51
|
Abstract
A central dogma of molecular biology is that the sequence of a protein dictates its particular fold and the fold dictates its function. Indeed, the sequence → structure → function hypothesis has been a guiding principle by which scientists approach molecular biology. Every student knows that the genome encodes information for the progression from primary sequence to secondary, tertiary, and ultimately quaternary structure. Yet with a growing number of proteins, a fifth level has been identified: rearrangement of existing structures into distinct forms. Recent observations indicate that replication of Ebola virus depends on this fifth level. We believe other viruses with compact genomes and rapid evolution under selective pressure will be a rich source of examples of polypeptides that rearrange to gain added functions. In this review, we describe mechanisms by which viral, prokaryotic, and eukaryotic polypeptides have adopted alternate structures to control or gain function.
Collapse
Affiliation(s)
- Hal Wasserman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037;
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037; .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
52
|
Kanrai P, Mostafa A, Madhugiri R, Lechner M, Wilk E, Schughart K, Ylösmäki L, Saksela K, Ziebuhr J, Pleschka S. Identification of specific residues in avian influenza A virus NS1 that enhance viral replication and pathogenicity in mammalian systems. J Gen Virol 2016; 97:2135-2148. [PMID: 27405649 DOI: 10.1099/jgv.0.000542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reassortment of their segmented genomes allows influenza A viruses (IAV) to gain new characteristics, which potentially enable them to cross the species barrier and infect new hosts. Improved replication was observed for reassortants of the strictly avian IAV A/FPV/Rostock/34 (FPV, H7N1) containing the NS segment from A/Goose/Guangdong/1/1996 (GD, H5N1), but not for reassortants containing the NS segment of A/Mallard/NL/12/2000 (MA, H7N3). The NS1 of GD and MA differ only in 8 aa positions. Here, we show that efficient replication of FPV-NSMA-derived mutants was linked to the presence of a single substitution (D74N) and more prominently to a triple substitution (P3S+R41K+D74N) in the NS1MA protein. The substitution(s) led to (i) increased virus titres, (ii) larger plaque sizes and (iii) increased levels and faster kinetics of viral mRNA and protein accumulation in mammalian cells. Interestingly, the NS1 substitutions did not affect viral growth characteristics in avian cells. Furthermore, we show that an FPV mutant with N74 in the NS1 (already possessing S3+K41) is able to replicate and cause disease in mice, demonstrating a key role of NS1 in the adaptation of avian IAV to mammalian hosts. Our data suggest that (i) adaptation to mammalian hosts does not necessarily compromise replication in the natural (avian) host and (ii) very few genetic changes may pave the way for zoonotic transmission. The study reinforces the need for close surveillance and characterization of circulating avian IAV to identify genetic signatures that indicate a potential risk for efficient transmission of avian strains to mammalian hosts.
Collapse
Affiliation(s)
- Pumaree Kanrai
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Center (NRC), 12311 Dokki, Giza, Egypt
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Marcus Lechner
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Leena Ylösmäki
- Department of Virology, University of Helsinki, PO Box 21 (Haartmaninkatu 3) 00014, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, PO Box 21 (Haartmaninkatu 3) 00014, Finland
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
53
|
Bluetongue Virus NS4 Protein Is an Interferon Antagonist and a Determinant of Virus Virulence. J Virol 2016; 90:5427-39. [PMID: 27009961 PMCID: PMC4934764 DOI: 10.1128/jvi.00422-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of bluetongue, a major infectious disease of ruminants with serious consequences to both animal health and the economy. The clinical outcome of BTV infection is highly variable and dependent on a variety of factors related to both the virus and the host. In this study, we show that the BTV nonstructural protein NS4 favors viral replication in sheep, the animal species most affected by bluetongue. In addition, NS4 confers a replication advantage on the virus in interferon (IFN)-competent primary sheep endothelial cells and immortalized cell lines. We determined that in cells infected with an NS4 deletion mutant (BTV8ΔNS4), there is increased synthesis of type I IFN compared to cells infected with wild-type BTV-8. In addition, using RNA sequencing (RNA-seq), we show that NS4 modulates the host IFN response and downregulates mRNA levels of type I IFN and interferon-stimulated genes. Moreover, using reporter assays and protein synthesis assays, we show that NS4 downregulates the activities of a variety of promoters, such as the cytomegalovirus immediate-early promoter, the IFN-β promoter, and a promoter containing interferon-stimulated response elements (ISRE). We also show that the NS4 inhibitory activity on gene expression is related to its nucleolar localization. Furthermore, NS4 does not affect mRNA splicing or cellular translation. The data obtained in this study strongly suggest that BTV NS4 is an IFN antagonist and a key determinant of viral virulence.
IMPORTANCE Bluetongue is one of the main infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arthropod-borne virus transmitted from infected to susceptible animals by Culicoides biting midges. Bluetongue has a variable clinical outcome that can be related to both virus and host factors. It is therefore critical to understand the interplay between BTV and the host immune responses. In this study, we show that a nonstructural protein of BTV (NS4) is critical to counteract the innate immune response of the host. Infection of cells with a BTV mutant lacking NS4 results in increased synthesis of IFN-β and upregulation of interferon-stimulated genes. In addition, we show that NS4 is a virulence factor for BTV by favoring viral replication in sheep, the animal species most susceptible to bluetongue.
Collapse
|
54
|
Affiliation(s)
- Daniel Marc
- a ISP, INRA, Université Tours , Nouzilly , France
| |
Collapse
|
55
|
Kwasnik M, Gora IM, Rola J, Zmudzinski JF, Rozek W. NS-gene based phylogenetic analysis of equine influenza viruses isolated in Poland. Vet Microbiol 2015; 182:95-101. [PMID: 26711034 DOI: 10.1016/j.vetmic.2015.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/13/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
The phylogenetic analysis of influenza virus is based mainly on the variable hemagglutinin or neuraminidase genes. However, some discrete evolutionary trends might be revealed when more conservative genes are considered. We compared all available in GenBank database full length NS sequences of equine influenza virus including Polish isolates. Four nucleotides at positions A202, A237, T672 and A714 and three amino acids at positions H59, K71 and S216 which are also present in A/eq/Pulawy/2006 and A/eq/Pulawy/2008 may be discriminating for the Florida sublineage. Threonine at position 83 seems to be characteristic for EIV strains of Florida 2 isolated after 2007. There are nine common substitutions in the NS sequences of A/eq/Pulawy/2005, A/eq/Aboyne/1/2005 and A/eq/Lincolnshire/1/2006 in relation to the reference strain A/eq/Miami/63, resulting in four amino acid changes in NS1 protein (I56, E76, K140, E179) and one in NEP (R22). We grouped these strains as "Aboyne-like". Some of the listed changes were also observed in H7N7 strains isolated between 1956 and 1966, in A/eq/Jilin/89 or in pre-divergent H3N8 strains. Two hypotheses regarding the origin of this group were postulated: three independent transfers of avian influenza viruses into the equine population or reassortation between H7N7 and H3N8 EIV. Similarities of the NS sequences of "Aboyne like" viruses to viruses isolated in the fifties or seventies can reflect a phenomenon of "frozen evolution".
Collapse
Affiliation(s)
- Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland.
| | - Ilona M Gora
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Jan F Zmudzinski
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| |
Collapse
|
56
|
Novel Bat Influenza Virus NS1 Proteins Bind Double-Stranded RNA and Antagonize Host Innate Immunity. J Virol 2015; 89:10696-701. [PMID: 26246567 DOI: 10.1128/jvi.01430-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023] Open
Abstract
We demonstrate that novel bat HL17NL10 and HL18NL11 influenza virus NS1 proteins are effective interferon antagonists but do not block general host gene expression. Solving the RNA-binding domain structures revealed the canonical NS1 symmetrical homodimer, and RNA binding required conserved basic residues in this domain. Interferon antagonism was strictly dependent on RNA binding, and chimeric bat influenza viruses expressing NS1s defective in this activity were highly attenuated in interferon-competent cells but not in cells unable to establish antiviral immunity.
Collapse
|
57
|
Ylösmäki L, Schmotz C, Ylösmäki E, Saksela K. Reorganization of the host cell Crk(L)-PI3 kinase signaling complex by the influenza A virus NS1 protein. Virology 2015; 484:146-152. [PMID: 26099693 DOI: 10.1016/j.virol.2015.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/26/2022]
Abstract
The non-structural protein-1 (NS1) of influenza A virus binds the p85β subunit of phosphoinositide 3-kinase (PI3K) to induce PI3K activity in the infected cells. Some virus strains encode NS1 containing a motif that binds tightly to the SH3 domain of the cellular adapter proteins Crk and CrkL to potentiate NS1-induced PI3K activation. Here we show that this potentiation involves reorganization of the natural CrkL-p85β complex into a novel trimeric complex where NS1 serves as a bridging factor. Of note, NS1 proteins that lack the SH3 binding capacity can also associate with CrkL, but in a less stable trimeric complex mediated by p85β. The data presented here establish Crk proteins as general host cell cofactors of NS1, and show that the enhanced PI3K activation by SH3 binding-competent NS1 variants is mediated by a more efficient tethering of Crk proteins to the NS1-PI3K complex.
Collapse
Affiliation(s)
- Leena Ylösmäki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Constanze Schmotz
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erkko Ylösmäki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
58
|
Baker SF, Nogales A, Martínez-Sobrido L. Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines. Future Virol 2015. [PMID: 26213563 DOI: 10.2217/fvl.15.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination represents the best option to protect humans against influenza virus. However, improving the effectiveness of current vaccines could better stifle the health burden caused by viral infection. Protein synthesis from individual genes can be downregulated by synthetically deoptimizing a gene's codon usage. With more rapid and affordable nucleotide synthesis, generating viruses that contain genes with deoptimized codons is now feasible. Attenuated, vaccine-candidate viruses can thus be engineered with hitherto uncharacterized properties. With eight gene segments, influenza A viruses with variably recoded genomes can produce a spectrum of attenuation that is contingent on the gene segment targeted and the number of codon changes. This review summarizes different targets and approaches to deoptimize influenza A virus codons for novel vaccine generation.
Collapse
Affiliation(s)
- Steven F Baker
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| | - Aitor Nogales
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
59
|
Weber M, Sediri H, Felgenhauer U, Binzen I, Bänfer S, Jacob R, Brunotte L, García-Sastre A, Schmid-Burgk JL, Schmidt T, Hornung V, Kochs G, Schwemmle M, Klenk HD, Weber F. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 2015; 17:309-319. [PMID: 25704008 PMCID: PMC4359673 DOI: 10.1016/j.chom.2015.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/24/2014] [Accepted: 01/05/2015] [Indexed: 12/16/2022]
Abstract
The cytoplasmic RNA helicase RIG-I mediates innate sensing of RNA viruses. The genomes of influenza A virus (FLUAV) are encapsidated by the nucleoprotein and associated with RNA polymerase, posing potential barriers to RIG-I sensing. We show that RIG-I recognizes the 5'-triphosphorylated dsRNA on FLUAV nucleocapsids but that polymorphisms at position 627 of the viral polymerase subunit PB2 modulate RIG-I sensing. Compared to mammalian-adapted PB2-627K, avian FLUAV nucleocapsids possessing PB2-627E are prone to increased RIG-I recognition, and RIG-I-deficiency partially restores PB2-627E virus infection of mammalian cells. Heightened RIG-I sensing of PB2-627E nucleocapsids correlates with previously established lower affinity of 627E-containing PB2 for nucleoprotein and is increased by further nucleocapsid instability. The effect of RIG-I on PB2-627E nucleocapsids is independent of antiviral signaling, suggesting that RIG-I-nucleocapsid binding alone can inhibit infection. These results indicate that RIG-I is a direct avian FLUAV restriction factor and highlight nucleocapsid disruption as an antiviral strategy.
Collapse
Affiliation(s)
- Michaela Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Hanna Sediri
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ulrike Felgenhauer
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ina Binzen
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Sebastian Bänfer
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Linda Brunotte
- Institute for Virology, University Medical Center, D-79008 Freiburg, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan L Schmid-Burgk
- Institute of Molecular Medicine, University Hospital, University of Bonn, D-53127 Bonn, Germany
| | - Tobias Schmidt
- Institute of Molecular Medicine, University Hospital, University of Bonn, D-53127 Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, D-53127 Bonn, Germany
| | - Georg Kochs
- Institute for Virology, University Medical Center, D-79008 Freiburg, Germany
| | - Martin Schwemmle
- Institute for Virology, University Medical Center, D-79008 Freiburg, Germany
| | - Hans-Dieter Klenk
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Friedemann Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany.
| |
Collapse
|
60
|
Barnwal B, Mok CK, Wu J, Diwakar MK, Gupta G, Zeng Q, Chow VTK, Song J, Yuan YA, Tan YJ. A monoclonal antibody binds to threonine 49 in the non-structural 1 protein of influenza A virus and interferes with its ability to modulate viral replication. Antiviral Res 2015; 116:55-61. [PMID: 25666762 PMCID: PMC7113856 DOI: 10.1016/j.antiviral.2015.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/10/2014] [Accepted: 01/30/2015] [Indexed: 01/01/2023]
Abstract
The emergence of resistant influenza A viruses highlights the continuous requirement of new antiviral drugs that can treat the viral infection. Non-structural 1 (NS1) protein, an indispensable component for efficient virus replication, can be used as a potential target for generating new antiviral agents. Here, we study the interaction of 2H6 monoclonal antibody with NS1 protein and also determine whether influenza virus replication can be inhibited by blocking NS1. The 2H6-antigen binding fragment (Fab) forms a multimeric complex with the NS1 RNA-binding domain (RBD). T49, a residue which forms a direct hydrogen bond with double stranded RNA, in NS1 protein was found to be critical for its interaction with 2H6 antibody. NS1(RBD) has high affinity to 2H6 with KD of 43.5±4.24nM whereas NS1(RBD)-T49A has more than 250 times lower affinity towards 2H6. Interestingly, the intracellular expression of 2H6-single-chain variable fragment (scFv) in mammalian cells caused a reduction in viral growth and the M1 viral protein level was significantly reduced in 2H6-scFv transfected cells in comparison to vector transfected cells at 12h post infection. These results indicate that the tight binding of 2H6 to NS1 could lead to reduction in viral replication and release of progeny virus. In future, 2H6 antibody in combination with other neutralizing antibodies can be used to increase the potency of viral inhibition.
Collapse
Affiliation(s)
- Bhaskar Barnwal
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Chee-Keng Mok
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Jianping Wu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Mandakhalikar Kedar Diwakar
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Y Adam Yuan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore.
| |
Collapse
|
61
|
Kong W, Liu L, Wang Y, He Q, Wu S, Qin Z, Wang J, Sun H, Sun Y, Zhang R, Pu J, Liu J. C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission. J Gen Virol 2015; 96:259-268. [DOI: 10.1099/vir.0.071001-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Weili Kong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Lirong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yu Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Qiming He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Sizhe Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhihua Qin
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jinliang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
62
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|