apocytochrome c. However, in species of Pseudomonas, Rhizobium, Paracoccus and Legionella, mutations in ccm genes result in phenotypes that cannot be readily explained by the simple loss of a c-type cytochrome. These phenotypes include loss of siderophore production and utilization, reduced abilities to grow in low-iron conditions and in mammalian and protozoan host cells, and alterations in copper sensitivity and manganese oxidation. These various data suggest that Ccm proteins may perform one or more functions in addition to Ccm, which are critical for bacterial physiology and growth. Novel hypotheses that should be explored include the utilization of Ccm-associated haem for processes besides attachment to apocytochrome c, the export of a non-haem compound through the Ccm system, and the negative effects of protoporphyrin IX accumulation.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
64
|
Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV. Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 2005; 187:2138-47. [PMID: 15743962 PMCID: PMC1064051 DOI: 10.1128/jb.187.6.2138-2147.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pyoverdine is the primary siderophore of the gram-negative bacterium Pseudomonas aeruginosa. The pyoverdine region was recently identified as the most divergent locus alignable between strains in the P. aeruginosa genome. Here we report the nucleotide sequence and analysis of more than 50 kb in the pyoverdine region from nine strains of P. aeruginosa. There are three divergent sequence types in the pyoverdine region, which correspond to the three structural types of pyoverdine. The pyoverdine outer membrane receptor fpvA may be driving diversity at the locus: it is the most divergent alignable gene in the region, is the only gene that showed substantial intratype variation that did not appear to be generated by recombination, and shows evidence of positive selection. The hypothetical membrane protein PA2403 also shows evidence of positive selection; residues on one side of the membrane after protein folding are under positive selection. R', previously identified as a type IV strain, is clearly derived from a type III strain via a 3.4-kb deletion which removes one amino acid from the pyoverdine side chain peptide. This deletion represents a natural modification of the product of a nonribosomal peptide synthetase enzyme, whose consequences are predictive from the DNA sequence. There is also linkage disequilibrium between the pyoverdine region and pvdY, a pyoverdine gene separated by 30 kb from the pyoverdine region. The pyoverdine region shows evidence of horizontal transfer; we propose that some alleles in the region were introduced from other soil bacteria and have been subsequently maintained by diversifying selection.
Collapse
Affiliation(s)
- Eric E Smith
- Program of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
65
|
Ghysels B, Dieu BTM, Beatson SA, Pirnay JP, Ochsner UA, Vasil ML, Cornelis P. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2004; 150:1671-1680. [PMID: 15184553 DOI: 10.1099/mic.0.27035-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Under conditions of iron limitation, Pseudomonas aeruginosa secretes a high-affinity siderophore pyoverdine to scavenge Fe(III) in the extracellular environment and shuttle it into the cell. Uptake of the pyoverdine-Fe(III) complex is mediated by a specific outer-membrane receptor protein, FpvA (ferripyoverdine receptor). Three P. aeruginosa siderovars can be distinguished, each producing a different pyoverdine (type I-III) and a cognate FpvA receptor. Growth of an fpvA mutant of P. aeruginosa PAO1 (type I) under iron-limiting conditions can still be stimulated by its cognate pyoverdine, suggesting the presence of an alternative uptake route for type I ferripyoverdine. In silico analysis of the PAO1 genome revealed that the product of gene PA4168 has a high similarity with FpvA. Inactivation of PA4168 (termed fpvB) in an fpvA mutant totally abolished the capacity to utilize type I pyoverdine. The expression of fpvB is induced by iron limitation in Casamino acids (CAA) and in M9-glucose medium, but, unlike fpvA, not in a complex deferrated medium containing glycerol as carbon source. The fpvB gene was also detected in other P. aeruginosa isolates, including strains producing type II and type III pyoverdines. Inactivation of the fpvB homologues in these strains impaired their capacity to utilize type I ferripyoverdine as a source of iron. Accordingly, introduction of fpvB in trans restored the capacity to utilize type I ferripyoverdine.
Collapse
Affiliation(s)
- Bart Ghysels
- Flanders Interuniversity Institute of Biotechnology (VIB6), Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6·6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bui Thi Min Dieu
- Flanders Interuniversity Institute of Biotechnology (VIB6), Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6·6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Scott A Beatson
- Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jean-Paul Pirnay
- Epidemiology and Bio-statistics Division, Department of Well-being, Queen Astrid Military Hospital, B-1120 Brussels, Belgium
- Flanders Interuniversity Institute of Biotechnology (VIB6), Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6·6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Urs A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Michael L Vasil
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Pierre Cornelis
- Flanders Interuniversity Institute of Biotechnology (VIB6), Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Building E, room 6·6, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
66
|
Matthijs S, Baysse C, Koedam N, Tehrani KA, Verheyden L, Budzikiewicz H, Schäfer M, Hoorelbeke B, Meyer JM, De Greve H, Cornelis P. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 2004; 52:371-84. [PMID: 15066027 DOI: 10.1111/j.1365-2958.2004.03999.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To cope with iron deficiency fluorescent pseudomonads produce pyoverdines which are complex peptidic siderophores that very efficiently scavenge iron. In addition to pyoverdine some species also produce other siderophores. Recently, it was shown that Pseudomonas fluorescens ATCC 17400 produces the siderophore quinolobactin, an 8-hydroxy-4-methoxy-2-quinoline carboxylic acid (Mossialos, D., Meyer, J.M., Budzikiewicz, H., Wolff, U., Koedam, N., Baysse, C., Anjaiah, V., and Cornelis, P. (2000) Appl Environ Microbiol 66: 487-492). The entire quinolobactin biosynthetic, transport and uptake gene cluster, consisting out of two operons comprising 12 open reading frames, was cloned and sequenced. Based on the genes present and physiological complementation assays a biosynthetic pathway for quinolobactin is proposed. Surprisingly, this pathway turned out to combine genes derived from the eukaryotic tryptophan-xanthurenic acid branch of the kynurenine pathway and from the pathway for the biosynthesis of pyridine-2,6-bis(thiocarboxylic acid) from P. stutzeri, PDTC. These results clearly show the involvement of the tryptophan-kynurenine-xanthurenic acid pathway in the synthesis of an authentic quinoline siderophore.
Collapse
Affiliation(s)
- Sandra Matthijs
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Budzikiewicz H. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2004; 87:81-237. [PMID: 15079896 DOI: 10.1007/978-3-7091-0581-8_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- H Budzikiewicz
- Institut für Organische Chemie, Universität zu Köln, Germany
| |
Collapse
|
68
|
Ernst RK, D'Argenio DA, Ichikawa JK, Bangera MG, Selgrade S, Burns JL, Hiatt P, McCoy K, Brittnacher M, Kas A, Spencer DH, Olson MV, Ramsey BW, Lory S, Miller SI. Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol 2004; 5:1341-9. [PMID: 14641578 DOI: 10.1111/j.1462-2920.2003.00518.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa strains from the chronic lung infections of cystic fibrosis (CF) patients are phenotypically and genotypically diverse. Using strain PAO1 whole genome DNA microarrays, we assessed the genomic variation in P. aeruginosa strains isolated from young children with CF (6 months to 8 years of age) as well as from the environment. Eighty-nine to 97% of the PAO1 open reading frames were detected in 20 strains by microarray analysis, while subsets of 38 gene islands were absent or divergent. No specific pattern of genome mosaicism defined strains associated with CF. Many mosaic regions were distinguished by their low G + C content; their inclusion of phage related or pyocin genes; or by their linkage to a vgr gene or a tRNA gene. Microarray and phenotypic analysis of sequential isolates from individual patients revealed two deletions of greater than 100 kbp formed during evolution in the lung. The gene loss in these sequential isolates raises the possibility that acquisition of pyomelanin production and loss of pyoverdin uptake each may be of adaptive significance. Further characterization of P. aeruginosa diversity within the airways of individual CF patients may reveal common adaptations, perhaps mediated by gene loss, that suggest new opportunities for therapy.
Collapse
Affiliation(s)
- Robert K Ernst
- Department of Microbiology, University of Washington, Health Sciences Building, K-140, Box 357710, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Pyoverdines (PVDs) are complex siderophores produced by members of the fluorescent Pseudomonas. They comprise a dihydroxyquinoline fluorescent chromophore joined to a peptide of remarkably variable length and composition. In Pseudomonas aeruginosa, PVDs also function as signal molecules for the production of virulence factors. Genes responsible for the biosynthesis, excretion, uptake and regulation of these high-affinity siderophores are located either at a single locus or at up to three different loci in the genomes of the four pseudomonads analyzed. The peptide backbone of PVD is assembled by non-ribosomal peptide synthetases (NRPSs) and modified by accessory enzymes in the cytoplasm, and probably the periplasm. Regulation of PVD production and uptake depends on two extracytoplasmic sigma factors (ECF-sigmas), PvdS and FpvI, together with one anti-sigma, FpvR.
Collapse
Affiliation(s)
- Jacques Ravel
- The Institute for Genomics Research, Pathogen Functional Genomics Resource Center, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | |
Collapse
|