51
|
Molecular identification and analysis of nonserotypeable human enteroviruses. J Clin Microbiol 2010; 48:1276-82. [PMID: 20164278 DOI: 10.1128/jcm.02384-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conventional approaches to characterizing human enteroviruses (HEVs) are based on viral isolation and neutralization. Molecular typing methods depend largely on reverse transcription-PCR (RT-PCR) and nucleotide sequencing of the entire or partial VP1 gene. A modified RT-PCR-based reverse line blot (RLB) hybridization assay was developed as a rapid and efficient way to characterize common and nonserotypeable (by neutralization) HEVs. Twenty HEV serotypes accounted for 87.1% of all HEVs isolated at a reference laboratory from 1979 to 2007; these common serotypes were identified using one sense and three antisense primers and a set of 80 serotype-specific probes in VP1 (F. Zhou et al., J. Clin. Microbiol. 47:2737-2743, 2009). In this study, one HEV-specific primer pair, two probes in the 5' untranslated region (UTR), and a new set of 80 serotype-specific probes in VP1 were designed. First, we successfully applied the modified RT-PCR-RLB (using two HEV-specific probes and two sets of serotype-specific probes) to synchronously detect the 5' UTR and VP1 regions of 131/132 isolates previously studied (F. Zhou et al., J. Clin. Microbiol. 47:2737-2743, 2009). Then, this method was used to identify 73/92 nonserotypeable HEV isolates; 19 nonserotypeable isolates were hybridized only with HEV-specific probes. The VP1 region of 92 nonserotypeable HEV isolates was sequenced; 73 sequences corresponded with one or both RLB results and 19 (not belonging to the 20 most common genotypes) were identified only by sequencing. Two sets of serotype-specific probes can capture the majority of strains belonging to the 20 most common serotypes/genotypes simultaneously or complementarily. Synchronous detection of the 5' UTR and VP1 region by RT-PCR-RLB will facilitate the identification of HEVs, especially nonserotypeable isolates.
Collapse
|
52
|
Zhang Y, Zhang F, Zhu S, Chen L, Yan D, Wang D, Tang R, Zhu H, Hou X, An H, Zhang H, Xu W. A Sabin 2-related poliovirus recombinant contains a homologous sequence of human enterovirus species C in the viral polymerase coding region. Arch Virol 2009; 155:197-205. [PMID: 19946714 DOI: 10.1007/s00705-009-0564-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
A type 2 vaccine-related poliovirus (strain CHN3024), differing from the Sabin 2 strain by 0.44% in the VP1 coding region was isolated from a patient with vaccine-associated paralytic poliomyelitis. Sequences downstream of nucleotide position 6735 (3D(pol) coding region) were derived from an unidentified sequence; no close match for a potential parent was found, but it could be classified into a non-polio human enteroviruses species C (HEV-C) phylogeny. The virus differed antigenically from the parental Sabin strain, having an amino acid substitution in the neutralizing antigenic site 1. The similarity between CHN3024 and Sabin 2 sequences suggests that the recombination was recent; this is supported by the estimation that the initiating OPV dose was given only 36-75 days before sampling. The patient's clinical manifestations, intratypic differentiation examination, and whole-genome sequencing showed that this recombinant exhibited characteristics of neurovirulent vaccine-derived polioviruses (VDPV), which may, thus, pose a potential threat to a polio-free world.
Collapse
Affiliation(s)
- Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 27, Nanwei Road, Xuanwu District, 100050, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Huang T, Wang W, Bessaud M, Ren P, Sheng J, Yan H, Zhang J, Lin X, Wang Y, Delpeyroux F, Deubel V. Evidence of recombination and genetic diversity in human rhinoviruses in children with acute respiratory infection. PLoS One 2009; 4:e6355. [PMID: 19633719 PMCID: PMC2712091 DOI: 10.1371/journal.pone.0006355] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022] Open
Abstract
Background Human rhinoviruses (HRVs) are a highly prevalent cause of acute respiratory infection in children. They are classified into at least three species, HRV-A, HRV-B and HRV-C, which are characterized by sequencing the 5′ untranslated region (UTR) or the VP4/VP2 region of the genome. Given the increased interest for novel HRV strain identification and their worldwide distribution, we have carried out clinical and molecular diagnosis of HRV strains in a 2-year study of children with acute respiratory infection visiting one district hospital in Shanghai. Methodology/Findings We cloned and sequenced a 924-nt fragment that covered part of the 5′UTR and the VP4/VP2 capsid genes. Sixty-four HRV-infected outpatients were diagnosed amongst 827 children with acute low respiratory tract infection. Two samples were co-infected with HRV-A and HRV-B or HRV-C. By comparative analysis of the VP4/VP2 sequences of the 66 HRVs, we showed a high diversity of strains in HRV-A and HRV-B species, and a prevalence of 51.5% of strains that belonged to the recently identified HRV-C species. When analyzing a fragment of the 5′ UTR, we characterized at least two subspecies of HRV-C: HRV-Cc, which clustered differently from HRV-A and HRV-B, and HRV-Ca, which resulted from previous recombination in this region with sequences related to HRV-A. The full-length sequence of one strain of each HRV-Ca and HRV-Cc subspecies was obtained for comparative analysis. We confirmed the close relationship of their structural proteins but showed apparent additional recombination events in the 2A gene and 3′UTR of the HRV-Ca strain. Double or triple infections with HRV-C and respiratory syncytial virus and/or bocavirus were diagnosed in 33.3% of the HRV-infected patients, but no correlation with severity of clinical outcome was observed. Conclusion Our study showed a high diversity of HRV strains that cause bronchitis and pneumonia in children. A predominance of HRV-C over HRV-A and HRV-B was observed, and two subspecies of HRV-C were identified, the diversity of which seemed to be related to recombination with former HRV-A strains. None of the HRV-C strains appeared to have a higher clinical impact than HRV-A or HRV-B on respiratory compromise.
Collapse
Affiliation(s)
- Ting Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Unit of Emerging Viruses, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Tapparel C, Junier T, Gerlach D, Van-Belle S, Turin L, Cordey S, Mühlemann K, Regamey N, Aubert JD, Soccal PM, Eigenmann P, Zdobnov E, Kaiser L. New respiratory enterovirus and recombinant rhinoviruses among circulating picornaviruses. Emerg Infect Dis 2009; 15:719-26. [PMID: 19402957 PMCID: PMC2687021 DOI: 10.3201/eid1505.081286] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increased genomic diversity of these viruses is demonstrated. Rhinoviruses and enteroviruses are leading causes of respiratory infections. To evaluate genotypic diversity and identify forces shaping picornavirus evolution, we screened persons with respiratory illnesses by using rhinovirus-specific or generic real-time PCR assays. We then sequenced the 5′ untranslated region, capsid protein VP1, and protease precursor 3CD regions of virus-positive samples. Subsequent phylogenetic analysis identified the large genotypic diversity of rhinoviruses circulating in humans. We identified and completed the genome sequence of a new enterovirus genotype associated with respiratory symptoms and acute otitis media, confirming the close relationship between rhinoviruses and enteroviruses and the need to detect both viruses in respiratory specimens. Finally, we identified recombinants among circulating rhinoviruses and mapped their recombination sites, thereby demonstrating that rhinoviruses can recombine in their natural host. This study clarifies the diversity and explains the reasons for evolution of these viruses.
Collapse
|
55
|
Dhole TN, Ayyagari A, Chowdhary R, Shakya AK, Shrivastav N, Datta T, Prakash V. Non-polio enteroviruses in acute flaccid paralysis children of India: vital assessment before polio eradication. J Paediatr Child Health 2009; 45:409-13. [PMID: 19712176 DOI: 10.1111/j.1440-1754.2009.01529.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study is an overview of non-polio enterovirus (NPEV) circulating in North India studied from the perspective of poliomyelitis eradication. Wild polio cases declined because of intensive oral polio vaccine immunization. As we approach global eradication of poliovirus (PV), NPEV causing acute flaccid paralysis (AFP) are equal cause of concern. METHODS A total of 46 653 AFP samples (World Health Organization) and apparently 1000 healthy contacts living in the same geographical area were studied (2004-2007). Serological identification of NPEV was done using RIVM-specific pools (The Netherlands). Untyped (UT)-NPEVs were sequenced directly from reverse transcription-polymerase chain reaction using pan-enterovirus (Pan-EV) primer (CDC, Atlanta, GA) targeting highly conserved 5'un-translated regions of the enterovirus. RESULTS In this study, 12 513 NPEVs were isolated from the collected stool samples. Seroneutralization had identified 67% of NPEV isolates, whereas 32.6% remained as UT- NPEV. Of the typed NPEVs, Coxsackie-B accounted for 32.3%; followed by echoviruses-11, 12, 13, 7 between 8 and 28%. In sequencing few UT-NPEVs, some were identified also as echovirus-30, 11 and 18 which were probably present in mixtures as they remained UT-NPEV in ENT. Newly classified human enterovirus virus-86 (HEV) (EU079026), HEV-97(EU071767) and HEV-B isolate (EU071768) were isolated in AFP samples. CONCLUSIONS This study provided definitive information about circulation, prevalence and new emerging NPEV in the polio-endemic region of India, hence they should be considered in AFP surveillance. This would help in adopting and planning new strategies in post-PV eradication era in the country. This is the right time to prepare for the future tasks while we head towards a polio-free region.
Collapse
Affiliation(s)
- Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | | | | | | | | | | | | |
Collapse
|
56
|
Smura T, Blomqvist S, Hovi T, Roivainen M. The complete genome sequences for a novel enterovirus type, enterovirus 96, reflect multiple recombinations. Arch Virol 2009; 154:1157-61. [PMID: 19526351 DOI: 10.1007/s00705-009-0418-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
Enterovirus 96 (EV-96) is a recently described genotype in the species Human enterovirus C. So far, only partial genome sequences of this enterovirus type have been available. In this study, we report complete genome sequences for two EV-96 strains isolated from healthy children during enterovirus surveillance in Finland. Sequence analysis revealed substantial nucleotide divergence between EV-96 strains and suggested several recombination events between EV-96 and other HEV-C types.
Collapse
Affiliation(s)
- Teemu Smura
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | |
Collapse
|
57
|
New molecular detection tools adapted to emerging rhinoviruses and enteroviruses. J Clin Microbiol 2009; 47:1742-9. [PMID: 19339471 DOI: 10.1128/jcm.02339-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses (HRV), and to a lesser extent human enteroviruses (HEV), are important respiratory pathogens. Like other RNA viruses, these picornaviruses have an intrinsic propensity to variability. This results in a large number of different serotypes as well as the incessant discovery of new genotypes. This large and growing diversity not only complicates the design of real-time PCR assays but also renders immunofluorescence unfeasible for broad HRV and HEV detection or quantification in cells. In this study, we used the 5' untranslated region, the most conserved part of the genome, as a target for the development of both a real-time PCR assay (Panenterhino/Ge/08) and a peptide nucleic acid-based hybridization oligoprobe (Panenterhino/Ge/08 PNA probe) designed to detect all HRV and HEV species members according to publicly available sequences. The reverse transcription-PCR assay has been validated, using not only plasmid and viral stocks but also quantified RNA transcripts and around 1,000 clinical specimens. These new generic detection PCR assays overcame the variability of circulating strains and lowered the risk of missing emerging and divergent HRV and HEV. An additional real-time PCR assay (Entero/Ge/08) was also designed specifically to provide sensitive and targeted detection of HEV in cerebrospinal fluid. In addition to the generic probe, we developed specific probes for the detection of HRV-A and HRV-B in cells. This investigation provides a comprehensive toolbox for accurate molecular identification of the different HEV and HRV circulating in humans.
Collapse
|
58
|
Brown BA, Maher K, Flemister MR, Naraghi-Arani P, Uddin M, Oberste MS, Pallansch MA. Resolving ambiguities in genetic typing of human enterovirus species C clinical isolates and identification of enterovirus 96, 99 and 102. J Gen Virol 2009; 90:1713-1723. [PMID: 19264596 DOI: 10.1099/vir.0.008540-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular methods, based on sequencing the region encoding the VP1 major capsid protein, have recently become the gold standard for enterovirus typing. In the most commonly used scheme, sequences more than 75% identical (>85% amino acid identity) in complete or partial VP1 sequence are considered to represent the same type. However, as sequence data have accumulated, it has become clear that the '75%/85% rule' may not be universally applicable. To address this issue, we have determined nucleotide sequences for the complete P1 capsid region of a collection of 53 isolates from the species Human enterovirus C (HEV-C), comparing them with each other and with those of 20 reference strains. Pairwise identities, similarity plots and phylogenetic reconstructions identified three potential new enterovirus types, EV96, EV99 and EV102. When pairwise sequence comparisons were considered in aggregate, there was overlap in percentage identity between comparisons of homotypic strains and heterotypic strains. In particular, the differences between coxsackievirus (CV) A13 and CVA17, CVA24 and EV99, and CVA20 and EV102 were difficult to discern, largely because of intratypic sequence diversity. Closer inspection revealed the minimum intratypic values and maximum intratypic values varied by type, suggesting that the rules were at least consistent within a type. By plotting VP1 amino acid identity vs nucleotide identity for each sequence pair and considering each type separately, members of each type were fully resolved from those of other types. This study suggests that a more stringent value of 88% VP1 amino acid identity is more appropriate for routine typing and that other criteria may need to be applied, on a case by case basis, where lower values are seen.
Collapse
Affiliation(s)
- Betty A Brown
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G17, Atlanta, GA 30333, USA
| | - Kaija Maher
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G17, Atlanta, GA 30333, USA
| | - Mary R Flemister
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G17, Atlanta, GA 30333, USA
| | - Pejman Naraghi-Arani
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G17, Atlanta, GA 30333, USA
| | - Moyez Uddin
- Institute of Public Health, Dhaka, Bangladesh
| | - M Steven Oberste
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G17, Atlanta, GA 30333, USA
| | - Mark A Pallansch
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G17, Atlanta, GA 30333, USA
| |
Collapse
|
59
|
Pozo F, Casas I, Ruiz G, Falcón A, Pérez-Breña P. [Application of molecular methods in the diagnosis and epidemiological study of viral respiratory infections]. Enferm Infecc Microbiol Clin 2009; 26 Suppl 9:15-25. [PMID: 19195443 PMCID: PMC7130302 DOI: 10.1016/s0213-005x(08)76537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hasta la fecha se han identificado más de 200 virus pertenecientes a 6 familias taxonómicas diferentes asociados con la infección del tracto respiratorio humano. La utilización generalizada de métodos moleculares en los laboratorios de microbiología clínica no sólo ha aportado grandes ventajas al diagnóstico de estas infecciones, sino también está permitiendo profundizar en el conocimiento de la enfermedad y el comportamiento epidemiológico de los virus causantes. Esta tecnología incrementa de manera notable el rendimiento de detección de virus en las muestras respiratorias, debido a su elevada sensibilidad en comparación con las técnicas clásicas y a la posibilidad de identificar virus no cultivables o de crecimiento fastidioso en las líneas celulares habituales, lo que permite realizar el diagnóstico etiológico con mayor rapidez. Sin embargo, también comporta algunos inconvenientes, como son detectar virus que se encuentran colonizando la mucosa respiratoria de personas asintomáticas, o en secreciones de pacientes que ya se han recuperado de una infección pasada, a consecuencia de excreción prolongada de éstos. La secuenciación de los productos obtenidos en la reacción de amplificación genómica permite caracterizar de forma adicional los virus detectados mediante su genotipado, realizar estudios de epidemiología molecular e identificar resistencias a determinados antivirales, por citar sólo algunos ejemplos.
Collapse
Affiliation(s)
- Francisco Pozo
- Laboratorio de Gripe y Virus Respiratorios, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España.
| | | | | | | | | |
Collapse
|
60
|
Oberste MS, Jiang X, Maher K, Nix WA, Jiang B. The complete genome sequences for three simian enteroviruses isolated from captive primates. Arch Virol 2008; 153:2117-22. [PMID: 18941864 DOI: 10.1007/s00705-008-0225-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/24/2008] [Indexed: 11/30/2022]
Abstract
In a recent study, we used RT-PCR and partial genome sequencing to detect simian enteroviruses SV6, SV19 and SV46, as well as two new enterovirus types (EV92 and EV103) in fecal specimens from rhesus macaques (Macaca mulatta), pigtail macaques (M. nemestrina), and sooty mangabeys (Cercocebus atys) with diarrheal disease at a US primate center. The complete genome sequences of representative SV46, EV92, and EV103 strains, presented here, show that SV46 and EV92 are typical of the simian enteroviruses classified within the species Human enterovirus A, while EV103 appears to belong to an unclassified species that also contains SV6 and N125/N203.
Collapse
Affiliation(s)
- M Steven Oberste
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
61
|
Molecular detection and characterization of human enteroviruses in Korean surface water. J Microbiol 2008; 46:319-24. [PMID: 18604502 DOI: 10.1007/s12275-007-0232-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 04/08/2008] [Indexed: 01/19/2023]
Abstract
In this study, the genetic epidemiology of enteroviruses (EVs) in Korean surface water was evaluated by conducting phylogenetic analyses of the nucleotide sequences of the 5' non-coding region (5' NCR), which was determined by RT-PCR analysis of total culturable virus assay-positive samples. The results showed that the nucleotide sequences of the EVs could be classified into 4 genetic clusters, and that the predominant presence of Korea EVs were very similar to echoviruses type 30. Interestingly, two nucleotide sequences were very similar to those of coxsackievirus type B1 isolated from aseptic meningitis patients in Seoul, Korea, implying the possibility of a common source for the viruses circulated in water systems and humans. In addition, 3 nucleotide sequences clustered strongly with the nucleotide sequences from China or Japan, and one fell into the same cluster as echovirus type 11 from Taiwan, which suggests that EVs in Asia may have evolved in a region-specific manner. Taken together, the results of this study revealed that EVs from Korea surface waters could be genetically classified as coxsackieviruses or echoviruses, and that they evolved in Asia in a region-specific manner.
Collapse
|
62
|
Blomqvist S, Paananen A, Savolainen-Kopra C, Hovi T, Roivainen M. Eight years of experience with molecular identification of human enteroviruses. J Clin Microbiol 2008; 46:2410-3. [PMID: 18463218 PMCID: PMC2446933 DOI: 10.1128/jcm.00313-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/25/2008] [Accepted: 04/24/2008] [Indexed: 11/20/2022] Open
Abstract
We have successfully typed 1,121 human enterovirus (HEV) isolates during the last 8 years by adapting partial VP1 sequencing to routine identification of HEV isolated from diverse clinical and environmental specimens. The isolates include 48 of the 59 traditional nonpoliovirus HEV serotypes and members of 8 newly discovered types, which would have remained untypeable by neutralization using the conventional cross-sectional pools of antisera.
Collapse
Affiliation(s)
- Soile Blomqvist
- Department of Viral Diseases and Immunology, Enterovirus Laboratory, National Public Health Institute (KTL), Mannerheimintie 166, 00300 Helsinki, Finland.
| | | | | | | | | |
Collapse
|