51
|
Okuda H, Ohdan H, Nakayama M, Koseki H, Nakagawa T, Ito T. The USP21 short variant (USP21SV) lacking NES, located mostly in the nucleus in vivo, activates transcription by deubiquitylating ubH2A in vitro. PLoS One 2013; 8:e79813. [PMID: 24278184 PMCID: PMC3838379 DOI: 10.1371/journal.pone.0079813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
USP21 is a deubiquitylase that catalyzes isopeptide bond hydrolysis between ubiquitin and histone H2A. Since ubiqutylated H2A (ubH2A) represses transcription, USP21 plays a role in transcriptional activation. On the other hand, the localization of USP21 suggests it has an additional function in the cytoplasm. Here, we identified a USP21 short variant (USP21SV) lacking a nuclear export signal (NES). Differential localization of USP21SV, more in the nucleus than the USP21 long variant (USP21LV), suggests they have redundant roles in the cell. Ectopic expression of both USP21 variants decreased ubH2A in the nucleus. Furthermore, both recombinant USP21 variants activate transcription by deubiquitylating ubH2A in vitro. These data suggest multiple roles for USP21 in the ubiquitylation-deubiquitylation network in the cell.
Collapse
Affiliation(s)
- Hiroshi Okuda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
- Department of Surgery, Hiroshima University School of Medicine, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Surgery, Hiroshima University School of Medicine, Hiroshima, Japan
| | - Manabu Nakayama
- Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Yokohama, Japan
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
- * E-mail: (TI); (TN)
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
- * E-mail: (TI); (TN)
| |
Collapse
|
52
|
Dowdle JA, Mehta M, Kass EM, Vuong BQ, Inagaki A, Egli D, Jasin M, Keeney S. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet 2013; 9:e1003945. [PMID: 24244200 PMCID: PMC3820798 DOI: 10.1371/journal.pgen.1003945] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations. The eukaryotic genome is packaged into a periodic nucleoprotein complex known as chromatin. Wrapping of DNA around nucleosomes, the basic repeat unit of chromatin, enables packing of long stretches of DNA into a compact nucleus but also impedes access by protein factors involved in essential cellular processes such as transcription, replication, recombination and repair. Chromatin remodeling factors are multi-protein complexes that utilize the energy released during ATP-hydrolysis to assemble, reposition, restructure and disassemble nucleosomes. These complexes disrupt histone-DNA contacts to ‘remodel’ the chromatin and grant access to the genome. Alternatively, access can also be denied to repress transcription, for example. Spermatogenesis, the developmental program that produces sperm, comprises a dramatic chromatin makeover and the induction of a transcriptional program that engages nearly one-third of the genome. Here we provide evidence suggesting that these large-scale alterations leave the genomic material vulnerable to spurious transcriptional changes which are normally repressed by ACF1 (BAZ1A in mammals), the defining member of the well-studied ACF/CHRAC chromatin remodeling complex. These findings indicate that Baz1a plays a previously unrealized role in male fertility and may represent a novel target for male contraceptive development.
Collapse
Affiliation(s)
- James A. Dowdle
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Monika Mehta
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Elizabeth M. Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Bao Q. Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Dieter Egli
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Maria Jasin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
53
|
Culver-Cochran AE, Chadwick BP. Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics 2013; 14:740. [PMID: 24168170 PMCID: PMC3870985 DOI: 10.1186/1471-2164-14-740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/26/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Williams syndrome transcription factor (WSTF) is a multifaceted protein that is involved in several nuclear processes, including replication, transcription, and the DNA damage response. WSTF participates in a chromatin-remodeling complex with the ISWI ATPase, SNF2H, and is thought to contribute to the maintenance of heterochromatin, including at the human inactive X chromosome (Xi). WSTF is encoded by BAZ1B, and is one of twenty-eight genes that are hemizygously deleted in the genetic disorder Williams-Beuren syndrome (WBS). RESULTS To explore the function of WSTF, we performed zinc finger nuclease-assisted targeting of the BAZ1B gene and isolated several independent knockout clones in human cells. Our results show that, while heterochromatin at the Xi is unaltered, new inappropriate areas of heterochromatin spontaneously form and resolve throughout the nucleus, appearing as large DAPI-dense staining blocks, defined by histone H3 lysine-9 trimethylation and association of the proteins heterochromatin protein 1 and structural maintenance of chromosomes flexible hinge domain containing 1. In three independent mutants, the expression of a large number of genes were impacted, both up and down, by WSTF loss. CONCLUSIONS Given the inappropriate appearance of regions of heterochromatin in BAZ1B knockout cells, it is evident that WSTF performs a critical role in maintaining chromatin and transcriptional states, a property that is likely compromised by WSTF haploinsufficiency in WBS patients.
Collapse
Affiliation(s)
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
54
|
Dong J, Gao Z, Liu S, Li G, Yang Z, Huang H, Xu L. SLIDE, the protein interacting domain of Imitation Switch remodelers, binds DDT-domain proteins of different subfamilies in chromatin remodeling complexes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:928-937. [PMID: 23691993 DOI: 10.1111/jipb.12069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
The Imitation Switch (ISWI) type adenosine triphosphate (ATP)-dependent chromatin remodeling factors are conserved proteins in eukaryotes, and some of them are known to form stable remodeling complexes with members from a family of proteins, termed DDT-domain proteins. Although it is well documented that ISWIs play important roles in different biological processes in many eukaryotic species, the molecular basis for protein interactions in ISWI complexes has not been fully addressed. Here, we report the identification of interaction domains for both ISWI and DDT-domain proteins. By analyzing CHROMATIN REMODELING11 (CHR11) and RINGLET1 (RLT1), an Arabidopsis thaliana ISWI (AtISWI) and AtDDT-domain protein, respectively, we show that the SLIDE domain of CHR11 and the DDT domain together with an adjacent sequence of RLT1 are responsible for their binding. The Arabidopsis genome contains at least 12 genes that encode DDT-domain proteins, which could be grouped into five subfamilies based on the sequence similarity. The SLIDE domain of AtISWI is able to bind members from different AtDDT subfamilies. Moreover, a human ISWI protein SNF2H is capable of binding AtDDT-domain proteins through its SLIDE domain, suggesting that binding to DDT-domain proteins is a conserved biochemical function for the SLIDE domain of ISWIs in eukaryotes.
Collapse
Affiliation(s)
- Jiaqiang Dong
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called "nucleosome remodeling" ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone-DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. "Remodeling" may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states.
Collapse
|
56
|
H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci U S A 2013; 110:14894-9. [PMID: 23980157 DOI: 10.1073/pnas.1312925110] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone posttranslational modification leads to downstream effects indirectly by allowing or preventing docking of effector molecules, or directly by changing the intrinsic biophysical properties of local chromatin. To date, little has been done to study posttranslational modifications that lie outside of the unstructured tail domains of histones. Core residues, and in particular arginines in H3 and H4, mediate key interactions between the histone octamer and DNA in forming the nucleosomal particle. Using mass spectrometry, we find that one of these core residues, arginine 42 of histone H3 (H3R42), is dimethylated in mammalian cells by the methyltransferases coactivator arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 6 (PRMT6) in vitro and in vivo, and we demonstrate that methylation of H3R42 stimulates transcription in vitro from chromatinized templates. Thus, H3R42 is a new, "nontail" histone methylation site with positive effects on transcription. We propose that methylation of basic histone residues at the DNA interface may disrupt histone:DNA interactions, with effects on downstream processes, notably transcription.
Collapse
|
57
|
Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2013; 2:e00863. [PMID: 23986862 PMCID: PMC3748710 DOI: 10.7554/elife.00863] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022] Open
Abstract
Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI:http://dx.doi.org/10.7554/eLife.00863.001 In many cells, genomic DNA is wrapped around proteins known as histones to produce particles called nucleosomes. These particles then join together—like beads on a string—to form a highly periodic structure called chromatin. In the nucleus, chromatin is further folded and condensed into chromosomes. However, many important processes, including the replication of DNA and the transcription of genes, require access to the DNA. The cell must therefore be able to disassemble chromatin and remove the histones, and then, once these processes are complete, to reassemble the chromatin. Enzymes known as chromatin assembly factors are responsible for the disassembly and reassembly of chromatin. There are two main types of chromatin assembly factors in eukaryotic cells (i.e., cells with nuclei)—histone chaperones and motor proteins. The histone chaperones escort histones from the cytoplasm, where they are made, to the nucleus. The motor proteins—using energy supplied by ATP molecules—then catalyze the formation of nucleosomes. This involves two activities: the motor proteins assemble nucleosomes by helping the DNA to wrap around the histones, and they also remodel chromatin by altering the positions of nucleosomes along the DNA to ensure that they are periodic—that is, regularly spaced. A conserved motor protein called Chd1 performs chromatin assembly and remodeling in eukaryotic cells. Chd1 works in conjunction with histone chaperones—both are needed for chromatin assembly, and so are DNA, histones and ATP. However, whether or not chromatin assembly and chromatin remodeling by Chd1 are identical or distinct processes is not well understood. Torigoe et al. have now discovered a mutant Chd1 protein that has nucleosome assembly activity (i.e., it can make nucleosomes) but cannot remodel chromatin (i.e., it is unable to move nucleosomes), and thus have demonstrated that these two processes are functionally distinct. Torigoe et al. additionally have found that the mutant Chd1 proteins produce randomly distributed nucleosomes rather than the periodic arrays normally found in chromatin. Further analysis then revealed that the wild-type Chd1 protein, which can remodel chromatin, is able to convert randomly distributed nucleosomes into periodic arrays. These findings have led to a new model for chromatin assembly in which Chd1 initially generates randomly distributed nucleosomes (via its assembly function), and then converts them into periodic arrays of nucleosomes (via its remodeling function). Together, these studies shed light on the mechanisms by which chromatin is created and manipulated in cells. DOI:http://dx.doi.org/10.7554/eLife.00863.002
Collapse
Affiliation(s)
- Sharon E Torigoe
- Section of Molecular Biology , University of California, San Diego , La Jolla , United States
| | | | | | | | | |
Collapse
|
58
|
Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2013. [PMID: 23986862 DOI: 10.7554/elife.00863.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI:http://dx.doi.org/10.7554/eLife.00863.001.
Collapse
Affiliation(s)
- Sharon E Torigoe
- Section of Molecular Biology , University of California, San Diego , La Jolla , United States
| | | | | | | | | |
Collapse
|
59
|
Stanley FKT, Moore S, Goodarzi AA. CHD chromatin remodelling enzymes and the DNA damage response. Mutat Res 2013; 750:31-44. [PMID: 23954449 DOI: 10.1016/j.mrfmmm.2013.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
The protein and DNA complex known as chromatin is a dynamic structure, adapting to alter the spatial arrangement of genetic information within the nucleus to meet the ever changing demands of life. Following decades of research, a dizzying array of regulatory factors is now known to control the architecture of chromatin at nearly every level. Amongst these, ATP-dependent chromatin remodelling enzymes play a key role, required for the establishment, maintenance and re-organization of chromatin through their ability to adjust the contact points between DNA and histones, the spacing between individual nucleosomes and the over-arching chromatin superstructure. Utilizing energy from ATP hydrolysis, these enzymes serve as the gatekeepers of genomic access and are essential for transcriptional regulation, DNA replication and cell division. In recent years, a vital role in DNA Double Strand Break (DSB) repair has emerged, particularly within complex chromatin environments such as heterochromatin, or regions undergoing energetic transactions such as transcription or DNA replication. Here, we will provide an overview of what is understood about ATP-dependent chromatin remodelling enzymes in the context of the DNA damage response. We will first touch upon all four major chromatin remodelling enzyme families and then focus chiefly on the nine members of the Chromodomain, Helicase, DNA-binding (CHD) family, particularly CHD3, CHD4, CHD5 and CHD6. These four proteins have established and emerging roles in DNA repair, the oxidative stress response, the maintenance of genomic stability and/or cancer prevention.
Collapse
Affiliation(s)
- Fintan K T Stanley
- Southern Alberta Cancer Research Institute, Department of Biochemistry and Molecular Biology and Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
60
|
Vandecan Y, Blossey R. Fokker-Planck description of single nucleosome repositioning by dimeric chromatin remodelers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012728. [PMID: 23944511 DOI: 10.1103/physreve.88.012728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 06/02/2023]
Abstract
Recent experiments have demonstrated that the ATP-utilizing chromatin assembly and remodeling factor (ACF) is a dimeric, processive motor complex which can move a nucleosome more efficiently towards longer flanking DNA than towards shorter flanking DNA strands, thereby centering an initially ill-positioned nucleosome on DNA substrates. We give a Fokker-Planck description for the repositioning process driven by transitions between internal chemical states of the remodelers. In the chemical states of ATP hydrolysis during which the repositioning takes place a power stroke is considered. The slope of the effective driving potential is directly related to ATP hydrolysis and leads to the unidirectional motion of the nucleosome-remodeler complex along the DNA strand. The Einstein force relation allows us to deduce the ATP-concentration dependence of the diffusion constant of the nucleosome-remodeler complex. We have employed our model to study the efficiency of positioning of nucleosomes as a function of the ATP sampling rate between the two motors which shows that the synchronization between the motors is crucial for the remodeling mechanism to work.
Collapse
Affiliation(s)
- Yves Vandecan
- Interdisciplinary Research Institute USR 3078 CNRS and Université de Sciences et de Technologies de Lille, Parc de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France
| | | |
Collapse
|
61
|
Cho I, Tsai PF, Lake RJ, Basheer A, Fan HY. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet 2013; 9:e1003407. [PMID: 23637612 PMCID: PMC3630089 DOI: 10.1371/journal.pgen.1003407] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome—a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP–dependent chromatin remodeler family, but the extent to which CSB remodels chromatin and whether this activity is utilized in DNA repair is unknown. Here, we show that CSB repositions nucleosomes in an ATP–dependent manner in vitro and that this activity is greatly enhanced by the NAP1-like histone chaperones, which we identify as new CSB–binding partners. By mapping functional domains and analyzing CSB derivatives, we demonstrate that chromatin remodeling by the combined activities of CSB and the NAP1-like chaperones is required for efficient transcription-coupled DNA repair. Moreover, we show that chromatin remodeling and repair protein recruitment mediated by CSB are separable activities. The collaboration that we observed between CSB and the NAP1-like histone chaperones adds a new dimension to our understanding of the ways in which ATP–dependent chromatin remodelers and histone chaperones can regulate chromatin structure. Taken together, the results of this study offer new insights into the functions of chromatin remodeling by CSB in transcription-coupled DNA repair as well as the underlying mechanisms of Cockayne syndrome. Cockayne syndrome is a devastating inherited disease; the average life span of those afflicted is 12 years. Cockayne syndrome patients have features of premature aging, are highly sensitive to sunlight, and suffer from numerous developmental and neurological disorders. The majority of Cockayne syndrome patients have mutations in the CSB protein; however, how these mutations can lead to Cockayne syndrome is largely unknown. CSB is essential for transcription-coupled DNA repair—a process that preferentially removes bulky DNA lesions that stall transcription, such as those created by ultraviolet light. In eukaryotes, DNA is packaged into nucleosomes, which consists of DNA wrapped around a set of core histone proteins, and nucleosomes can create barriers to the DNA repair process. In this study, we found that CSB can slide histones along DNA. We also found that histone chaperones, proteins that accept and donate histones, greatly facilitate this process. Importantly, we show that CSB derivatives that are unable to move nucleosomes or collaborate with histone chaperones cannot repair UV-induced DNA lesions. Our study reveals that nucleosome remodeling by CSB is important for transcription-coupled DNA repair and suggests that an inability to efficiently mobilize nucleosomes might contribute to the underlying mechanism of Cockayne syndrome.
Collapse
Affiliation(s)
- Iltaeg Cho
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pei-Fang Tsai
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert J. Lake
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Asjad Basheer
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hua-Ying Fan
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
62
|
Chromatin assembly and in vitro transcription analyses for evaluation of individual protein activities in multicomponent transcriptional complexes. Methods Mol Biol 2013. [PMID: 23436363 DOI: 10.1007/978-1-62703-284-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Eukaryotic DNA and core histones form the fundamental repeating units of chromatin. Condensed c-hromatin, which has higher-order structures, prevents transcriptional complexes from accessing their target genes. Epigenetic regulation, including structural changes of chromatin, histone modification, and DNA methylation, strictly controls the pattern of gene expression and silencing. Recent studies have revealed that histone acetylation plays a crucial role in relaxing chromatin structure for initiation of transcription. Crosstalk between DNA-binding transcription factors and histone acetyltransferases (HATs) serves as a key mechanism for regulating gene expression and developmental processes. However, the precise roles of multicomponent transcriptional complexes have not been fully elucidated because of technical difficulties in using in vitro experimental systems. Previously we demonstrated that the DNA-binding transcription factor Sox9, HAT coactivator p300, and other regulatory factors (Smad3/4) cooperatively activate Sox9-dependent transcription on chromatin. Here, we describe an experimental approach to investigate the function of each component on reconstructed chromatin in vitro. Our methods offer a useful system for analyzing the additional effect of a third component in a transcriptional complex on chromatin structure.
Collapse
|
63
|
Lake RJ, Fan HY. Structure, function and regulation of CSB: a multi-talented gymnast. Mech Ageing Dev 2013; 134:202-11. [PMID: 23422418 DOI: 10.1016/j.mad.2013.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/26/2013] [Accepted: 02/08/2013] [Indexed: 11/29/2022]
Abstract
The Cockayne syndrome complementation group B protein, CSB, plays pivotal roles in transcription regulation and DNA repair. CSB belongs to the SNF2/SWI2 ATP-dependent chromatin remodeling protein family, and studies from many laboratories have revealed that CSB has multiple activities and modes of regulation. To understand the underlying mechanisms of Cockayne syndrome, it is necessary to understand how the biochemical activities of CSB are used to carry out its biological functions. In this review, we summarize our current knowledge of the structure, function and regulation of CSB, and discuss how these properties can impact the biological functions of this chromatin remodeler.
Collapse
Affiliation(s)
- Robert J Lake
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
64
|
Smeenk G, Wiegant WW, Marteijn JA, Luijsterburg MS, Sroczynski N, Costelloe T, Romeijn RJ, Pastink A, Mailand N, Vermeulen W, van Attikum H. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci 2012; 126:889-903. [PMID: 23264744 DOI: 10.1242/jcs.109413] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely unexplored. Here, we show that SMARCA5/SNF2H, the catalytic subunit of ISWI chromatin remodeling complexes, is recruited to DSBs in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner. Remarkably, PARP activity, although dispensable for the efficient spreading of γH2AX into damaged chromatin, selectively promotes spreading of SMARCA5, the E3 ubiquitin ligase RNF168, ubiquitin conjugates and the ubiquitin-binding factors RAD18 and the RAP80-BRCA1 complex throughout DSB-flanking chromatin. This suggests that PARP regulates the spatial organization of the RNF168-driven ubiquitin response to DNA damage. In support of this, we show that SMARCA5 and RNF168 interact in a DNA damage- and PARP-dependent manner. RNF168 became poly(ADP-ribosyl)ated after DNA damage, while RNF168 and poly(ADP-ribose) chains were required for SMARCA5 binding in vivo, explaining how SMARCA5 is linked to the RNF168 ubiquitin cascade. Moreover, SMARCA5 was found to regulate the ubiquitin response by promoting RNF168 accumulation at DSBs, which subsequently facilitates efficient ubiquitin conjugation and BRCA1 assembly. Underlining the importance of these findings, we show that SMARCA5 depletion renders cells sensitive to IR and results in DSB repair defects. Our study unveils a functional link between DNA damage-induced poly(ADP-ribosyl)ation, SMARCA5-mediated chromatin remodeling and RNF168-dependent signaling and repair of DSBs.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called chromatin. The condensed nature of chromatin inhibits many DNA metabolizing activities, including NER. In order to promote efficient repair, detection of a lesion not only has to activate the NER pathway but also chromatin remodeling. In general, such remodeling is thought on the one hand to precede NER, thus allowing repair proteins to efficiently access DNA. On the other hand, after completion of the repair, the chromatin must be returned to its previous undamaged state. Chromatin remodeling can refer to three separate but interconnected processes, histone post-translational modifications, insertion of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER.
Collapse
|
66
|
Mazzio EA, Soliman KFA. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 2012; 7:119-30. [PMID: 22395460 DOI: 10.4161/epi.7.2.18764] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through epigenetic modifications, specific long-term phenotypic consequences can arise from environmental influence on slowly evolving genomic DNA. Heritable epigenetic information regulates nucleosomal arrangement around DNA and determines patterns of gene silencing or active transcription. One of the greatest challenges in the study of epigenetics as it relates to disease is the enormous diversity of proteins, histone modifications and DNA methylation patterns associated with each unique maladaptive phenotype. This is further complicated by a limitless combination of environmental cues that could alter the epigenome of specific cell types, tissues, organs and systems. In addition, complexities arise from the interpretation of studies describing analogous but not identical processes in flies, plants, worms, yeast, ciliated protozoans, tumor cells and mammals. This review integrates fundamental basic concepts of epigenetics with specific focus on how the epigenetic machinery interacts and operates in continuity to silence or activate gene expression. Topics covered include the connection between DNA methylation, methyl-CpG-binding proteins, transcriptional repression complexes, histone residues, histone modifications that mediate gene repression or relaxation, histone core variant stability, H1 histone linker flexibility, FACT complex, nucleosomal remodeling complexes, HP1 and nuclear lamins.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL USA
| | | |
Collapse
|
67
|
Hooker L, Smoczer C, KhosrowShahian F, Wolanski M, Crawford MJ. Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. Dev Dyn 2012; 241:1487-505. [PMID: 22826267 DOI: 10.1002/dvdy.23836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Unexpected phenotypes resulting from morpholino-mediated translational knockdown of Pitx3 in Xenopus laevis required further investigation regarding the genetic networks in which the gene might play a role. Microarray analysis was, therefore, used to assess global transcriptional changes downstream of Pitx3. RESULTS From the large data set generated, selected candidate genes were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. CONCLUSIONS We have identified four genes as likely direct targets of Pitx3 action: Pax6, β Crystallin-b1 (Crybb1), Hes7.1, and Hes4. Four others show equivocal promise worthy of consideration: Vent2, and Ripply2 (aka Ledgerline or Stripy), eFGF and RXRα. We also describe the expression pattern of additional and novel genes that are Pitx3-sensitive but that are unlikely to be direct targets.
Collapse
Affiliation(s)
- Lara Hooker
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|
68
|
Emelyanov AV, Vershilova E, Ignatyeva MA, Pokrovsky DK, Lu X, Konev AY, Fyodorov DV. Identification and characterization of ToRC, a novel ISWI-containing ATP-dependent chromatin assembly complex. Genes Dev 2012; 26:603-14. [PMID: 22426536 DOI: 10.1101/gad.180604.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SNF2-like motor proteins, such as ISWI, cooperate with histone chaperones in the assembly and remodeling of chromatin. Here we describe a novel, evolutionarily conserved, ISWI-containing complex termed ToRC (Toutatis-containing chromatin remodeling complex). ToRC comprises ISWI, Toutatis/TIP5 (TTF-I-interacting protein 5), and the transcriptional corepressor CtBP (C-terminal-binding protein). ToRC facilitates ATP-dependent nucleosome assembly in vitro. All three subunits are required for its maximal biochemical activity. The toutatis gene exhibits strong synthetic lethal interactions with CtBP. Thus, ToRC mediates, at least in part, biological activities of CtBP and Toutatis. ToRC subunits colocalize in euchromatic arms of polytene chromosomes. Furthermore, nuclear localization and precise distribution of ToRC in chromosomes are dependent on CtBP. ToRC is involved in CtBP-mediated regulation of transcription by RNA polymerase II in vivo. For instance, both Toutatis and CtBP are required for repression of genes of a proneural gene cluster, achaete-scute complex (AS-C), in Drosophila larvae. Intriguingly, native C-terminally truncated Toutatis isoforms do not associate with CtBP and localize predominantly to the nucleolus. Thus, Toutatis forms two alternative complexes that have differential distribution and can participate in distinct aspects of nuclear DNA metabolism.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Lange M, Demajo S, Jain P, Di Croce L. Combinatorial assembly and function of chromatin regulatory complexes. Epigenomics 2012; 3:567-80. [PMID: 22126247 DOI: 10.2217/epi.11.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The introduction of new methods for genome-wide analyses of the chromatin state, together with the power of refined techniques for mass spectrometry and biochemistry, has provided an unprecedented view on the complexity of eukaryotic gene regulation. Chromatin structure, the state of histone modifications and DNA methylation are highly dynamic and subject to various levels of regulation. In addition, the subunit compositions of the protein complexes that bring about these changes appear to be assembled in a combinatorial manner that is specific for the cell type and developmental stage, providing increased specificity to these complexes. Here we discuss recent evidence regarding the combinatorial control of chromatin regulatory complexes.
Collapse
Affiliation(s)
- Martin Lange
- Center for Genomic Regulation & UPF, Barcelona, Spain
| | | | | | | |
Collapse
|
70
|
Abstract
PARP-1 is the most abundantly expressed member of a family of proteins that catalyze the transfer of ADP-ribose units from NAD(+) to target proteins. Numerous studies on PARP-1 have revealed its critical roles in regulating various molecular and cellular processes including DNA damage detection and repair, chromatin modification.In this chapter, we describe various in vitro methods to investigate the function of PARP-1 in the regulation of chromatin structure using chromatin templates.
Collapse
|
71
|
Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012; 11:119-31. [PMID: 22186017 DOI: 10.4161/cc.11.1.18475] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human ASXL proteins, orthologs of Drosophila Additional Sex combs, have been implicated in conjunction with TET2 as a major target for mutations and translocations leading to a wide range of myeloid leukemias, related myelodysplastic conditions (ASXL1 and ASXL2) and the Bohring-Opitz syndrome, a developmental disorder (ASXL1). Using sensitive sequence and structure comparison methods, we show that most animal ASXL proteins contain a novel N-terminal domain that is also found in several other eukaryotic chromatin proteins, diverse restriction endonucleases and DNA glycosylases, the RNA polymerase delta subunit of Gram-positive bacteria and certain bacterial proteins that combine features of the RNA polymerase α-subunit and sigma factors. This domain adopts the winged helix-turn-helix fold and is predicted to bind DNA. Based on its domain architectural contexts, we present evidence that this domain might play an important role, both in eukaryotes and bacteria, in the recruitment of diverse effector activities, including the Polycomb repressive complexes, to DNA, depending on the state of epigenetic modifications such as 5-methylcytosine and its oxidized derivatives. In other eukaryotic chromatin proteins, this predicted DNA-binding domain is fused to a region with three conserved motifs that are also found in diverse eukaryotic chromatin proteins, such as the animal BAZ/WAL proteins, plant HB1 and MBD9, yeast Itc1p and Ioc3, RSF1, CECR2 and NURF1. Based on the crystal structure of Ioc3, we establish that these motifs in conjunction with the DDT motif constitute a structural determinant that is central to nucleosomal repositioning by the ISWI clade of SWI2/SNF2 ATPases. We also show that the central domain of the ASXL proteins (ASXH domain) is conserved outside of animals in fungi and plants, where it is combined with other domains, suggesting that it might be an ancient module mediating interactions between chromatin-linked protein complexes and transcription factors via its conserved LXLLL motif. We present evidence that the C-terminal PHD finger of ASXL protein has certain peculiar structural modifications that might allow it to recognize internal modified lysines other than those from the N terminus of histone H3, making it the mediator of previously unexpected interactions in chromatin.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
72
|
Torigoe SE, Urwin DL, Ishii H, Smith DE, Kadonaga JT. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol Cell 2011; 43:638-48. [PMID: 21855802 DOI: 10.1016/j.molcel.2011.07.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/27/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Chromatin assembly involves the combined action of histone chaperones and ATP-dependent motor proteins. Here, we investigate the mechanism of nucleosome assembly with a purified chromatin assembly system containing the histone chaperone NAP1 and the ATP-dependent motor protein ACF. These studies revealed the rapid formation of a stable nonnucleosomal histone-DNA intermediate that is converted into canonical nucleosomes by ACF. The histone-DNA intermediate does not supercoil DNA like a canonical nucleosome, but has a nucleosome-like appearance by atomic force microscopy. This intermediate contains all four core histones, lacks NAP1, and is formed by the initial deposition of histones H3-H4. Conversion of the intermediate into histone H1-containing chromatin results in increased resistance to micrococcal nuclease digestion. These findings suggest that the histone-DNA intermediate corresponds to nascent nucleosome-like structures, such as those observed at DNA replication forks. Related complexes might be formed during other chromatin-directed processes such as transcription, DNA repair, and histone exchange.
Collapse
Affiliation(s)
- Sharon E Torigoe
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | |
Collapse
|
73
|
Piatti P, Zeilner A, Lusser A. ATP-dependent chromatin remodeling factors and their roles in affecting nucleosome fiber composition. Int J Mol Sci 2011; 12:6544-65. [PMID: 22072904 PMCID: PMC3210995 DOI: 10.3390/ijms12106544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 01/03/2023] Open
Abstract
ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.
Collapse
Affiliation(s)
- Paolo Piatti
- Division of Molecular Biology, Innsbruck Medical University, Biocenter, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria; E-Mails: (P.P.); (A.Z.)
| | | | | |
Collapse
|
74
|
Assembly states of the nucleosome assembly protein 1 (NAP-1) revealed by sedimentation velocity and non-denaturing MS. Biochem J 2011; 436:101-12. [DOI: 10.1042/bj20102063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteins often exist as ensembles of interconverting states in solution which are often difficult to quantify. In the present manuscript we show that the combination of MS under nondenaturing conditions and AUC-SV (analytical ultracentrifugation sedimentation velocity) unambiguously clarifies a distribution of states and hydrodynamic shapes of assembled oligomers for the NAP-1 (nucleosome assembly protein 1). MS established the number of associated units, which was utilized as input for the numerical analysis of AUC-SV profiles. The AUC-SV analysis revealed that less than 1% of NAP-1 monomer exists at the micromolar concentration range and that the basic assembly unit consists of dimers of yeast or human NAP-1. These dimers interact non-covalently to form even-numbered higher-assembly states, such as tetramers, hexamers, octamers and decamers. MS and AUC-SV consistently showed that the formation of the higher oligomers was suppressed with increasing ionic strength, implicating electrostatic interactions in the formation of higher oligomers. The hydrodynamic shapes of the NAP-1 tetramer estimated from AUC-SV agreed with the previously proposed assembly models built using the known three-dimensional structure of yeast NAP-1. Those of the hexamer and octamer could be represented by new models shown in the present study. Additionally, MS was used to measure the stoichiometry of the interaction between the human NAP-1 dimer and the histone H2A–H2B dimer or H3–H4 tetramer. The present study illustrates a rigorous procedure for the analysis of protein assembly and protein–protein interactions in solution.
Collapse
|
75
|
Kim J, Roeder RG. Nucleosomal H2B ubiquitylation with purified factors. Methods 2011; 54:331-8. [PMID: 21443952 DOI: 10.1016/j.ymeth.2011.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022] Open
Abstract
Diverse histone modifications play important roles in transcriptional regulation throughout eukaryotes, and recent studies have implicated histone H2B ubiquitylation in active transcription. The necessity of at least three enzymes (E1-E3), as well as ongoing transcription events, for efficient H2B ubiquitylation complicates mechanistic studies of H2B ubiquitylation relative to other histone modifications. Here we describe experimental protocols for preparation of human H2B ubiquitylation factors, ubiquitylation substrates and transcription factors, as well as the use of these factors to establish H2B ubiquitylation mechanisms during transcription. The methods include reliable protein interaction and E3 ubiquitylation assays that can be widely applied to confirm cognate E2-E3 pairs in other protein ubiquitylation systems, optimized in vitro ubiquitylation assays for various histone substrates, and a transcription-coupled H2B ubiquitylation assay in a highly purified transcription system. These comprehensive analyses have revealed (i) that RAD6 serves as the cognate E2 for the BRE1 complex in human cells, as previously established in yeast, (ii) that RAD6, through direct interaction with the BRE1 complex, ubiquitylates chromatinized H2B at lysine 120 and (iii) that PAF1 complex-mediated transcription is required for efficient H2B ubiquitylation. This experimental system permits detailed mechanistic analyses of H2B ubiquitylation during transcription by providing information concerning both precise enzyme functions and physical interactions between the transcription and histone modification machineries.
Collapse
Affiliation(s)
- Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
76
|
Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011; 21:396-420. [PMID: 21358755 DOI: 10.1038/cr.2011.32] [Citation(s) in RCA: 641] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular assemblies that regulate chromatin structure using the energy of ATP hydrolysis have critical roles in development, cancer, and stem cell biology. The ATPases of this family are encoded by 27 human genes and are usually associated with several other proteins that are stable, non-exchangeable subunits. One fundamental mechanism used by these complexes is thought to be the movement or exchange of nucleosomes to regulate transcription. However, recent genetic studies indicate that chromatin remodelers may also be involved in regulating other aspects of chromatin structure during many cellular processes. The SWI/SNF family in particular appears to have undergone a substantial change in subunit composition and mechanism coincident with the evolutionary advent of multicellularity and the appearance of linking histones. The differential usage of this greater diversity of mammalian BAF subunits is essential for the development of specific cell fates, including the progression from pluripotency to multipotency to committed neurons. Recent human genetic screens have revealed that BRG1, ARID1A, BAF155, and hSNF5 are frequently mutated in tumors, indicating that BAF complexes also play a critical role in the initiation or progression of cancer. The mechanistic bases underlying the genetic requirements for BAF and other chromatin remodelers in development and cancer are relatively unexplored and will be a focus of this review.
Collapse
Affiliation(s)
- Diana C Hargreaves
- Howard Hughes Medical Institute, Beckman Center B211, 279 Campus Drive, Mailcode 5323, Stanford University School of Medicine, Stanford, CA 94305-5323, USA
| | | |
Collapse
|
77
|
Kato S, Yokoyama A, Fujiki R. Nuclear receptor coregulators merge transcriptional coregulation with epigenetic regulation. Trends Biochem Sci 2011; 36:272-81. [PMID: 21315607 DOI: 10.1016/j.tibs.2011.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 12/11/2022]
Abstract
Members of the nuclear steroid/thyroid hormone receptor (NR) gene superfamily are DNA-binding transcription factors that regulate target genes in a spatiotemporal manner, depending on the promoter context. In vivo observations of ligand responses in NR-mediated gene regulation led to the identification of ligand-dependent coregulators that directly interact with NRs. Functional dissection of NR coregulators revealed that their transcriptional coregulation was linked to histone acetylation. However, recent work in the fields of reversible histone modification and chromatin remodeling indicates that histone-modifying enzymes, including histone methylases and chromatin remodelers, are potential transcriptional coregulators that interact directly and indirectly with NRs.
Collapse
Affiliation(s)
- Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
78
|
Barnett C, Krebs JE. WSTF does it all: a multifunctional protein in transcription, repair, and replication. Biochem Cell Biol 2011; 89:12-23. [PMID: 21326359 PMCID: PMC3251257 DOI: 10.1139/o10-114] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Williams syndrome transcription factor (WSTF) has emerged as an incredibly versatile nuclear protein. WSTF and the ATP-dependent chromatin remodeling complexes in which it exists, WINAC, WICH, and B-WICH, have been studied in a variety of organisms. This research has revealed roles for WSTF in a number of diverse molecular events. WSTF function includes chromatin assembly, RNA polymerase I and III gene regulation, vitamin D metabolism, and DNA repair. In addition to functioning as a subunit of several ATP-dependent chromatin remodeling complexes, WSTF binds specifically to acetylated histones and is itself a histone kinase as well as a target of phosphorylation. This review will describe the three known WSTF-containing complexes and discuss their various roles as well as mechanisms of regulating WSTF activity.
Collapse
Affiliation(s)
- Chris Barnett
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508
| | - Jocelyn E. Krebs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508
| |
Collapse
|
79
|
Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R, Janicki SM, Ogiwara H, Kohno T, Kanno SI, Yasui A. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 2011; 40:976-87. [PMID: 21172662 DOI: 10.1016/j.molcel.2010.12.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/11/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
Abstract
DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.
Collapse
Affiliation(s)
- Li Lan
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Stem cells of all types are characterized by a stable, heritable state permissive of multiple developmental pathways. The past five years have seen remarkable advances in understanding these heritable states and the ways that they are initiated or terminated. Transcription factors that bind directly to DNA and have sufficiency roles have been most easy to investigate and, perhaps for this reason, are most solidly implicated in pluripotency. In addition, large complexes of ATP-dependent chromatin-remodeling and histone-modification enzymes that have specialized functions have also been implicated by genetic studies in initiating and/or maintaining pluripotency or multipotency. Several of these ATP-dependent remodeling complexes play non-redundant roles, and the esBAF complex facilitates reprogramming of induced pluripotent stem cells. The recent finding that virtually all histone modifications can be rapidly reversed and are often highly dynamic has raised new questions about how histone modifications come to play a role in the steady state of pluripotency. Another surprise from genetic studies has been the frequency with which the global effects of mutations in chromatin regulators can be largely reversed by a single target gene. These genetic studies help define the arena for future mechanistic studies that might be helpful to harness pluripotency for therapeutic goals.
Collapse
Affiliation(s)
- Julie A Lessard
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal H3C 3J7, Quebec, Canada.
| | | |
Collapse
|
81
|
Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc Natl Acad Sci U S A 2010; 107:19873-8. [PMID: 20974961 DOI: 10.1073/pnas.1003438107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodeling complexes can translocate nucleosomes along the DNA in an ATP-dependent manner. Here, we studied autofluorescent protein constructs of the human ISWI family members Snf2H, Snf2L, the catalytically inactive Snf2L+13 splice variant, and the accessory Acf1 subunit in living human and mouse cells by fluorescence microscopy/spectroscopy. Except for Snf2L, which was not detected in the U2OS cell line, the endogenous ISWI proteins were abundant at nuclear concentrations between 0.14 and 0.83 μM. A protein interaction analysis showed the association of multimeric Snf2H and Acf1 into a heterotetramer or higher-order ACF complex. During the G1/2 cell cycle phase, Snf2H and Snf2L displayed average residence times <150 ms in the chromatin-bound state. The comparison of active and inactive Snf2H/Snf2L indicated that an immobilized fraction potentially involved in active chromatin remodeling comprised only 1-3%. This fraction was largely increased at replication foci in S phase or at DNA repair sites. To rationalize these findings we propose that ISWI remodelers operate via a "continuous sampling" mechanism: The propensity of nucleosomes to be translocated is continuously tested in transient binding reactions. Most of these encounters are unproductive and efficient remodeling requires an increased binding affinity to chromatin. Due to the relatively high intranuclear remodeler concentrations cellular response times for repositioning a given nucleosome were calculated to be in the range of tens of seconds to minutes.
Collapse
|
82
|
Higashi M, Inoue S, Ito T. Core histone H2A ubiquitylation and transcriptional regulation. Exp Cell Res 2010; 316:2707-12. [DOI: 10.1016/j.yexcr.2010.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 12/26/2022]
|
83
|
Chioda M, Vengadasalam S, Kremmer E, Eberharter A, Becker PB. Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development 2010; 137:3513-22. [PMID: 20843858 DOI: 10.1242/dev.048405] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nucleosome remodelling complexes CHRAC and ACF of Drosophila are thought to play global roles in chromatin assembly and nucleosome dynamics. Disruption of the gene encoding the common ACF1 subunit compromises fly viability. Survivors show defects in chromatin assembly and chromatin-mediated gene repression at all developmental stages. We now show that ACF1 expression is under strict developmental control. The expression is strongly diminished during embryonic development and persists at high levels only in undifferentiated cells, including the germ cell precursors and larval neuroblasts. Constitutive expression of ACF1 is lethal. Cell-specific ectopic expression perturbs chromatin organisation and nuclear programmes. By monitoring heterochromatin formation during development, we have found that ACF1-containing factors are involved in the initial establishment of diversified chromatin structures, such as heterochromatin. Altering the levels of ACF1 leads to global and variegated deviations from normal chromatin organisation with pleiotropic defects.
Collapse
|
84
|
Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM. The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 2010; 285:18877-87. [PMID: 20388712 DOI: 10.1074/jbc.m110.105668] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PARP-1 is involved in multiple cellular processes, including transcription, DNA repair, and apoptosis. PARP-1 attaches ADP-ribose units to target proteins, including itself as a post-translational modification that can change the biochemical properties of target proteins and mediate recruitment of proteins to sites of poly(ADP-ribose) synthesis. Independent of its catalytic activity, PARP-1 binds to chromatin and promotes compaction affecting RNA polymerase II transcription. PARP-1 has a modular structure composed of six independent domains. Two homologous zinc fingers, Zn1 and Zn2, form the DNA-binding module. Zn1-Zn2 binding to DNA breaks triggers catalytic activity. Recently, we have identified a third zinc binding domain in PARP-1, the Zn3 domain, which is essential for DNA-dependent PARP-1 activity. The crystal structure of the Zn3 domain revealed a novel zinc-ribbon fold and a homodimeric Zn3 structure that formed in the crystal lattice. Structure-guided mutagenesis was used here to investigate the roles of these two features of the Zn3 domain. Our results indicate that the zinc-ribbon fold of the Zn3 domain mediates an interdomain contact crucial to assembly of the DNA-activated conformation of PARP-1. In contrast, residues located at the Zn3 dimer interface are not required for DNA-dependent activation but rather make important contributions to the chromatin compaction activity of PARP-1. Thus, the Zn3 domain has dual roles in regulating the functions of PARP-1.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
85
|
Soft skills turned into hard facts: nucleosome remodelling at developmental switches. Heredity (Edinb) 2010; 105:71-9. [DOI: 10.1038/hdy.2010.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
86
|
The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 2010; 140:491-503. [PMID: 20178742 DOI: 10.1016/j.cell.2009.12.050] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/24/2009] [Accepted: 12/22/2009] [Indexed: 01/12/2023]
Abstract
Genetic and cell-based studies have implicated the PAF1 complex (PAF1C) in transcription-associated events, but there has been no evidence showing a direct role in facilitating transcription of a natural chromatin template. Here, we demonstrate an intrinsic ability of human PAF1C (hPAF1C) to facilitate activator (p53)- and histone acetyltransferase (p300)-dependent transcription elongation from a recombinant chromatin template in a biochemically defined RNA polymerase II transcription system. This represents a PAF1C function distinct from its established role in histone ubiquitylation and methylation. Importantly, we further demonstrate a strong synergy between hPAF1C and elongation factor SII/TFIIS and an underlying mechanism involving direct hPAF1C-SII interactions and cooperative binding to RNA polymerase II. Apart from a distinct PAF1C function, the present observations provide a molecular mechanism for the cooperative function of distinct transcription elongation factors in chromatin transcription.
Collapse
|
87
|
Emelyanov AV, Konev AY, Vershilova E, Fyodorov DV. Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J Biol Chem 2010; 285:15027-15037. [PMID: 20154359 DOI: 10.1074/jbc.m109.064790] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATRX belongs to the family of SWI2/SNF2-like ATP-dependent nucleosome remodeling molecular motor proteins. Mutations of the human ATRX gene result in a severe genetic disorder termed X-linked alpha-thalassemia mental retardation (ATR-X) syndrome. Here we perform biochemical and genetic analyses of the Drosophila melanogaster ortholog of ATRX. The loss of function allele of the Drosophila ATRX/XNP gene is semilethal. Drosophila ATRX is expressed throughout development in two isoforms, p185 and p125. ATRX185 and ATRX125 form distinct multisubunit complexes in fly embryo. The ATRX185 complex comprises p185 and heterochromatin protein HP1a. Consistently, ATRX185 but not ATRX125 is highly concentrated in pericentric beta-heterochromatin of the X chromosome in larval cells. HP1a strongly stimulates biochemical activities of ATRX185 in vitro. Conversely, ATRX185 is required for HP1a deposition in pericentric beta-heterochromatin of the X chromosome. The loss of function allele of the ATRX/XNP gene and mutant allele that does not express p185 are strong suppressors of position effect variegation. These results provide evidence for essential biological functions of Drosophila ATRX in vivo and establish ATRX as a major determinant of pericentric beta-heterochromatin identity.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alexander Y Konev
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
88
|
Dynamics of nucleosome remodelling by individual ACF complexes. Nature 2010; 462:1022-7. [PMID: 20033040 PMCID: PMC2835771 DOI: 10.1038/nature08627] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022]
Abstract
The ATP-utilizing chromatin assembly and remodelling factor (ACF) functions to generate regularly spaced nucleosomes, which are required for heritable gene silencing. The mechanism by which ACF mobilizes nucleosomes remains poorly understood. Here we report a single-molecule FRET study that monitors the remodelling of individual nucleosomes by ACF in real time, revealing previously unknown remodelling intermediates and dynamics. In the presence of ACF and ATP, the nucleosomes exhibit gradual translocation along DNA interrupted by well-defined kinetic pauses that occurred after approximately 7 or 3 – 4 base pairs of translocation. The binding of ACF, translocation of DNA, and exiting of translocation pauses are all ATP-dependent, revealing three distinct functional roles of ATP during remodelling. At equilibrium, a continuously bound ACF complex can move the nucleosome back-and-forth many times before dissociation, indicating that ACF is a highly processive and bidirectional nucleosome translocase.
Collapse
|
89
|
Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, Cooke R, Cheng Y, Narlikar GJ. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 2010; 462:1016-21. [PMID: 20033039 PMCID: PMC2869534 DOI: 10.1038/nature08621] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/29/2009] [Indexed: 01/01/2023]
Abstract
Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. But how the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. We show that nucleosome movement depends cooperatively on two ACF molecules, suggesting that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one vs. both sides of the nucleosome. Three-dimensional reconstruction by single particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results suggest a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes.
Collapse
Affiliation(s)
- Lisa R Racki
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Soshnikova NV, Vorobyeva NI, Krasnov AN, Georgieva SG, Nabirochkina EN, Shidlovskii YV. Novel complex formed by the SAYP transcriptional coactivator. Mol Biol 2009. [DOI: 10.1134/s0026893309060107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Wu SY, Chiang CM. p53 sumoylation: mechanistic insights from reconstitution studies. Epigenetics 2009; 4:445-51. [PMID: 19838051 DOI: 10.4161/epi.4.7.10030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sumoylation represents a cascade of enzymatic reactions mediated by SUMO-activating enzyme (SAE1/SAE2 heterodimer), SUMO-conjugating enzyme Ubc9, and SUMO E3 ligases that include five protein inhibitors of activated STATs (PIAS1, PIAS3, PIASy, PIASxalpha and PIASxbeta), and culminates in the formation of an isopeptide bond between the C-terminal glycine of a small ubiquitin-related modifier (SUMO) and the lysine residue of a protein substrate. Conjugation of a SUMO moiety, ranging from 92 (for SUMO-2) to 97 (for SUMO-1) amino acids, not only increases the molecular size but also alters the property and function of the modified protein. Although sumoylation has been observed with many cellular proteins and the majority of transcription factors including the p53 tumor suppressor, this covalent modification is normally detectable only in a small population, often less than 5%, of a given substrate in vivo. This low abundance of SUMO-modified proteins, due to the presence of sentrin/SUMO-specific proteases (SENPs) that actively cleave the reversible SUMO linkage, has posed a challenge to define the biological effect of SUMO in living cells. Nevertheless, the recent development of reconstituted modification and chromatin-dependent transcription assays has provided unique insights into the molecular action of SUMO in modifying protein function. The availability of these reconstitution systems has unraveled the interplay between sumoylation and acetylation in regulating the DNA binding and transcriptional activity of p53 tetramers and further allow the identification of transcriptional corepressors, such as mSin3A, CoREST1/LSD1 and Mi-2/NuRD implicated in SUMO-dependent gene silencing events.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
92
|
Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res 2009; 37:5641-55. [PMID: 19625488 PMCID: PMC2761276 DOI: 10.1093/nar/gkp610] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 01/09/2023] Open
Abstract
Nucleosome positions on the DNA are determined by the intrinsic affinities of histone proteins to a given DNA sequence and by the ATP-dependent activities of chromatin remodeling complexes that can translocate nucleosomes with respect to the DNA. Here, we report a theoretical approach that takes into account both contributions. In the theoretical analysis two types of experiments have been considered: in vitro experiments with a single reconstituted nucleosome and in vivo genome-scale mapping of nucleosome positions. The effect of chromatin remodelers was described by iteratively redistributing the nucleosomes according to certain rules until a new steady state was reached. Three major classes of remodeler activities were identified: (i) the establishment of a regular nucleosome spacing in the vicinity of a strong positioning signal acting as a boundary, (ii) the enrichment/depletion of nucleosomes through amplification of intrinsic DNA-sequence-encoded signals and (iii) the removal of nucleosomes from high-affinity binding sites. From an analysis of data for nucleosome positions in resting and activated human CD4(+) T cells [Schones et al., Cell 132, p. 887] it was concluded that the redistribution of a nucleosome map to a new state is greatly facilitated if the remodeler complex translocates the nucleosome with a preferred directionality.
Collapse
Affiliation(s)
- Vladimir B. Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich 5/2, 220141, Minsk, Belarus
| | - Karsten Rippe
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich 5/2, 220141, Minsk, Belarus
| |
Collapse
|
93
|
Rattner BP, Yusufzai T, Kadonaga JT. HMGN proteins act in opposition to ATP-dependent chromatin remodeling factors to restrict nucleosome mobility. Mol Cell 2009; 34:620-6. [PMID: 19524541 DOI: 10.1016/j.molcel.2009.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 12/20/2022]
Abstract
The high-mobility group N (HMGN) proteins are abundant nonhistone chromosomal proteins that bind specifically to nucleosomes at two high-affinity sites. Here we report that purified recombinant human HMGN1 (HMG14) and HMGN2 (HMG17) potently repress ATP-dependent chromatin remodeling by four different molecular motor proteins. In contrast, mutant HMGN proteins with double Ser-to-Glu mutations in their nucleosome-binding domains are unable to inhibit chromatin remodeling. The HMGN-mediated repression of chromatin remodeling is reversible and dynamic. With the ACF chromatin remodeling factor, HMGN2 does not directly inhibit the ATPase activity but rather appears to reduce the affinity of the factor to chromatin. These findings suggest that HMGN proteins serve as a counterbalance to the action of the many ATP-dependent chromatin remodeling activities in the nucleus.
Collapse
Affiliation(s)
- Barbara P Rattner
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | |
Collapse
|
94
|
Kim J, Roeder RG. Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J Biol Chem 2009; 284:20582-92. [PMID: 19531475 DOI: 10.1074/jbc.m109.017442] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent yeast genetic studies have implicated the ubiquitin-conjugating enzyme and ubiquitin ligase functions of yRad6 and yBre1, respectively, in H2B ubiquitylation. However, there have been no corresponding biochemical analyses demonstrating intrinsic enzyme activities of yRad6 and yBre1 or related mechanistic details. Here, we describe a robust in vitro chromatin ubiquitylation assay that involves purified H2B ubiquitylation factors and natural nucleosomes. Our results indicate that yRad6 has an in vitro ability to nonspecifically ubiquitylate all core histones in the absence of an ubiquitin ligase but that yBre1 functions, through direct interactions with yRad6, to direct the ubiquitin conjugating activity of yRad6 toward the physiological H2B ubiquitylation site. Moreover, a yRad6 domain mapping analysis shows that an intact UBC domain is required for binding to yBre1, whereas the C-terminal acidic tail domain that is not required for a stable yBre1-yRad6 interaction is necessary for full enzyme activity of yRad6. We also find that, analogous to heteromeric complex formation by BRE1 paralogues in other organisms, yBre1 forms a homo-multimeric complex. Of special significance, our detailed biochemical analyses further show that the yBre1 RING finger domain is essential for H2B ubiquitylation but, surprisingly, dispensable for interaction of yBre1 with yRad6. In further support of the genetically identified requirement of the RNA polymerase II-associated yPaf1 complex for H2B ubiquitylation, protein interaction studies reveal that a purified yPaf1 complex directly and selectively interacts with yBre1 and thus serves to link the H2B ubiquitylation and general transcription machineries. These studies provide a more detailed mechanistic basis for H2B ubiquitylation in yeast.
Collapse
Affiliation(s)
- Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
95
|
Transcription of in vitro assembled chromatin templates in a highly purified RNA polymerase II system. Methods 2009; 48:353-60. [PMID: 19272450 DOI: 10.1016/j.ymeth.2009.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/25/2009] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells RNA polymerase II efficiently transcribes nucleosome-packaged DNA. In this regard, a fundamental question concerns the nature and mechanism of action of the accessory factors that are necessary and sufficient for, or enhance, transcription through nucleosomal arrays by RNA polymerase II. Here we describe a highly purified system that allows for efficient activator-dependent transcription by RNA polymerase II from the promoter through several contiguous nucleosomes on defined chromatin templates. The system contains natural or recombinant histones, chromatin assembly factors, the histone-acetyltransferase p300, all components of the general transcription machinery, general coactivators and the elongation factor SII (TFIIS). As examples of the applicability of this system for mechanistic analyses of these and other factors, representative experiments show (i) that activated transcription from chromatin templates is concomitantly dependent on the activator, p300-mediated histone acetylation and elongation factor SII/TFIIS. (ii) that SII/TFIIS acts in a highly synergistic manner with p300 (and histone acetylation) at a step subsequent to preinitiation complex (PIC) formation and (iii) that SII/TFIIS works directly at the elongation step of chromatin transcription. Here we describe purification methods for the different factors employed and the specific transcriptional assays that led to the above-mentioned conclusions. This purified system will be very useful as an assay system for the discovery of new factors or the mechanistic analysis of known or candidate factors involved in transcription initiation or elongation on chromatin templates, including factors that effect specific histone modifications or nucleosomal remodeling.
Collapse
|
96
|
Walker P, Doenecke D, Kahle J. Importin 13 mediates nuclear import of histone fold-containing chromatin accessibility complex heterodimers. J Biol Chem 2009; 284:11652-62. [PMID: 19218565 DOI: 10.1074/jbc.m806820200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The histone fold is a structural element that facilitates heterodimerization, and histone fold heterodimers play crucial roles in gene regulation. Here, we investigated the nuclear import of two human histone fold pairs, which belong to the H2A/H2B family: CHRAC-15/CHRAC-17 and p12/CHRAC-17. Our results from in vitro nuclear import assays with permeabilized cells and in vivo cotransfection experiments reveal that importin 13 facilitates nuclear import of both histone fold heterodimers. Using glutathione S-transferase pulldown experiments, we provide evidence that heterodimers are required for efficient binding of importin 13 because the monomers alone do not significantly interact. Mutational analysis shows that stepwise substitution of basic amino acid residues conserved among the histone fold subunits leads to a progressive loss of importin 13 binding and nuclear accumulation of CHRAC-15/CHRAC-17 and p12/CHRAC-17. The distribution of basic amino acid residues among the histone fold subunits essential for nuclear uptake suggests that heterodimerization of the histone fold motif-containing proteins forms an importin 13-specific binding platform.
Collapse
Affiliation(s)
- Patrick Walker
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung Molekularbiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
97
|
Abstract
Recent studies indicate that chromatin regulatory complexes produce biological specificity in the way that letters produce meanings by combinations into words. Combinatorial assembly of chromatin regulatory complexes may be critical for maximizing the information content provided by arrays of histone modifications.
Collapse
Affiliation(s)
- Jiang I Wu
- Howard Hughes Medical Institute, Departments of Pathology and Developmental Biology, Stanford University, Stanford, CA 94062, USA
| | | | | |
Collapse
|
98
|
Chang EY, Ferreira H, Somers J, Nusinow DA, Owen-Hughes T, Narlikar GJ. MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF. Biochemistry 2008; 47:13726-32. [PMID: 19035833 PMCID: PMC3428728 DOI: 10.1021/bi8016944] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The variant histone macroH2A helps maintain X inactivation and gene silencing. Previous work implied that nucleosomes containing macroH2A cannot be remodeled by ISWI and SWI/SNF chromatin remodeling enzymes. Using approaches that prevent misassembly of macroH2A nucleosomes, we find that macroH2A nucleosomes are excellent substrates for both enzyme families. Interestingly, SWI/SNF, which is involved in gene activation, preferentially binds H2A nucleosomes over macroH2A nucleosomes, but ACF, an ISWI complex implicated in gene repression, shows no preference. Thus, macroH2A may help regulate the balance between activating and repressive remodeling complexes.
Collapse
|
99
|
Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 2008; 457:57-62. [PMID: 19092802 PMCID: PMC2854499 DOI: 10.1038/nature07668] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/27/2008] [Indexed: 12/20/2022]
Abstract
DNA double-stranded breaks present a serious challenge for eukaryotic cells. The inability to repair breaks leads to genomic instability, carcinogenesis and cell death. During the double-strand break response, mammalian chromatin undergoes reorganization demarcated by H2A.X Ser 139 phosphorylation (gamma-H2A.X). However, the regulation of gamma-H2A.X phosphorylation and its precise role in chromatin remodelling during the repair process remain unclear. Here we report a new regulatory mechanism mediated by WSTF (Williams-Beuren syndrome transcription factor, also known as BAZ1B)-a component of the WICH complex (WSTF-ISWI ATP-dependent chromatin-remodelling complex). We show that WSTF has intrinsic tyrosine kinase activity by means of a domain that shares no sequence homology to any known kinase fold. We show that WSTF phosphorylates Tyr 142 of H2A.X, and that WSTF activity has an important role in regulating several events that are critical for the DNA damage response. Our work demonstrates a new mechanism that regulates the DNA damage response and expands our knowledge of domains that contain intrinsic tyrosine kinase activity.
Collapse
Affiliation(s)
- Andrew Xiao
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Wong HY, Demmers JAA, Bezstarosti K, Grootegoed JA, Brinkmann AO. DNA dependent recruitment of DDX17 and other interacting proteins by the human androgen receptor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:193-8. [PMID: 19059367 DOI: 10.1016/j.bbapap.2008.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 12/13/2022]
Abstract
An oligonucleotide-based assay (OBA) was used to identify novel co-factors that can be recruited by the deoxyribonucleic acid (DNA)-bound androgen receptor (AR). Nuclear extracts obtained from LNCaP cells, after incubation with R1881, were incubated with biotinylated oligonucleotides bound to streptavidin coated beads. The oligonucleotides contain 3 copies in tandem of the androgen responsive element ARE1 from the prostate specific antigen (PSA) gene promoter. As control incubation, a scrambled version of the tandem ARE1 was used. Immunoblots of the eluents revealed that the AR was bound to the ARE1 oligonucleotide and to a much lesser extent to the scrambled oligonucleotide. Proteins eluted from the oligonucleotides, were separated on a 5-15% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gradient gel, followed by identification using mass spectrometry. Identified proteins were scored for having one or more of the following known properties: nuclear localization, involved in transcription regulation, involvement in steroid hormone receptor (SHR) function, or specifical involvement in AR function. A total number of 85 nuclear proteins were found in two separate OBAs. Based on peptide counting, we found enrichment of 7 proteins eluted from the ARE1 oligonucleotide, compared to the scrambled oligonucleotide. Taken together with the obtained scores, these proteins are considered putative AR co-factors. One of these proteins, DDX17, is known to be a co-factor for estrogen receptor alpha (ERalpha), but has never been associated with AR function. The results indicate that the ARE oligonucleotide-based assay may allow enrichment of new candidate DNA-bound AR interacting proteins.
Collapse
Affiliation(s)
- Hao Yun Wong
- Department of Reproduction and Development, Erasmus MC, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|