51
|
Dietrich C, Miller J, McKenzie G, Palkovics L, Balázs E, Palukaitis P, Maiss E. No recombination detected in artificial potyvirus mixed infections and between potyvirus derived transgenes and heterologous challenging potyviruses. ENVIRONMENTAL BIOSAFETY RESEARCH 2007; 6:207-18. [PMID: 18001687 DOI: 10.1051/ebr:2007042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Risk-assessment studies of virus-resistant transgenic plants (VRTPs) focussing on recombination of a plant virus with a transgenic sequence of a different virus should include a comparison of recombination frequencies between viruses in double-infected non-transgenic plants with those observed in singly infected transgenic plants to estimate recombination incidence in VRTPs. In this study, the occurrence of recombination events was investigated in non-transgenic plants double-infected with two different potyviruses, as well as in potyviral genomes in singly infected transgenic plants expressing potyvirus sequences. Different potyviruses, namely Potato virus A (PVA), Tobacco vein mottling virus (TVMV), two strains of Potato virus Y (PVY-O, PVY-H) and two strains of Plum pox virus (PPV-NAT, PPV-SK68), were used in three combinations for double infection of a common host. Furthermore, transgenic plants expressing either potyviral coat protein (CP), helicase (CI) or polymerase (NIb) coding sequences (PPV-NAT-CP, PVY-CI, PVY-NIb) were singly-infected with a heterologous potyvirus, which was not targeted by the respective transgenic resistance. To identify recombinant potyviral sequences, a sensitive RT-PCR was developed to detect up to one recombinant molecule out of 10(6) parental molecules. In 304 mixed infected non-transgenic plants, 92 mixed and 164 single infected transgenic plants screened for recombinant sequences no recombinant potyviral sequence was found. These results indicate that recombination events between different potyviruses in mixed infections and between a potyvirus infecting a potyvirus-resistant transgenic plant are likely to be very infrequent.
Collapse
Affiliation(s)
- Christof Dietrich
- German Collection of Microorganisms and Cell Cultures, Plant Virus Division, Inhoffenstrasse 7b, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Capote N, Pérez-Panadés J, Monzó C, Carbonell E, Urbaneja A, Scorza R, Ravelonandro M, Cambra M. Assessment of the diversity and dynamics of Plum pox virus and aphid populations in transgenic European plums under Mediterranean conditions. Transgenic Res 2007; 17:367-77. [PMID: 17605085 DOI: 10.1007/s11248-007-9112-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 06/01/2007] [Indexed: 11/30/2022]
Abstract
The molecular variability of Plum pox virus (PPV) populations was compared in transgenic European plums (Prunus domestica L.) carrying the coat protein (CP) gene of PPV and non-transgenic plums in an experimental orchard in Valencia, Spain. A major objective of this study was to detect recombination between PPV CP transgene transcripts and infecting PPV RNA. Additionally, we assessed the number and species of PPV aphid vectors that visited transgenic and non-transgenic plum trees. Test trees consisted of five different P. domestica transgenic lines, i.e. the PPV-resistant C5 'HoneySweet' line and the PPV-susceptible C4, C6, PT6 and PT23 lines, and non-transgenic P. domestica and P. salicina Lind trees. No significant difference in the genetic diversity of PPV populations infecting transgenic and conventional plums was detected, in particular no recombinant between transgene transcripts and incoming viral RNA was found at detectable levels. Also, no significant difference was detected in aphid populations, including viruliferous individuals, that visited transgenic and conventional plums. Our data indicate that PPV-CP transgenic European plums exposed to natural PPV infection over an 8 year period caused limited, if any, risk beyond the cultivation of conventional plums under Mediterranean conditions in terms of the emergence of recombinant PPV and diversity of PPV and aphid populations.
Collapse
Affiliation(s)
- Nieves Capote
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera km 5, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Glasa M, Svoboda J, Nováková S. Analysis of the molecular and biological variability of zucchini yellow mosaic virus isolates from Slovakia and Czech Republic. Virus Genes 2007; 35:415-21. [PMID: 17497214 DOI: 10.1007/s11262-007-0101-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
The diversity of ZYMV isolates was analysed by the biological and molecular characterisation of 11 isolates sampled from cucumber, squash and zucchini between 2001 and 2006 in various localities of Slovakia and Czech Republic. Analysis of the molecular variability targeting three separate genomic regions of the ZYMV genome [P1, P3 and (Cter)NIb-(Nter)CP] revealed a remarkable low level of nucleotide variability between isolates, despite their temporal and spatial distinction. Phylogenetic analysis based on the 5'-terminal part of the CP gene highlighted the close relatedness of Slovak, Czech and other central European isolates. Low level of genetic diversity within central European ZYMV isolates is in contrast to the diversity observed for isolates from other geographical regions, in particular Asia. No evidence of recombination in the ZYMV genome was detected. Sequence comparison between aggressive and moderate ZYMV isolates revealed one amino acid difference in the N-terminal part of the P3 protein, potentially involved in the tolerance breaking.
Collapse
Affiliation(s)
- Miroslav Glasa
- Department of Plant Virology, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| | | | | |
Collapse
|
54
|
Valli A, López-Moya JJ, García JA. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol 2007; 88:1016-1028. [PMID: 17325376 DOI: 10.1099/vir.0.82402-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome structure and sequence are notably conserved between members of the family Potyviridae. However, some genomic regions of these viruses, such as that encoding the P1 protein, show strikingly high variability. In this study, some partially conserved motifs were identified upstream of the quite well-conserved protease domain located near the P1 C terminus. The irregular distribution of these motifs suggests that the potyviral P1 proteins have undergone complex evolutionary diversification. Evidence was found of recombination events in the P1 N-terminal region, similar to those reported in potyviruses of the bean common mosaic virus subgroup, but also affecting other potyviruses. Moreover, intergeneric recombination events affecting potyviruses and ipomoviruses were also observed. Evidence that these recombination events could be linked to host adaptation is provided. Specific sequence features and differences in net charge help to classify the P1 proteins of members of the family Potyviridae into two groups: those from potyviruses and rymoviruses and those from tritimoviruses. The ipomovirus Cucumber vein yellowing virus has two P1 copies arranged in tandem, the most N-terminal one being of the potyvirus type and the other being of the tritimovirus type. These findings suggest that both recombination and gene duplication have contributed to P1 evolution and helped to facilitate successful adaptation of members of the family Potyviridae to a wide range of host species.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan José López-Moya
- Laboratori de Genètica Molecular Vegetal, Consorci CSIC-IRTA, IBMB, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
55
|
Ohshima K, Tomitaka Y, Wood JT, Minematsu Y, Kajiyama H, Tomimura K, Gibbs AJ. Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J Gen Virol 2007; 88:298-315. [PMID: 17170463 DOI: 10.1099/vir.0.82335-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potyviruses have variable single-stranded RNA genomes and many show clear evidence of recombination. This report studied the distribution of recombination sites in the genomes of 92 isolates of the potyvirus Turnip mosaic virus (TuMV); 42 came from the international gene sequence databases and an additional 50 complete genomic sequences were generated from field samples collected in Europe and Asia. The sequences were examined for evidence of recombination using seven different sequence comparison methods and the exact position of each site was confirmed by sequence composition analysis. Recombination sites were found throughout the genomes, except in the small 6K1 protein gene, and only 24 of the genomes (26%) showed no evidence of recombination. Statistically significant clusters of recombination sites were found in the P1 gene and in the CI/6K2/VPg gene region. Most recombination sites were bordered by an upstream (5') region of GC-rich and downstream (3') region of AU-rich sequence of a similar length. Correlations between the presence and type of recombination site and provenance, host type and phylogenetic relationships are discussed, as is the role of recombination in TuMV evolution.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Yasuhiro Tomitaka
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Jeffery T Wood
- Statistical Consulting Unit, Graduate School, Australian National University, Canberra, ACT 0200, Australia
| | - Yoshiteru Minematsu
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hiromi Kajiyama
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Kenta Tomimura
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | | |
Collapse
|
56
|
Damsteegt VD, Scorza R, Stone AL, Schneider WL, Webb K, Demuth M, Gildow FE. Prunus Host Range of Plum pox virus (PPV) in the United States by Aphid and Graft Inoculation. PLANT DISEASE 2007; 91:18-23. [PMID: 30781060 DOI: 10.1094/pd-91-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plum pox (Sharka) is a serious virus disease of stone fruits caused by the Plum pox virus (PPV). To determine which species could function as potential hosts and virus reservoirs, we used aphid transmission and bud or chip grafting to evaluate the susceptibility of commercial, ornamental, and wild Prunus species to isolates of PPV found in Pennsylvania, USA. Following inoculation, test trees were observed for symptoms, analyzed by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), back-assayed to healthy peach, and followed through at least four cold-induced dormancy (CID) cycles over 4 years. Thirty-one of 33 Prunus species and cultivars were systemically infected following aphid transmission. Systemic infection could not be detected in P. cerasus (sour cherry) and P. × 'Snofozam' (Snow Fountains) despite repeated aphid inoculation attempts. Following grafting of PPV-infected budwood, all 40 species and varieties became infected, although species differed in their susceptibility. Within most species, some individual plants remained PPV negative throughout the study despite repeated inoculations. Infection in some species could be detected only through quantitative reverse transcription (RT)-PCR. Most species displayed clear symptoms, were highly positive by ELISA and RT-PCR, and could be back-inoculated into peach seedlings following CID. Our results indicate that a wide range of native and ornamental Prunus species are susceptible to U.S. isolates of PPV-D.
Collapse
Affiliation(s)
- V D Damsteegt
- USDA, ARS, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702
| | - R Scorza
- USDA, ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430
| | - A L Stone
- USDA, ARS, FDWSRU, Ft. Detrick, MD 21702
| | | | - K Webb
- USDA, ARS, AFRS, Kearneysville, WV 25430
| | - M Demuth
- USDA, ARS, AFRS, Kearneysville, WV 25430
| | - F E Gildow
- Department of Plant Pathology, Penn State University, University Park, PA 16802
| |
Collapse
|
57
|
Moury B, Desbiez C, Jacquemond M, Lecoq H. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 2006; 67:49-87. [PMID: 17027677 DOI: 10.1016/s0065-3527(06)67002-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Moury
- INRA Avignon, Station de Pathologie Végétale, Domaine St Maurice BP94 84143 Montfavet cedex, France
| | | | | | | |
Collapse
|
58
|
Varga A, James D. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods 2006; 138:184-90. [PMID: 17011051 DOI: 10.1016/j.jviromet.2006.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 08/18/2006] [Accepted: 08/31/2006] [Indexed: 11/19/2022]
Abstract
A one step, accelerated reverse transcription loop-mediated isothermal amplification (RT-LAMP) procedure was developed for the detection of Plum pox virus (PPV). The six primers required for accelerated RT-LAMP were designed using a conserved region in the C-terminus of the coat protein coding region of PPV. RT-LAMP was used to detect isolates of five strains of PPV including the strains D, M, EA, C, and W. The virus was detected reliably in both infected herbaceous and woody hosts. RT-LAMP was compared to real-time RT-PCR with SYBR Green I and melting curve analysis, using serial dilutions of total RNA extracts. Similar sensitivities were observed, except that real-time RT-PCR was more consistent at lower template concentrations. The purity of the FIP and BIP primers affected the efficiency of the reaction, and incubation time and template concentration affected the ladder-like pattern observed after agarose gel electrophoresis. Although PPV could be detected after 30min of incubation at 63 degrees C, a longer incubation time was required for lower concentrations of the target. RT-LAMP is a very sensitive, low cost diagnostic tool that should be of value in more accurate determination of the distribution of PPV. This should assist in preventing further spread of this devastating virus.
Collapse
Affiliation(s)
- Aniko Varga
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, British Columbia V8L 1H3, Canada
| | | |
Collapse
|
59
|
Cambra M, Boscia D, Myrta A, Palkovics L, Navrátil M, Barba M, Gorris MT, Capote N. Detection and characterization of Plum pox virus: serological methods. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00983.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
60
|
James D, Glasa M. Causal agent of sharka disease: new and emerging events associated with Plum pox virus characterization. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00981.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Olmos A, Capote N, Candresse T. Detection and characterization of Plum pox virus: molecular methods. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00984.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
Candresse T, Cambra M. Causal agent of sharka disease: historical perspective and current status of Plum pox virus strains. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00980.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Capote N, Gorris MT, Martínez MC, Asensio M, Olmos A, Cambra M. Interference Between D and M Types of Plum pox virus in Japanese Plum Assessed by Specific Monoclonal Antibodies and Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction. PHYTOPATHOLOGY 2006; 96:320-325. [PMID: 18944448 DOI: 10.1094/phyto-96-0320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The dynamics of virus interference between two isolates of Plum pox virus (PPV) belonging to the main PPV types, D and M, were analyzed in Japanese plum (Prunus salicina) by challenge inoculations. To assess the consequences of a PPV-M infection on plum already infected with PPV-D, and vice versa (predominance of one of the strains, recombination, synergism, symptoms aggravation, and so on), 30 Japanese plum trees were graft inoculated with PPV-D or PPV-M isolates in quarantine conditions. One year postinoculation, in the event that the inoculated isolates were detected in the whole plant, a second challenge inoculation (PPV-M or PPV-D, respectively) was performed by grafting. The presence of PPV-D, PPV-M, or both was monitored for 7 years by double-antibody sandwich indirect enzyme-linked immunosorbent assay using specific monoclonal antibodies. Reverse transcription-polymerase chain reaction (RT-PCR) with D- and M-specific primers confirmed the serological typing. Real-time RT-PCR assays were performed using D- and M-specific fluorescent 3' minor groove binder-DNA probes, which were able to detect and quantify PPV populations in the inoculated plants with greater precision. The presence of PPV-D in Japanese plum did not cross-protect the trees against PPV-M infection. In PPV-D-infected plants, the PPV-M strain used as challenge inoculum behaved differently depending on the plum cultivar assayed. In cv. Black Diamond, PPV-M invaded the plant progressively, displacing the previous PPV-D population; whereas, in cv. Sun Gold, both PPV isolates coexisted in the plant. In contrast, the PPV-D isolate used was unable to infect plants of both cultivars in which a PPV-M population already was established. After 7 years, no synergism was observed and no recombination event between PPV-D and PPV-M genomes was detected.
Collapse
|
64
|
Varga A, James D. Real-time RT-PCR and SYBR Green I melting curve analysis for the identification of Plum pox virus strains C, EA, and W: Effect of amplicon size, melt rate, and dye translocation. J Virol Methods 2006; 132:146-53. [PMID: 16293321 DOI: 10.1016/j.jviromet.2005.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/23/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
Real-time RT-PCR and SYBR green I melt curve analysis of a 74 bp amplicon enabled identification of Plum pox virus strains C, EA, and W, with distinct T(m)'s associated with each strain. This test is a useful supplement to a real-time RT-PCR test described earlier that was used to distinguish PPV strains D and M. A longer fragment of 155 bp was not effective for strain identification. A simplified one-tube protocol, with dithiothreitol eliminated from the reaction, showed similar sensitivity when compared to a two-tube protocol. For melt curve analysis, a slower melt rate of 0.1 degrees C/s, compared to 0.4 degrees C/s, was effective for detecting weak amplicons, and improved resolution of the T(m) of amplicons amplified simultaneously. SYBR green I was useful for duplex melt curve analysis. In repeated melt run treatments (total of 14) of a single sample containing co-amplified targets, complete translocation of SYBR green I was observed, going from a 74 bp fragment to a 114 bp fragment. The duration of the melt run may be a critical factor affecting SYBR green I binding and translocation, and its manipulation may facilitate improved resolution and simultaneous detection of multiple targets. This phenomenon may explain inconsistent SYBR green I fluorescence patterns associated with melt curve analysis of some amplicon complexes.
Collapse
Affiliation(s)
- Aniko Varga
- Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, BC, Canada V8L 1H3
| | | |
Collapse
|
65
|
Myrta A, Varga A, James D. The complete genome sequence of an El Amar isolate of plum pox virus (PPV) and its phylogenetic relationship to other PPV strains. Arch Virol 2006; 151:1189-98. [PMID: 16397750 DOI: 10.1007/s00705-005-0703-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
The genomic sequence of an El Amar isolate of plum pox virus (PPV) from Egypt was determined by sequencing overlapping cDNA fragments. This is the first complete sequence of a member of the El Amar (EA) strain of PPV. The genome consists of 9791 nt, excluding a poly(A) tail at the 3' terminus. The complete nt sequence of PPV EA is 79-80%, 80%, 77%, and 77% homologous with isolates of strains D/M, Rec (BOR3), C, and W, respectively. The polyprotein identity ranged from 87-91%. Phylogenetic analysis using the complete genome sequence of PPV EA confirmed its strain status. No significant recombination signals were identified using PhylPro and SimPlot scans of the PPV EA sequence, however an interesting recombination signal was identified in the P1/HC-Pro region of PPV W3174.
Collapse
Affiliation(s)
- A Myrta
- Istituto Agronomico Mediterraneo, Bari, Italy
| | | | | |
Collapse
|
66
|
Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 2005; 14:989-94. [PMID: 16315100 DOI: 10.1007/s11248-005-1773-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 08/05/2005] [Indexed: 10/25/2022]
Abstract
We report the application of the hairpin-mediated RNA silencing technology for obtaining resistance to Plum pox virus (PPV) infection in Nicotiana benthamiana plants. Four sequences, covering the P1 and silencing suppressor HC-Pro genes of an Italian PPV M isolate, were introduced into N. benthamiana plants as two inverted repeats separated by an intron sequence under the transcriptional control of the Cauliflower Mosaic Virus 35S promoter. In a leaf disk infection assay, 38 out of 40 T0 transgenic plants were resistant to PPV infection. Eight lines, 2 for each construct, randomly selected among the 38 resistant plants were further analysed. Two hundred forty eight out of 253 T1 transgenic plants were resistant to local and systemic PPV infection. All transgenic single locus lines were completely resistant. These data indicate that the RNA silencing of PPV P1/HCPro sequences results in an efficient and predictable PPV resistance, which may be utilized in obtaining stone fruit plants resistant to the devastating Sharka disease.
Collapse
Affiliation(s)
- Elisa Di Nicola-Negri
- Section of General Pathology and Physiopathology, CRA Plant Pathology Research Institute, Rome, Italy
| | | | | | | |
Collapse
|
67
|
James D, Varga A. Nucleotide sequence analysis of Plum pox virus isolate W3174: evidence of a new strain. Virus Res 2005; 110:143-50. [PMID: 15845265 DOI: 10.1016/j.virusres.2005.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 02/02/2005] [Accepted: 02/14/2005] [Indexed: 11/16/2022]
Abstract
The nucleotide sequence of Plum pox virus (PPV) isolate W3174 was determined. The virus genome consists of 9788 nucleotides (nt), excluding the poly(A) tail at the 3'-terminus, with 5'- and 3'-untranslated regions (UTRs) of 146 and 219 nt, respectively. The deduced polyprotein consists of 3141 amino acid (aa) residues, with the coat protein region consisting of 993 nt (331 aa). In comparisons with PPV-D, -M, -EA and -C isolates, nucleotide identity levels ranged from 79 to 80% for the entire genome and from 78 to 79%, 78 to 81%, and 92 to 95% for the NIb, CP, and 3'-UTR regions, respectively. The majority of nucleotide substitutions in the NIb region of W3174 are silent, while substitutions in the CP region are not silent, giving aa identities of 89-91% and 79-81%, respectively. The HC-Pro region contains the KITC and PTK motifs, and the DAG motif is located at positions 12-14 of the deduced CP aa sequence, all associated with aphid transmission. Phylogenetic analysis based on the complete genome sequence, the NIb, CP, and 3'-UTR region were performed. PPV-W3174 consistently formed a distinct clade or group, when compared to members of all four recognized strains of PPV, indicating that it is genetically distinct. These results are consistent with serological and nucleic acid-based strain typing data and justify recognition of this isolate as representative of a new strain identified as PPV-W.
Collapse
Affiliation(s)
- D James
- Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, BC, Canada V8L 1H3.
| | | |
Collapse
|
68
|
Glasa M, Candresse T. Partial sequence analysis of an atypical Turkish isolate provides further information on the evolutionary history of Plum pox virus (PPV). Virus Res 2005; 108:199-206. [PMID: 15681071 DOI: 10.1016/j.virusres.2004.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
A variety of techniques, such as typing with subgroup-specific monoclonal antibodies, restriction length polymorphism (RFLP) analysis or subgroup-specific RT-PCR are available for the discrimination of Plum pox virus (PPV) isolates. However, the existence of PPV isolates showing abnormal typing properties has been observed in the past [Candresse, T., Cambra, M., Dallot, S., Lanneau, M., Asensio, M., Gorris, M.T., Revers, F., Macquaire, G., Olmos, A., Boscia, D., Quiot J.B., Dunez, J., 1998. Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of Plum pox potyvirus. Phytopathology 88, 198-204.]. In an effort to understand the molecular mechanisms underlying such anomalous serological and molecular typing characteristics, partial 3' (1449 nt) and 5' (3706 nt) sequences have been determined for an atypical Turkish PPV isolate (Abricotier Turquie or Ab-Tk). The results obtained indicate that its unusual typing behaviour is caused by point mutations affecting key restriction sites and epitopes and confirm that this isolate represents a divergent member of the PPV-M subgroup. In addition, analysis of the partial Ab-Tk genomic sequences demonstrated that the 5' region of the genome of this isolate has a mosaic structure resulting from recombination event(s), shedding new light on the evolutionary history of Plum pox virus.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- DNA Fingerprinting
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Viral/chemistry
- DNA, Viral/isolation & purification
- Epitopes/genetics
- Epitopes/immunology
- Evolution, Molecular
- Molecular Sequence Data
- Phylogeny
- Plum Pox Virus/genetics
- Plum Pox Virus/immunology
- Plum Pox Virus/isolation & purification
- Point Mutation
- Polymorphism, Restriction Fragment Length
- Prunus/virology
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Homology
- Serotyping
- Turkey
Collapse
Affiliation(s)
- Miroslav Glasa
- Institute of Virology, Department of Plant Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia.
| | | |
Collapse
|
69
|
Glasa M, Paunovic S, Jevremovic D, Myrta A, Pittnerová S, Candresse T. Analysis of recombinant Plum pox virus (PPV) isolates from Serbia confirms genetic homogeneity and supports a regional origin for the PPV-Rec subgroup. Arch Virol 2005; 150:2051-60. [PMID: 15906106 DOI: 10.1007/s00705-005-0548-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
The recent observation of the frequent occurrence of natural recombinant Plum pox virus (PPV) isolates has led to the identification of a distinct PPV subgroup, named PPV-Rec. The diversity, origin and geographical spread of the recombinant PPV isolates belonging to this subgroup remain, however, relatively poorly known. In an effort to further our understanding of these isolates, eight PPV isolates from Serbia, the country from which the first such recombinant (PPV-o6) originated, were characterized. Depending on the genomic region targeted by different typing assays, seven of the eight isolates tested presented discrepancies in their typing behavior. Sequence analysis of the (Cter)NIb-(Nter)CP region confirmed the recombinant nature of these seven isolates which all presented an identical recombination breakpoint identical to previously characterized PPV-Rec isolates. Biological indexing and immunoblot analysis provided indications that asymptomatic infection of the GF305 peach indicator and migration of the coat protein as a double-band in immunoblots may represent conserved and discriminating properties of PPV-Rec isolates. The genetic diversity of PPV-Rec isolates from former Yugoslavia (Serbia, Bosnia and Herzegovina) was estimated to be twice as large as that of the PPV-Rec isolates obtained from all other countries to date (Albania, Bulgaria, Czech republic, Germany, Hungary and Slovakia). These last results are consistent with the hypothesis that former Yugoslavia is the center of dispersion of PPV-Rec. Taken together, the results presented here provide further evidence for the wide distribution and temporal genetic stability of these natural PPV recombinant isolates and provide for the first time a possible scenario for their dispersion throughout central and eastern Europe.
Collapse
Affiliation(s)
- M Glasa
- Department of Plant Virology, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|