51
|
Le Pihive E, Blaha D, Chenavas S, Thibault F, Vidal D, Valade E. Description of two new plasmids isolated from Francisella philomiragia strains and construction of shuttle vectors for the study of Francisella tularensis. Plasmid 2009; 62:147-57. [PMID: 19615403 DOI: 10.1016/j.plasmid.2009.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/22/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Francisella tularensis is the causative agent of tularemia, a zoonotic disease often transmitted to humans by infected animals. The lack of useful specific genetic tools has long hampered the study of F. tularensis subspecies. We identified and characterized two new plasmids, pF242 and pF243, isolated from Francisella philomiragia strains ATCC 25016 and ATCC 25017, respectively. Sequence analysis revealed that pF242 and pF243 are closely related to pC194 and pFNL10 plasmids, respectively. Two generations of pF242- and pF243-based shuttle vectors, harboring several antibiotic resistance markers, were developed. We used the first generation to compare transformation efficiencies in two virulent F. tularensis subspecies. We found that electroporation was more efficient than cryotransformation: almost all vectors tested were successfully introduced by electroporation into Francisella strains with a high level of efficiency. The second generation of shuttle vectors, containing a multiple cloning site and/or gfp gene downstream of Francisella groES promotor, was used for GFP production in F. tularensis. The development of new shuttle vectors offers new perspectives in the genetic manipulation of F. tularensis, helping to elucidate the mechanisms underlying its virulence.
Collapse
Affiliation(s)
- E Le Pihive
- Laboratoire de bactériologie/UMR-MD1, Département de biologie des agents transmissibles, Centre de Recherches du Service de Santé des Armées Emile Pardé, La Tronche Cedex, France
| | | | | | | | | | | |
Collapse
|
52
|
LoVullo ED, Molins-Schneekloth CR, Schweizer HP, Pavelka MS. Single-copy chromosomal integration systems for Francisella tularensis. MICROBIOLOGY-SGM 2009; 155:1152-1163. [PMID: 19332817 DOI: 10.1099/mic.0.022491-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Francisella tularensis is a fastidious Gram-negative bacterium responsible for the zoonotic disease tularemia. Investigation of the biology and molecular pathogenesis of F. tularensis has been limited by the difficulties in manipulating such a highly pathogenic organism and by a lack of genetic tools. However, recent advances have substantially improved the ability of researchers to genetically manipulate this organism. To expand the molecular toolbox we have developed two systems to stably integrate genetic elements in single-copy into the F. tularensis genome. The first system is based upon the ability of transposon Tn7 to insert in both a site- and orientation-specific manner at high frequency into the attTn7 site located downstream of the highly conserved glmS gene. The second system consists of a sacB-based suicide plasmid used for allelic exchange of unmarked elements with the blaB gene, encoding a beta-lactamase, resulting in the replacement of blaB with the element and the loss of ampicillin resistance. To test these new tools we used them to complement a novel d-glutamate auxotroph of F. tularensis LVS, created using an improved sacB-based allelic exchange plasmid. These new systems will be helpful for the genetic manipulation of F. tularensis in studies of tularemia biology, especially where the use of multi-copy plasmids or antibiotic markers may not be suitable.
Collapse
Affiliation(s)
- Eric D LoVullo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Herbert P Schweizer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
53
|
Santiago AE, Cole LE, Franco A, Vogel SN, Levine MM, Barry EM. Characterization of rationally attenuated Francisella tularensis vaccine strains that harbor deletions in the guaA and guaB genes. Vaccine 2009; 27:2426-36. [PMID: 19368784 PMCID: PMC2716139 DOI: 10.1016/j.vaccine.2009.02.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 12/23/2022]
Abstract
Francisella tularensis, the etiologic agent of tularemia, can cause severe and fatal infection after inhalation of as few as 10 -- 100CFU. F. tularensis is a potential bioterrorism agent and, therefore, a priority for countermeasure development. Vaccination with the live vaccine strain (LVS), developed from a Type B strain, confers partial protection against aerosal exposure to the more virulent Type A strains and provides proof of principle that a live attenuated vaccine strain may be efficacious. However LVS suffers from several notable drawbacks that have prevented its licensure and widespread use. To address the specific deficiencies that render LVS a sub-optimal tularemia vaccine, we engineered F. tularensis LVS strains with targeted deletions in the guaA or guaB genes that encode critical enzymes in the guanine nucleotide biosynthetic pathway. F. tularensis LVSDeltaguaA and LVSDeltaguaB mutants were guanine auxotrophs and were highly attenuated in a mouse model of infection. While the mutants failed to replicate in macrophages, a robust proinflammatory cytokine response, equivalent to that of the parental LVS, was elicited. Mice vaccinated with a single dose of the F. tularensis LVSDeltaguaA or LVSDeltaguaB mutant were fully protected against subsequent lethal challenge with the LVS parental strain. These findings suggest the specific deletion of these target genes could generate a safe and efficacious live attenuated vaccine.
Collapse
Affiliation(s)
- Araceli E. Santiago
- Center for Vaccine Development, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Leah E. Cole
- Department of Microbiology and Immunology, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Augusto Franco
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, CRB2 Bldg. Suite 1M.04, 1550 Orleans Street, Baltimore, MD 21231
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Eileen M. Barry
- Center for Vaccine Development, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| |
Collapse
|
54
|
Abstract
We previously described the construction and characterization of Escherichia coli-Francisella tularensis shuttle vectors, derived from the cryptic Francisella plasmid pFNL10, for the genetic manipulation of F. tularensis ssp. tularensis. We now report further characterization of the biology of these shuttle vectors and the development of a new generation of Francisella plasmids. We show that the addition of ORF3 from pFNL10 can convert an unstable shuttle vector into a stable one, and that this is likely due to increased plasmid copy number. We also describe various improvements to the earlier generations of shuttle vectors, such as the addition of a multiple cloning site containing a novel RsrII restriction endonuclease site for directional insertion of Francisella genes, and the inclusion of the F. tularensis blaB promoter for heterologous gene expression.
Collapse
Affiliation(s)
- Eric D. LoVullo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Lani A. Sherrill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Martin S. Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
55
|
Richards MI, Michell SL, Oyston PCF. An intracellularly inducible gene involved in virulence and polyphosphate production in Francisella. J Med Microbiol 2008; 57:1183-1192. [PMID: 18809544 DOI: 10.1099/jmm.0.2008/001826-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen capable of multiplying to high levels in macrophages. By protein analysis, only a few proteins have been shown previously to be expressed at high levels in macrophages relative to bacteria grown in culture media. To identify additional genes that show increased expression during intracellular growth, we developed a plasmid for use in Francisella based on the induction of expression of green fluorescent protein. Clones of F. tularensis subsp. novicida were identified that were fluorescent only intracellularly and not when grown in vitro. Sequencing identified a range of genes comprising some such as dnaK that are already known to be expressed intracellularly and some novel targets. One of these newly identified regulated genes, FTN1472/FTT1564, was selected for further study. Isogenic mutants were generated in F. tularensis subsp. novicida and subsp. tularensis by allelic replacement. Inactivation of the gene resulted in abolition of polyphosphate production by F. novicida, strongly supporting the bioinformatic analysis, which had suggested that the gene may encode a polyphosphate kinase. The mutants exhibited defects for intracellular growth in macrophages and were attenuated in mice, indicating a key role for the putative polyphosphate kinase in the virulence of Francisella.
Collapse
Affiliation(s)
- Mark I Richards
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | | - Petra C F Oyston
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
56
|
Horzempa J, Carlson PE, O'Dee DM, Shanks RMQ, Nau GJ. Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol 2008; 8:172. [PMID: 18842136 PMCID: PMC2576331 DOI: 10.1186/1471-2180-8-172] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/08/2008] [Indexed: 01/06/2023] Open
Abstract
Background After infecting a mammalian host, the facultative intracellular bacterium, Francisella tularensis, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection. Results Microarray analysis of F. tularensis LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of Francisella in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel Francisella virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (deoB)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming temperature-induced, virulence-associated locus A, tivA. Interestingly, the deoB mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a Francisella gene that contributes to uptake into both phagocytic and non-phagocytic host cells. Conclusion Our results provide new insight into mechanisms of Francisella virulence regulation and pathogenesis. F. tularensis LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of Francisella. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including tivA (FTL_1581). An analysis of tivA and deoB (FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.
Collapse
Affiliation(s)
- Joseph Horzempa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
57
|
Abstract
Francisella tularensis is the causative agent of tularemia and is a category A select agent. Francisella novicida, considered by some to be one of four subspecies of F. tularensis, is used as a model in pathogenesis studies because it causes a disease similar to tularemia in rodents but is not harmful to humans. F. novicida exhibits a strong restriction barrier which reduces the transformation frequency of foreign DNA up to 10(6)-fold. To identify the genetic basis of this barrier, we carried out a mutational analysis of restriction genes identified in the F. novicida genome. Strains carrying combinations of insertion mutations in eight candidate loci were created and assayed for reduced restriction of unmodified plasmid DNA introduced by transformation. Restriction was reduced by mutations in four genes, corresponding to two type I, one type II, and one type III restriction system. Restriction was almost fully eliminated in a strain in which all four genes were inactive. The strongest contributor to the restriction barrier, the type II gene, encodes an enzyme which specifically cleaves Dam-methylated DNA. Genome comparisons show that most restriction genes in the F. tularensis subspecies are pseudogenes, explaining the unusually strong restriction barrier in F. novicida and suggesting that restriction was lost during evolution of the human pathogenic subspecies. As part of this study, procedures were developed to introduce unmodified plasmid DNA into F. novicida efficiently, to generate defined multiple mutants, and to produce chromosomal deletions of multiple adjacent genes.
Collapse
|
58
|
Oyston PCF. Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 2008; 57:921-930. [PMID: 18628490 DOI: 10.1099/jmm.0.2008/000653-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis has been recognized as the causative agent of tularaemia for almost a century. Since its discovery in 1911, it has been shown to infect a wide range of hosts, including humans. As early as the 1920s it was suggested to be an intracellular pathogen, but it has proven to be an enigmatic organism, whose interaction with the host has been difficult to elucidate, and we still have a very limited understanding of the molecular mechanisms of virulence. However, the recent availability of genome sequence data and molecular tools has allowed us to start to understand the molecular basis of F. tularensis pathogenicity, and will facilitate the development of a vaccine to protect against infection.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, DSTL Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
59
|
RipA, a cytoplasmic membrane protein conserved among Francisella species, is required for intracellular survival. Infect Immun 2008; 76:4934-43. [PMID: 18765722 DOI: 10.1128/iai.00475-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans. Based on the deletion mutant phenotype, FTL_1914 was termed ripA (required for intracellular proliferation, factor A). Following uptake by J774.A1 cells, F. tularensis LVS Delta ripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS Delta ripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS Delta ripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence.
Collapse
|
60
|
Pechous RD, McCarthy TR, Mohapatra NP, Soni S, Penoske RM, Salzman NH, Frank DW, Gunn JS, Zahrt TC. A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS One 2008; 3:e2487. [PMID: 18575611 PMCID: PMC2429968 DOI: 10.1371/journal.pone.0002487] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/16/2008] [Indexed: 01/25/2023] Open
Abstract
Background Francisella tularensis is a Gram-negative coccobacillus that causes the febrile illness tularemia. Subspecies that are pathogenic for humans include those comprising the type A (subspecies tularensis) or type B (subspecies holarctica) biovars. An attenuated live vaccine strain (LVS) developed from a type B isolate has previously been used to vaccinate at-risk individuals, but offers limited protection against high dose (>1000 CFUs) challenge with type A strains delivered by the respiratory route. Due to differences between type A and type B F. tularensis strains at the genetic level, it has been speculated that utilization of an attenuated type A strain as a live vaccine might offer better protection against homologous respiratory challenge compared with LVS. Here, we report the construction and characterization of an unmarked ΔpurMCD mutant in the highly virulent type A strain Schu S4. Methodology/Principal Findings Growth of Schu S4 ΔpurMCD was severely attenuated in primary human peripheral blood monocyte-derived macrophages and in the A549 human lung epithelial cell line. The Schu S4 ΔpurMCD mutant was also highly attenuated in mice when delivered via either the intranasal or intradermal infection route. Mice vaccinated intranasally with Schu S4 ΔpurMCD were well protected against high dose intradermal challenge with virulent type A or type B strains of F. tularensis. However, intranasal vaccination with Schu S4 ΔpurMCD induced tissue damage in the lungs, and conferred only limited protection against high dose Schu S4 challenge delivered by the same route. The level of protection observed was similar to that conferred following vaccination with wild-type LVS or the analogous LVS ΔpurMCD mutant. Conclusions/Significance Collectively, these results argue that development of the next generation live attenuated vaccine for Francisella should be based on use of the less pathogenic type B biovar rather than the more reactogenic type A biovar.
Collapse
Affiliation(s)
- Roger D. Pechous
- Department of Microbiology and Molecular Genetics and Center for Biopreparedness and Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Travis R. McCarthy
- Department of Microbiology and Molecular Genetics and Center for Biopreparedness and Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nrusingh P. Mohapatra
- Center for Microbial Interface Biology, Department of Molecular Biology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Shilpa Soni
- Center for Microbial Interface Biology, Department of Molecular Biology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Renee M. Penoske
- Department of Microbiology and Molecular Genetics and Center for Biopreparedness and Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nita H. Salzman
- Department of Microbiology and Molecular Genetics and Center for Biopreparedness and Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics and Center for Biopreparedness and Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - John S. Gunn
- Center for Microbial Interface Biology, Department of Molecular Biology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas C. Zahrt
- Department of Microbiology and Molecular Genetics and Center for Biopreparedness and Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
61
|
The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 2008; 190:4584-95. [PMID: 18469101 DOI: 10.1128/jb.00198-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Francisella tularensis is a highly infectious, facultative intracellular bacterial pathogen that is the causative agent of tularemia. Nearly a century ago, researchers observed that tularemia was often fatal in North America but almost never fatal in Europe and Asia. The chromosomes of F. tularensis strains carry two identical copies of the Francisella pathogenicity island (FPI), and the FPIs of North America-specific biotypes contain two genes, anmK and pdpD, that are not found in biotypes that are distributed over the entire Northern Hemisphere. In this work, we studied the contribution of anmK and pdpD to virulence by using F. novicida, which is very closely related to F. tularensis but which carries only one copy of the FPI. We showed that anmK and pdpD are necessary for full virulence but not for intracellular growth. This is in sharp contrast to most other FPI genes that have been studied to date, which are required for intracellular growth. We also showed that PdpD is localized to the outer membrane. Further, overexpression of PdpD affects the cellular distribution of FPI-encoded proteins IglA, IglB, and IglC. Finally, deletions of FPI genes encoding proteins that are homologues of known components of type VI secretion systems abolished the altered distribution of IglC and the outer membrane localization of PdpD.
Collapse
|
62
|
Type IV pili in Francisella tularensis: roles of pilF and pilT in fiber assembly, host cell adherence, and virulence. Infect Immun 2008; 76:2852-61. [PMID: 18426883 DOI: 10.1128/iai.01726-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence.
Collapse
|
63
|
Identification of differentially regulated francisella tularensis genes by use of a newly developed Tn5-based transposon delivery system. Appl Environ Microbiol 2008; 74:2637-45. [PMID: 18344342 DOI: 10.1128/aem.02882-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Francisella tularensis is the etiologic agent of an intracellular systemic infection of the lymphatic system in humans called tularemia. The organism has become the subject of considerable research interest due to its classification as a category A select agent by the CDC. To aid genetic analysis of this pathogen, we have constructed a temperature-sensitive Tn5-based transposon delivery system that is capable of generating chromosomal reporter fusions with lacZ or luxCDABE, enabling us to monitor gene expression. Transposition is catalyzed by the hyperactive Tn5 transposase, whose expression is driven by the Francisella groES promoter. When high-temperature selection (42 degrees C) is applied to a bacterial culture carrying the transposon delivery plasmid, approximately 0.1% of the population is recovered with Tn5 insertions in the chromosome. Nucleotide sequence analysis of a sample of mutants revealed that the insertions occur randomly throughout the chromosome. The kanamycin-selectable marker of the transposon is also flanked by FLP recombination target sequences that allow deletion of the antibiotic resistance gene when desired. This system has been used to generate transposon mutant libraries for the F. tularensis live vaccine strain as well as two different virulent F. tularensis strains. Chromosomal reporters delivered with the transposon were used to identify genes upregulated by growth in Chamberlain's defined medium. Genes in the fsl operon, reported to be involved in iron acquisition, as well as genes in the igl gene cluster were among those identified by the screen. Further experiments implicate the ferric uptake regulator (Fur) protein in the negative regulation of fsl but not igl reporters, which occurs in an iron-dependent manner. Our results indicate that we have created a valuable new transposon that can be used to identify and characterize virulence genes in F. tularensis strains.
Collapse
|
64
|
Targeted inactivation of francisella tularensis genes by group II introns. Appl Environ Microbiol 2008; 74:2619-26. [PMID: 18310413 DOI: 10.1128/aem.02905-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.
Collapse
|
65
|
Characterization and application of a glucose-repressible promoter in Francisella tularensis. Appl Environ Microbiol 2008; 74:2161-70. [PMID: 18245238 DOI: 10.1128/aem.02360-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is a category A biodefense agent. The examination of gene function in this organism is limited due to the lack of available controllable promoters. Here, we identify a promoter element of F. tularensis LVS that is repressed by glucose (termed the Francisella glucose-repressible promoter, or FGRp), allowing the management of downstream gene expression. In bacteria cultured in medium lacking glucose, this promoter induced the expression of a red fluorescent protein allele, tdtomato. FGRp activity was used to produce antisense RNA of iglC, an important virulence factor, which severely reduced IglC protein levels. Cultivation in glucose-containing medium restored IglC levels, indicating the usefulness of this promoter for controlling both exogenous and chromosomal gene expression. Moreover, FGRp was shown to be active during the infection of human macrophages by using the fluorescence reporter. In this environment, the FGRp-mediated expression of antisense iglC by F. tularensis LVS resulted in reduced bacterial fitness, demonstrating the applicability of this promoter. An analysis of the genomic sequence indicated that this promoter region controls a gene, FTL_0580, encoding a hypothetical protein. A deletion analysis determined the critical sites essential for FGRp activity to be located within a 44-bp region. This is the first report of a conditional promoter and the use of antisense constructs in F. tularensis, valuable genetic tools for studying gene function both in vitro and in vivo.
Collapse
|
66
|
Ludu JS, Nix EB, Duplantis BN, de Bruin OM, Gallagher LA, Hawley LM, Nano FE. Genetic elements for selection, deletion mutagenesis and complementation in Francisella spp. FEMS Microbiol Lett 2007; 278:86-93. [PMID: 18021237 DOI: 10.1111/j.1574-6968.2007.00979.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Francisella novicida is a gram-negative pathogen that can induce disease in mice that mimics human tularemia, and is nearly identical to Francisella tularensis at the genomic level. In this work a number of antibiotic marker cassettes that incorporate a strong F. novicida promoter is constructed, which greatly enhances selection in F. novicida and F. tularensis. Two low-copy plasmid vectors based on a broad-host-range plasmid, and an integrating vector have also been made, and these can be used for genetic complementation. Two general approaches to deletion mutagenesis in F. novicida is also described.
Collapse
Affiliation(s)
- Jagjit S Ludu
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
67
|
Rasko DA, Esteban CD, Sperandio V. Development of novel plasmid vectors and a promoter trap system in Francisella tularensis compatible with the pFLN10 based plasmids. Plasmid 2007; 58:159-66. [PMID: 17459476 PMCID: PMC2013926 DOI: 10.1016/j.plasmid.2007.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/05/2007] [Accepted: 03/10/2007] [Indexed: 11/25/2022]
Abstract
Francisella tularensis is a category A bioterror pathogen which in some cases can cause a severe and fatal human infection. Very few virulence factors are known in this species due to the difficulty in working with it as well as the lack of tools for genetic manipulation. This work describes the construction of a shuttle vector that can replicate in Escherichia coli and F. tularensis as well as two distinct promoter trap constructs based on the shuttle vector backbone. Replication in F. tularensis is based on the promiscuous origin of replication from the Staphylococcus aureus plasmid pC194. We demonstrate the novel plasmids can coexist with established F. tularensis vectors based on the pFNL10 plasmid, the current workhorse of F. tularensis genetics. Our promoter trap can identify promoters that are activated during intracellular growth and survival. These new vectors provide additional tools for the genetic manipulation of F. tularensis.
Collapse
Affiliation(s)
| | | | - Vanessa Sperandio
- University of Texas Southwestern Medical Center at Dallas, Department of Microbiology, 6000 Harry Hines Blvd. Room NA6.138, Dallas, TX 75235-9048, USA
| |
Collapse
|
68
|
Maier TM, Casey MS, Becker RH, Dorsey CW, Glass EM, Maltsev N, Zahrt TC, Frank DW. Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 2007; 75:5376-89. [PMID: 17682043 PMCID: PMC2168294 DOI: 10.1128/iai.00238-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis, the etiologic agent of tularemia in humans, is a potential biological threat due to its low infectious dose and multiple routes of entry. F. tularensis replicates within several cell types, eventually causing cell death by inducing apoptosis. In this study, a modified Himar1 transposon (HimarFT) was used to mutagenize F. tularensis LVS. Approximately 7,000 Km(r) clones were screened using J774A.1 macrophages for reduction in cytopathogenicity based on retention of the cell monolayer. A total of 441 candidates with significant host cell retention compared to the parent were identified following screening in a high-throughput format. Retesting at a defined multiplicity of infection followed by in vitro growth analyses resulted in identification of approximately 70 candidates representing 26 unique loci involved in macrophage replication and/or cytotoxicity. Mutants carrying insertions in seven hypothetical genes were screened in a mouse model of infection, and all strains tested appeared to be attenuated, which validated the initial in vitro results obtained with cultured macrophages. Complementation and reverse transcription-PCR experiments suggested that the expression of genes adjacent to the HimarFT insertion may be affected depending on the orientation of the constitutive groEL promoter region used to ensure transcription of the selective marker in the transposon. A hypothetical gene, FTL_0706, postulated to be important for lipopolysaccharide biosynthesis, was confirmed to be a gene involved in O-antigen expression in F. tularensis LVS and Schu S4. These and other studies demonstrate that therapeutic targets, vaccine candidates, or virulence-related genes may be discovered utilizing classical genetic approaches in Francisella.
Collapse
Affiliation(s)
- Tamara M Maier
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Su J, Yang J, Zhao D, Kawula TH, Banas JA, Zhang JR. Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 2007; 75:3089-101. [PMID: 17420240 PMCID: PMC1932872 DOI: 10.1128/iai.01865-06] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a gram-negative pathogen that causes life-threatening infections in humans and has potential for use as a biological weapon. The genetic basis of the F. tularensis virulence is poorly understood. This study screened a total of 3,936 transposon mutants of the live vaccine strain for infection in a mouse model of respiratory tularemia by signature-tagged mutagenesis. We identified 341 mutants attenuated for infection in the lungs. The transposon disruptions were mapped to 95 different genes, virtually all of which are also present in the genomes of other F. tularensis strains, including human pathogenic F. tularensis strain Schu S4. A small subset of these attenuated mutants carried insertions in the genes encoding previously known virulence factors, but the majority of the identified genes have not been previously linked to F. tularensis virulence. Among these are genes encoding putative membrane proteins, proteins associated with stress responses, metabolic proteins, transporter proteins, and proteins with unknown functions. Several attenuated mutants contained disruptions in a putative capsule locus which partially resembles the poly-gamma-glutamate capsule biosynthesis locus of Bacillus anthracis, the anthrax agent. Deletional mutation analysis confirmed that this locus is essential for F. tularensis virulence.
Collapse
Affiliation(s)
- Jingliang Su
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|