51
|
de Souza R, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401-19. [PMID: 26537605 PMCID: PMC4763327 DOI: 10.1590/s1415-475738420150053] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
Collapse
Affiliation(s)
- Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
52
|
FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Appl Environ Microbiol 2015; 81:7533-45. [PMID: 26296726 DOI: 10.1128/aem.01798-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
Motility plays an essential role in bacterial fitness and colonization in the plant environment, since it favors nutrient acquisition and avoidance of toxic substances, successful competition with other microorganisms, the ability to locate the preferred hosts, access to optimal sites within them, and dispersal in the environment during the course of transmission. In this work, we have observed that the mutation of the flagellar master regulatory gene, fleQ, alters bacterial surface motility and biosurfactant production, uncovering a new type of motility for Pseudomonas syringae pv. tomato DC3000 on semisolid surfaces. We present evidence that P. syringae pv. tomato DC3000 moves over semisolid surfaces by using at least two different types of motility, namely, swarming, which depends on the presence of flagella and syringafactin, a biosurfactant produced by this strain, and a flagellum-independent surface spreading or sliding, which also requires syringafactin. We also show that FleQ activates flagellum synthesis and negatively regulates syringafactin production in P. syringae pv. tomato DC3000. Finally, it was surprising to observe that mutants lacking flagella or syringafactin were as virulent as the wild type, and only the simultaneous loss of both flagella and syringafactin impairs the ability of P. syringae pv. tomato DC3000 to colonize tomato host plants and cause disease.
Collapse
|
53
|
Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M. Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions. PLoS One 2015; 10:e0132242. [PMID: 26161531 PMCID: PMC4498747 DOI: 10.1371/journal.pone.0132242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
Abstract
The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aerobic conditions and under anaerobic conditions when nitrate is used as the electron acceptor. However, nitrite can not support swimming motility. Regulation of swimming motility is similar under aerobic and anaerobic conditions, since mutants that are hypermotile under aerobic conditions, such as gacS, sadB, kinB, algU and wspR, are also hypermotile under anaerobic conditions. However, chemotactic behavior is different under aerobic and denitrification conditions. Unlike most pseudomonads, the F113 genome encode three complete chemotaxis systems, Che1, Che2 and Che3. Mutations in each of the cheA genes of the three Che systems has shown that the three systems are functional and independent. Mutation of the cheA1 gene completely abolished swimming motility both under aerobic and denitrification conditions. Mutation of the cheA2 gene, showed only a decrease in swimming motility under both conditions, indicating that this system is not essential for chemotactic motility but is necessary for optimal motility. Mutation of the cheA3 gene abolished motility under denitrification conditions but only produced a decrease in motility under aerobic conditions. The three Che systems proved to be implicated in competitive rhizosphere colonization, being the cheA1 mutant the most affected.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Jalvo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
54
|
Maldonado-González MM, Schilirò E, Prieto P, Mercado-Blanco J. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environ Microbiol 2015; 17:3139-53. [PMID: 25471384 DOI: 10.1111/1462-2920.12725] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild-type PICF7, discarding these traits as relevant for its endophytic lifestyle.
Collapse
Affiliation(s)
- M Mercedes Maldonado-González
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Elisabetta Schilirò
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Pilar Prieto
- Department of Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, E-14080, Córdoba, Spain
| |
Collapse
|
55
|
Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X. Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 2015; 15:21. [PMID: 25651892 PMCID: PMC4326333 DOI: 10.1186/s12866-015-0353-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/19/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. However, the mechanisms and pathways involved in the interactions between PGPR and plants remain unclear. In order to better understand these complex plant-PGPR interactions, changes in the transcriptome of the typical PGPR Bacillus subtilis in response to rice seedlings were analyzed. RESULTS Microarray technology was used to study the global transcriptionl response of B. subtilis OKB105 to rice seedlings after an interaction period of 2 h. A total of 176 genes representing 3.8% of the B. subtilis strain OKB105 transcriptome showed significantly altered expression levels in response to rice seedlings. Among these, 52 were upregulated, the majority of which are involved in metabolism and transport of nutrients, and stress responses, including araA, ywkA, yfls, mtlA, ydgG et al. The 124 genes that were downregulated included cheV, fliL, spmA and tua, and these are involved in chemotaxis, motility, sporulation and teichuronic acid biosynthesis, respectively. CONCLUSIONS We present a transcriptome analysis of the bacteria Bacillus subtilis OKB105 in response to rice seedings. Many of the 176 differentially expressed genes are likely to be involved in the interaction between Gram-positive bacteria and plants.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Lina Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Haoyu Zang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Yongli Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
56
|
Schreiter S, Sandmann M, Smalla K, Grosch R. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS One 2014; 9:e103726. [PMID: 25099168 PMCID: PMC4123886 DOI: 10.1371/journal.pone.0103726] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6) colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected the bottom rot disease severity.
Collapse
Affiliation(s)
- Susanne Schreiter
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Department Plant Health, Großbeeren, Germany
| | - Martin Sandmann
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Department Plant Health, Großbeeren, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Department Plant Health, Großbeeren, Germany
| |
Collapse
|
57
|
Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW. The biosurfactant viscosin produced byPseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 2014; 16:2267-81. [DOI: 10.1111/1462-2920.12469] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tiffany B. Taylor
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Glyn A. Barrett
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Jenna Gallie
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
- Department of Environmental Microbiology; Eawag; Dübendorf 8600 Switzerland
- Department of Environmental Systems Science; ETH Zürich; Zürich 8092 Switzerland
| | - Xue-Xian Zhang
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
| | | | - Louise J. Johnson
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
- Max Planck Institute for Evolutionary Biology; Plön Germany
| | - Robert W. Jackson
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| |
Collapse
|
58
|
Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, González de Heredia E, Baena I, Martín-Martín I, Rivilla R, Martín M. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One 2014; 9:e87608. [PMID: 24504373 PMCID: PMC3913639 DOI: 10.1371/journal.pone.0087608] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC) and one phosphodiesterase (BifA) implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ.
Collapse
Affiliation(s)
| | - Ana Navazo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma Barahona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
59
|
Río-Álvarez I, Rodríguez-Herva JJ, Martínez PM, González-Melendi P, García-Casado G, Rodríguez-Palenzuela P, López-Solanilla E. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000. Environ Microbiol 2013; 16:2072-85. [PMID: 24033935 DOI: 10.1111/1462-2920.12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain; Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM. Avda. Complutense S/N, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
60
|
Cordeiro FA, Tadra-Sfeir MZ, Huergo LF, de Oliveira Pedrosa F, Monteiro RA, de Souza EM. Proteomic analysis of Herbaspirillum seropedicae cultivated in the presence of sugar cane extract. J Proteome Res 2013; 12:1142-50. [PMID: 23331092 DOI: 10.1021/pr300746j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial endophytes of the genus Herbaspirillum colonize sugar cane and can promote plant growth. The molecular mechanisms that mediate plant- H. seropedicae interaction are poorly understood. In this work, we used 2D-PAGE electrophoresis to identify H. seropedicae proteins differentially expressed at the log growth phase in the presence of sugar cane extract. The differentially expressed proteins were validated by RT qPCR. A total of 16 differential spots (1 exclusively expressed, 7 absent, 5 up- and 3 down-regulated) in the presence of 5% sugar cane extract were identified; thus the host extract is able to induce and repress specific genes of H. seropedicae. The differentially expressed proteins suggest that exposure to sugar cane extract induced metabolic changes and adaptations in H. seropedicae presumably in preparation to establish interaction with the plant.
Collapse
Affiliation(s)
- Fabio Aparecido Cordeiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Centro Politécnico, PO Box 19071, Curitiba, PR 81531-990, Brazil
| | | | | | | | | | | |
Collapse
|
61
|
Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O'Gara F, Martín M, Rivilla R. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 2013; 14:54. [PMID: 23350846 PMCID: PMC3570484 DOI: 10.1186/1471-2164-14-54] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/23/2013] [Indexed: 01/04/2023] Open
Abstract
Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.
Collapse
Affiliation(s)
- Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. CHEMOSPHERE 2013; 90:1317-32. [PMID: 23058201 DOI: 10.1016/j.chemosphere.2012.09.045] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 05/06/2023]
Abstract
Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.
Collapse
Affiliation(s)
- Sumia Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
63
|
FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis. J Bacteriol 2012; 195:297-306. [PMID: 23144244 DOI: 10.1128/jb.01654-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic level of flagellin (called Hag) is homeostatically regulated in the Gram-positive bacterium Bacillus subtilis by a partner-switching mechanism between the protein FliW and either the Hag structural protein or CsrA, an RNA binding protein that represses hag translation. Here we show that FliW and the putative secretion chaperone FliS bind to Hag simultaneously but control Hag translation by different mechanisms. While FliW directly inhibits CsrA activity, FliS antagonizes CsrA indirectly by binding to Hag, enhancing Hag secretion, and depleting Hag in the cytoplasm to trigger the FliW partner switch. Consistent with a role for FliS in potentiating Hag secretion, the mutation of fliS crippled both motility and flagellar filament assembly, and both phenotypes could be partially rescued by artificially increasing the concentration of the Hag substrate through the absence of CsrA. Furthermore, the absence of FliS resulted in an approximately 30-fold reduction in extracellular Hag accumulation in cells mutated for CsrA (to relieve homeostatic control) and the filament cap protein FliD (to secrete flagellin into the supernatant). Thus, we mechanistically discriminate between the FliW regulator and the FliS chaperone to show that secretion disrupts flagellin homeostasis and promotes high-level flagellin synthesis during the period of filament assembly in B. subtilis.
Collapse
|
64
|
Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 2012; 12:116. [PMID: 22720735 PMCID: PMC3438084 DOI: 10.1186/1471-2180-12-116] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/31/2012] [Indexed: 11/21/2022] Open
Abstract
Background Plant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates. Results Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261) was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides. Conclusions Here we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants.
Collapse
|
65
|
Novel genes involved in Pseudomonas fluorescens Pf0-1 motility and biofilm formation. Appl Environ Microbiol 2012; 78:4318-29. [PMID: 22492452 DOI: 10.1128/aem.07201-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AdnA in Pseudomonas fluorescens, an ortholog of FleQ in P. aeruginosa, regulates both motility and flagellum-mediated attachment to various surfaces. A whole-genome microarray determined the AdnA transcriptome by comparing the gene expression pattern of wild-type Pf0-1 to that of Pf0-2x (adnA deletion mutant) in broth culture. In the absence of AdnA, expression of 92 genes was decreased, while 11 genes showed increased expression. Analysis of 16 of these genes fused to lacZ confirmed the microarray results. Several genes were further evaluated for their role in motility and biofilm formation. Two genes, Pfl01_1508 and Pfl01_1517, affected motility and had different effects on biofilm formation in Pf0-1. These two genes are predicted to specify proteins similar to the glycosyl transferases FgtA1 and FgtA2, which have been shown to be involved in virulence and motility in P. syringae. Three other genes, Pfl01_1516, Pfl01_1572, and Pfl01_1573, not previously associated with motility and biofilm formation in Pseudomonas had similar effects on biofilm formation in Pf0-1. Deletion of each of these genes led to different motility defects. Our data revealed an additional level of complexity in the control of flagellum function beyond the core genes known to be required and may yield insights into processes important for environmental persistence of P. fluorescens Pf0-1.
Collapse
|
66
|
Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R, Martín M. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS One 2012; 7:e31765. [PMID: 22363726 PMCID: PMC3282751 DOI: 10.1371/journal.pone.0031765] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022] Open
Abstract
Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge in the regulation of transcription and possibly translation of the algU gene, which encodes a sigma factor. AlgU is required for multiple functions, including the expression of the amrZ gene which encodes a transcriptional repressor of fleQ. Gac regulation of algU occurs during exponential growth and is exerted through the RNA binding proteins RsmA and RsmE but not RsmI. RNA immunoprecipitation assays have shown that the RsmA protein binds to a polycistronic mRNA encoding algU, mucA, mucB and mucD, resulting in lower levels of algU. We propose a model for repression of the synthesis of the flagellar apparatus linking extracellular and intracellular signalling with the levels of AlgU and a new physiological role for the Gac system in the downregulation of flagella biosynthesis during exponential growth.
Collapse
Affiliation(s)
| | - Ana Navazo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma Barahona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
67
|
Buschart A, Sachs S, Chen X, Herglotz J, Krause A, Reinhold-Hurek B. Flagella mediate endophytic competence rather than act as MAMPS in rice-Azoarcus sp. strain BH72 interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:191-9. [PMID: 22235904 DOI: 10.1094/mpmi-05-11-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azoarcus sp. strain BH72 is an endophytic betaproteobacterium able to colonize rice roots without induction of visible disease symptoms. BH72 possesses one polar flagellum. The genome harbors three copies of putative fliC genes, generally encoding the major structural protein flagellin. It is not clear whether, in endophytic interactions, flagella mediate endophytic competence or act as MAMPs (microbe-associated molecular patterns) inducing plant defense responses. Therefore, possible functions of the three FliC proteins were investigated. Only fliC3 was found to be highly expressed in pure culture and in association with rice roots and to be required for bacterial motility, suggesting that it encodes the major flagellin. Endophytic colonization of rice roots was significantly reduced in the in-frame deletion mutant, while the establishment of microcolonies on the root surface was not affected. Moreover, an elicitation of defense responses related to FliC3 was not observed. In conclusion, our data support the hypothesis that FliC3 does not play a major role as a MAMP but is required for endophytic colonization in the Azoarcus-rice interaction, most likely for spreading inside the plant.
Collapse
Affiliation(s)
- Anna Buschart
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS One 2011; 6:e21479. [PMID: 21731763 PMCID: PMC3120886 DOI: 10.1371/journal.pone.0021479] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/02/2011] [Indexed: 01/17/2023] Open
Abstract
Shewanella oneidensis is a highly motile organism by virtue of a polar flagellum. Unlike most flagellated bacteria, it contains only one major chromosome segment encoding the components of the flagellum with the exception of the motor proteins. In this region, three genes encode flagellinsaccording to the original genome annotation. However, we find that only flaA and flaB encode functional filament subunits. Although these two genesare under the control of different promoters, they are actively transcribed and subsequently translated, producing a considerable number of flagellin proteins. Additionally, both flagellins are able to interact with their chaperon FliS and are subjected to feedback regulation. Furthermore, FlaA and FlaB are glycosylated by a pathwayinvolving a major glycosylating enzyme,PseB, in spite of the lack of the majority of theconsensus glycosylation sites. In conclusion, flagellar assembly in S. oneidensis has novel features despite the conservation of homologous genes across taxa.
Collapse
|
69
|
Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 2011; 77:5412-9. [PMID: 21685161 DOI: 10.1128/aem.00320-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.
Collapse
|
70
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
71
|
Bavishi A, Lin L, Schroeder K, Peters A, Cho H, Choudhary M. The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1. BMC Microbiol 2010; 10:331. [PMID: 21192830 PMCID: PMC3024229 DOI: 10.1186/1471-2180-10-331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhodobacter sphaeroides 2.4.1 is a metabolically versatile organism that belongs to α-3 subdivision of Proteobacteria. The present study was to identify the extent, history, and role of gene duplications in R. sphaeroides 2.4.1, an organism that possesses two chromosomes. RESULTS A protein similarity search (BLASTP) identified 1247 orfs (~29.4% of the total protein coding orfs) that are present in 2 or more copies, 37.5% (234 gene-pairs) of which exist in duplicate copies. The distribution of the duplicate gene-pairs in all Clusters of Orthologous Groups (COGs) differed significantly when compared to the COG distribution across the whole genome. Location plots revealed clusters of gene duplications that possessed the same COG classification. Phylogenetic analyses were performed to determine a tree topology predicting either a Type-A or Type-B phylogenetic relationship. A Type-A phylogenetic relationship shows that a copy of the protein-pair matches more with an ortholog from a species closely related to R. sphaeroides while a Type-B relationship predicts the highest match between both copies of the R. sphaeroides protein-pair. The results revealed that ~77% of the proteins exhibited a Type-A phylogenetic relationship demonstrating the ancient origin of these gene duplications. Additional analyses on three other strains of R. sphaeroides revealed varying levels of gene loss and retention in these strains. Also, analyses on common gene pairs among the four strains revealed that these genes experience similar functional constraints and undergo purifying selection. CONCLUSIONS Although the results suggest that the level of gene duplication in organisms with complex genome structuring (more than one chromosome) seems to be not markedly different from that in organisms with only a single chromosome, these duplications may have aided in genome reorganization in this group of eubacteria prior to the formation of R. sphaeroides as gene duplications involved in specialized functions might have contributed to complex genomic development.
Collapse
Affiliation(s)
- Anish Bavishi
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas 77341, USA
| | | | | | | | | | | |
Collapse
|
72
|
Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F, Espinosa-Urgel M, Martín M, Rivilla R. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 2010; 12:3185-95. [DOI: 10.1111/j.1462-2920.2010.02291.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Effect of bacteriaphage and exopolysaccharide on root colonization and rhizosphere competence by Pseudomonas fluorescens. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
74
|
Eletsky A, Sukumaran DK, Xiao R, Acton TB, Rost B, Montelione GT, Szyperski T. NMR structure of protein YvyC from Bacillus subtilis reveals unexpected structural similarity between two PFAM families. Proteins 2009; 76:1037-41. [PMID: 19455708 DOI: 10.1002/prot.22459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander Eletsky
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Süle S, Cursino L, Zheng D, Hoch H, Burr T. Surface motility and associated surfactant production inAgrobacterium vitis. Lett Appl Microbiol 2009; 49:596-601. [DOI: 10.1111/j.1472-765x.2009.02716.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Segura A, Rodríguez-Conde S, Ramos C, Ramos JL. Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2009; 2:452-64. [PMID: 21255277 PMCID: PMC3815906 DOI: 10.1111/j.1751-7915.2009.00113.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/12/2009] [Indexed: 01/14/2023] Open
Abstract
With the increase in quality of life standards and the awareness of environmental issues, the remediation of polluted sites has become a priority for society. Because of the high economic cost of physico-chemical strategies for remediation, the use of biological tools for cleaning-up contaminated sites is a very attractive option. Rhizoremediation, the use of rhizospheric microorganisms in the bioremediation of contaminants, is the biotechnological approach that we explore in this minireview. We focus our attention on bacterial interactions with the plant surface, responses towards root exudates, and how plants and microbes communicate. We analyse certain strategies that may improve rhizoremediation, including the utilization of endophytes, and finally we discuss several rhizoremediation strategies that have opened ways to improve biodegradation.
Collapse
Affiliation(s)
- Ana Segura
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Microbiology, Professor Albareda 1, E-18008 Granada, Spain.
| | | | | | | |
Collapse
|
77
|
Navazo A, Barahona E, Redondo-Nieto M, Martínez-Granero F, Rivilla R, Martín M. Three independent signalling pathways repress motility in Pseudomonas fluorescens F113. Microb Biotechnol 2009; 2:489-98. [PMID: 21255280 PMCID: PMC3815909 DOI: 10.1111/j.1751-7915.2009.00103.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Motility is one of the most important traits for rhizosphere colonization by pseudomonads. Despite this importance, motility is severely repressed in the rhizosphere‐colonizing strain Pseudomonas fluorescens F113. This bacterium is unable to swarm under laboratory conditions and produce relatively small swimming haloes. However, phenotypic variants with the ability to swarm and producing swimming haloes up to 300% larger than the wild‐type strain, arise during rhizosphere colonization. These variants harbour mutations in the genes encoding the GacA/GacS two‐component system and in other genes. In order to identify genes and pathways implicated in motility repression, we have used generalized mutagenesis with transposons. Analysis of the mutants has shown that besides the Gac system, the Wsp system and the sadB gene, which have been previously implicated in cyclic di‐GMP turnover, are implicated in motility repression: mutants in the gacS, sadB or wspR genes can swarm and produce swimming haloes larger than the wild‐type strain. Epistasis analysis has shown that the pathways defined by each of these genes are independent, because double and triple mutants show an additive phenotype. Furthermore, GacS, SadB and WspR act at different levels. Expression of the fleQ gene, encoding the master regulator of flagella synthesis is higher in the gacS‐ and sadB‐ backgrounds than in the wild‐type strain and this differential expression is reflected by a higher secretion of the flagellin protein FliC. Conversely, no differences in fleQ expression or FliC secretion were observed between the wild‐type strain and the wspR‐ mutant.
Collapse
Affiliation(s)
- Ana Navazo
- Departamento de Biología. Universidad Autónoma de Madrid. c/Darwin, 2, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
78
|
Yousef-Coronado F, Travieso ML, Espinosa-Urgel M. Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 2009; 288:118-24. [PMID: 18783437 DOI: 10.1111/j.1574-6968.2008.01339.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mechanisms governing biofilm formation have generated considerable interest in recent years, yet comparative analyses of processes for bacterial establishment on abiotic and biotic surfaces are still limited. In this report we have expanded previous information on the genetic determinants required for colonization of plant surfaces by Pseudomonas putida populations and analyzed their correlation with biofilm formation processes on abiotic surfaces. Insertional mutations affecting flagellar genes or the synthesis and transport of the large adhesin LapA lead to decreased adhesion to seeds and biofilm formation on abiotic surfaces. The latter also causes reduced fitness in the rhizosphere. Decreased seed adhesion and altered biofilm formation kinetics are observed in mutants affected in heme biosynthesis and a gene that might participate in oxidative stress responses, whereas a mutant in a gene involved in cytochrome oxidase assembly is affected in the bacterium-plant interaction but not in bacterial establishment on abiotic surfaces. Finally, a mutant altered in lipopolysaccharide biosynthesis is impaired in seed and root colonization but seems to initiate attachment to plastic faster than the wild type. This variety of phenotypes reflects the complexity of bacterial adaptation to sessile life, and the partial overlap between mechanisms leading to biofilm formation on abiotic and biotic surfaces.
Collapse
|
79
|
Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, Sarniguet A. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. THE NEW PHYTOLOGIST 2009; 181:435-447. [PMID: 19121038 DOI: 10.1111/j.1469-8137.2008.02675.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.
Collapse
Affiliation(s)
- M Barret
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - P Frey-Klett
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - M Boutin
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - A-Y Guillerm-Erckelboudt
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - F Martin
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - L Guillot
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - A Sarniguet
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| |
Collapse
|
80
|
Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C. Two similar enhanced root-colonizingPseudomonasstrains differ largely in their colonization strategies of avocado roots andRosellinia necatrixhyphae. Environ Microbiol 2008; 10:3295-304. [DOI: 10.1111/j.1462-2920.2008.01721.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
Transcriptional organization of the region encoding the synthesis of the flagellar filament in Pseudomonas fluorescens. J Bacteriol 2008; 190:4106-9. [PMID: 18375555 DOI: 10.1128/jb.00178-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens F113 is motile by means of type b flagella. Analysis of the region encoding the synthesis of the flagellar filament has shown a transcriptional organization different from that of type a flagella. Additionally to the promoters driving fliC, fliD, and fleQ expression, we have found promoters upstream of the flaG gene and the fliST operon. These promoters were functional in vivo. Both promoters have been mapped and appear to be dependent on the vegetative sigma factor and independent of FleQ, the master regulator of flagellum synthesis.
Collapse
|
82
|
|
83
|
Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E. Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 2008; 10:1271-84. [PMID: 18312393 DOI: 10.1111/j.1462-2920.2007.01541.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three transposon mutants of Rhizobium tropici CIAT899 affected in lipopolysaccharide (LPS) biosynthesis were characterized and their maize rhizosphere and endophytic root colonization abilities were evaluated. The disrupted genes coded for the following putative products: the ATPase component of an O antigen ABC-2 type transporter (wzt), a nucleotide-sugar dehydratase (lpsbeta2) and a bifunctional enzyme producing GDP-mannose (noeJ). Electrophoretic analysis of affinity purified LPS showed that all mutants lacked the smooth LPS bands indicating an O antigen minus phenotype. In the noeJ mutant, the rough LPS band migrated faster than the parental band, suggesting a truncated LPS core. When inoculated individually, the wzt and noeJ mutants colonize the rhizosphere and root to a lower extent than the parental strain while no differences were observed between the lpsbeta2 mutant and the parental strain. All mutants were impaired in competitive rhizosphere and root colonization. Pleiotropic effects of the mutations on known colonization traits such as motility and growth rate were observed, but they were not sufficient to explain the colonization behaviours. It was found that the LPS mutants were sensitive to the maize antimicrobial 6-methoxy-2-benzoxazolinone (MBOA). Only the combined effects of altered growth rate and susceptibility to maize antimicrobials could account for all the observed colonization phenotypes. The results suggest an involvement of the LPS in protecting R. tropici against maize defence response during rhizosphere and root colonization.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
84
|
Mercado-Blanco J, Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 2007; 92:367-89. [PMID: 17588129 DOI: 10.1007/s10482-007-9167-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/12/2007] [Indexed: 11/29/2022]
Abstract
Specific strains of fluorescent Pseudomonas spp. inhabit the environment surrounding plant roots and some even the root interior. Introducing such bacterial strains to plant roots can lead to increased plant growth, usually due to suppression of plant pathogenic microorganisms. We review the modes of action and traits of these beneficial Pseudomonas bacteria involved in disease suppression. The complex regulation of biological control traits in relation to the functioning in the root environment is discussed. Understanding the complexity of the interactions is instrumental in the exploitation of beneficial Pseudomonas spp. in controlling plant diseases.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apartado 4084, 14080 Cordoba, Spain.
| | | |
Collapse
|
85
|
Pliego C, Cazorla FM, González-Sánchez MA, Pérez-Jiménez RM, de Vicente A, Ramos C. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res Microbiol 2007; 158:463-70. [PMID: 17467245 DOI: 10.1016/j.resmic.2007.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/25/2022]
Abstract
Biological control of soil-borne pathogens is frequently based on the application of antagonistic microorganisms selected solely for their ability to produce in vitro antifungal factors. The aim of this work was to select bacteria that efficiently colonize the roots of avocado plants and display antagonism towards Rosellinia necatrix, the causal agent of avocado white root rot. A high frequency of antagonistic strains (ten isolates, 24.4%) was obtained using a novel procedure based on the selection of competitive avocado root tip colonizers. Amplification and sequencing of the 16S rRNA gene, in combination with biochemical characterization, showed that eight and two of the selected isolates belonged to the genera Pseudomonas and Stenotrophomonas, respectively. Characterization of antifungal compounds produced by the antagonistic strains showed variable production of exoenzymes and HCN. Only one of these strains, Pseudomonas sp. AVO94, produced a compound that could be related to antifungal antibiotics. All of the ten selected strains showed twitching motility, a cell movement involved in competitive colonization of root tips. Production of N-acyl-homoserine lactones and indole-3-acetic acid was also reported for some of these isolates. Resistance to several bacterial antibiotics was tested, and three strains showing resistance to only one of them were selected for biocontrol assays. The three selected strains persisted in the rhizosphere of avocado plants at levels considered crucial for efficient biocontrol, 10(5)-10(6) colony forming units/g of root; two of them, Pseudomonas putida AVO102 and Pseudomonas pseudoalcaligenes AVO110, demonstrated significant protection of avocado plants against white root rot.
Collapse
Affiliation(s)
- Clara Pliego
- IFAPA, Centro de Churriana (CICE Junta de Andalucía), Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
86
|
Martínez-Granero F, Rivilla R, Martín M. Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 2006; 72:3429-34. [PMID: 16672487 PMCID: PMC1472367 DOI: 10.1128/aem.72.5.3429-3434.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic variants of Pseudomonas fluorescens F113 showing a translucent and diffuse colony morphology show enhanced colonization of the alfalfa rhizosphere. We have previously shown that in the biocontrol agent P. fluorescens F113, phenotypic variation is mediated by the activity of two site-specific recombinases, Sss and XerD. By overexpressing the genes encoding either of the recombinases, we have now generated a large number of variants (mutants) after selection either by prolonged laboratory cultivation or by rhizosphere passage. All the isolated variants were more motile than the wild-type strain and appear to contain mutations in the gacA and/or gacS gene. By disrupting these genes and complementation analysis, we have observed that the Gac system regulates swimming motility by a repression pathway. Variants isolated after selection by prolonged cultivation formed a single population with a swimming motility that was equal to the motility of gac mutants, being 150% more motile than the wild type. The motility phenotype of these variants was complemented by the cloned gac genes. Variants isolated after rhizosphere selection belonged to two different populations: one identical to the population isolated after prolonged cultivation and the other comprising variants that besides a gac mutation harbored additional mutations conferring higher motility. Our results show that gac mutations are selected both in the stationary phase and during rhizosphere colonization. The enhanced motility phenotype is in turn selected during rhizosphere colonization. Several of these highly motile variants were more competitive than the wild-type strain, displacing it from the root tip within 2 weeks.
Collapse
Affiliation(s)
- Francisco Martínez-Granero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain
| | | | | |
Collapse
|
87
|
Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 2006; 188:4312-20. [PMID: 16740937 PMCID: PMC1482957 DOI: 10.1128/jb.01975-05] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni remains the leading cause of bacterial gastroenteritis in developed countries, and yet little is known concerning the mechanisms by which this fastidious organism survives within its environment. We have demonstrated that C. jejuni 11168 can form biofilms on a variety of surfaces. Proteomic analyses of planktonic and biofilm-grown cells demonstrated differences in protein expression profiles between the two growth modes. Proteins involved in the motility complex, including the flagellins (FlaA, FlaB), the filament cap (FliD), the basal body (FlgG, FlgG2), and the chemotactic protein (CheA), all exhibited higher levels of expression in biofilms than found in stationary-phase planktonic cells. Additional proteins with enhanced expression included those involved in the general (GroEL, GroES) and oxidative (Tpx, Ahp) stress responses, two known adhesins (Peb1, FlaC), and proteins involved in biosynthesis, energy generation, and catabolic functions. An aflagellate flhA mutant not only lost the ability to attach to a solid matrix and form a biofilm but could no longer form a pellicle at the air-liquid interface of a liquid culture. Insertional inactivation of genes that affect the flagellar filament (fliA, flaA, flaB, flaG) or the expression of the cell adhesin (flaC) also resulted in a delay in pellicle formation. These findings demonstrate that the flagellar motility complex plays a crucial role in the initial attachment of C. jejuni 11168 to solid surfaces during biofilm formation as well as in the cell-to-cell interactions required for pellicle formation. Continued expression of the motility complex in mature biofilms is unusual and suggests a role for the flagellar apparatus in the biofilm phenotype.
Collapse
Affiliation(s)
- Martin Kalmokoff
- Health Canada Bureau of Microbial Hazards, Ottawa, Ontario K1A 0L2
| | | | | | | | | | | | | | | | | |
Collapse
|